1
|
Williams TJ, Jeevarathinam AS, Jivan F, Baldock V, Kim P, McShane MJ, Alge DL. Glucose biosensors based on Michael addition crosslinked poly(ethylene glycol) hydrogels with chemo-optical sensing microdomains. J Mater Chem B 2023; 11:1749-1759. [PMID: 36723375 DOI: 10.1039/d2tb02339c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Continuous glucose monitoring (CGM) devices have the potential to lead to better disease management and improved outcomes in patients with diabetes. Chemo-optical glucose sensors offer a promising, accurate, long-term alternative to the current CGMs that require frequent calibration and replacement. Recently, we have proposed glucose sensor designs using phosphorescence lifetime-based measurement of chemo-optical glucose sensing microdomains embedded within alginate hydrogels. Due to the poor long-term stability of calcium-crosslinked alginate, we propose poly(ethylene glycol) (PEG) hydrogels synthesized via thiol-Michael addition chemistry as an alternative hydrogel carrier. The objective of this study was to evaluate the suitability of Michael addition crosslinked PEG hydrogels compared to calcium crosslinked alginate hydrogels for encapsulating glucose-sensing microdomains. PEG hydrogels crosslinked via thiol-vinyl sulfone addition achieved gelation in under 5 minutes, resulting in an even distribution of sensing microdomains. The shear storage modulus of the PEG hydrogels was tunable from 2.2 ± 0.1 kPa to 9.5 ± 1.8 kPa, which was comparable to the alginate hydrogels (10.5 ± 0.8 kPa), and the inclusion of microdomains did not significantly impact stiffness. The high water content of PEG hydrogels resulted in high glucose permeability that closely corresponded to the glucose permeability of alginate (D = 0.09 and 0.12 cm2 s-1, respectively; p = 0.47), but the PEG hydrogels exhibited superior stability. Both PEG and alginate-embedded sensors exhibited a sensing range up to ∼200 mg dL-1 glucose. The lower limits of detection (LOD) for PEG and alginate-based glucose sensors were 19.8 and 20.6 mg dL-1 with a difference of just 4.2% variation. The small difference between PEG and alginate embedded sensors indicates that their sensing properties are primarily determined by the glucose sensing microdomains rather than the hydrogel matrix. Overall, the results of this study indicate that Michael addition-crosslinked PEG hydrogels are a promising platform for encapsulation of chemo-optical glucose sensing microdomains.
Collapse
Affiliation(s)
- Tyrell J Williams
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| | | | - Faraz Jivan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| | - Victoria Baldock
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| | - Paul Kim
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| | - Michael J McShane
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA. .,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Daniel L Alge
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA. .,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Luminescence encoding of polymer microbeads with organic dyes and semiconductor quantum dots during polymerization. Sci Rep 2022; 12:12061. [PMID: 35835808 PMCID: PMC9283474 DOI: 10.1038/s41598-022-16065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/04/2022] [Indexed: 01/15/2023] Open
Abstract
Luminescence-encoded microbeads are important tools for many applications in the life and material sciences that utilize luminescence detection as well as multiplexing and barcoding strategies. The preparation of such beads often involves the staining of premanufactured beads with molecular luminophores using simple swelling procedures or surface functionalization with layer-by-layer (LbL) techniques. Alternatively, these luminophores are sterically incorporated during the polymerization reaction yielding the polymer beads. The favorable optical properties of semiconductor quantum dots (QDs), which present broadly excitable, size-tunable, narrow emission bands and low photobleaching sensitivity, triggered the preparation of beads stained with QDs. However, the colloidal nature and the surface chemistry of these QDs, which largely controls their luminescence properties, introduce new challenges to bead encoding that have been barely systematically assessed. To establish a straightforward approach for the bead encoding with QDs with minimized loss in luminescence, we systematically assessed the incorporation of oleic acid/oleylamine-stabilized CdSe/CdS-core/shell-QDs into 0.5-2.5 µm-sized polystyrene (PS) microspheres by a simple dispersion polymerization synthesis that was first optimized with the organic dye Nile Red. Parameters addressed for the preparation of luminophore-encoded beads include the use of a polymer-compatible ligand such as benzyldimethyloctadecylammonium chloride (OBDAC) for the QDs, and crosslinking to prevent luminophore leakage. The physico-chemical and optical properties of the resulting beads were investigated with electron microscopy, dynamic light scattering, optical spectroscopy, and fluorescence microscopy. Particle size distribution, fluorescence quantum yield of the encapsulated QDs, and QD leaking stability were used as measures for bead quality. The derived optimized bead encoding procedure enables the reproducible preparation of bright PS microbeads encoded with organic dyes as well as with CdSe/CdS-QDs. Although these beads show a reduced photoluminescence quantum yield compared to the initially very strongly luminescent QDs, with values of about 35%, their photoluminescence quantum yield is nevertheless still moderate.
Collapse
|
3
|
Benito-Peña E, Valdés MG, Glahn-Martínez B, Moreno-Bondi MC. Fluorescence based fiber optic and planar waveguide biosensors. A review. Anal Chim Acta 2016; 943:17-40. [PMID: 27769374 PMCID: PMC7094704 DOI: 10.1016/j.aca.2016.08.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/21/2022]
Abstract
The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science.
Collapse
Affiliation(s)
- Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Mayra Granda Valdés
- Department of Analytical Chemistry, Faculty of Chemistry, University of La Habana, 10400 La Habana, Cuba
| | - Bettina Glahn-Martínez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Maria C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Ritter DW, Newton JM, Roberts JR, McShane MJ. Albuminated Glycoenzymes: Enzyme Stabilization through Orthogonal Attachment of a Single-Layered Protein Shell around a Central Glycoenzyme Core. Bioconjug Chem 2016; 27:1285-92. [PMID: 27111632 DOI: 10.1021/acs.bioconjchem.6b00103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Here we demonstrate an approach to stabilize enzymes through the orthogonal covalent attachment of albumin on the single-enzyme level. Albuminated glycoenzymes (AGs) based upon glucose oxidase and catalase from Aspergillus niger were prepared in this manner. Gel filtration chromatography and dynamic light scattering support modification, with an increase in hydrodynamic radius of ca. 60% upon albumination. Both AGs demonstrate a marked resistance to aggregation during heating to 90 °C, but this effect is more profound in albuminated catalase. The functional characteristics of albuminated glucose oxidase vary considerably with exposure type. The AG's thermal inactivation is reduced more than 25 times compared to native glucose oxidase, and moderate stabilization is observed with one month storage at 37 °C. However, albumination has no effect on operational stability of glucose oxidase.
Collapse
Affiliation(s)
- Dustin W Ritter
- Department of Biomedical Engineering, Texas A&M University , College Station, Texas 77843-3120, United States
| | - Jared M Newton
- Department of Biomedical Engineering, Texas A&M University , College Station, Texas 77843-3120, United States
| | - Jason R Roberts
- Department of Biomedical Engineering, Texas A&M University , College Station, Texas 77843-3120, United States
| | - Michael J McShane
- Department of Biomedical Engineering, Texas A&M University , College Station, Texas 77843-3120, United States.,Department of Materials Science & Engineering, Texas A&M University , College Station, Texas 77843-3003, United States
| |
Collapse
|
5
|
Collier BB, McShane MJ. Enzymatic Glucose Sensor Compensation for Variations in Ambient Oxygen Concentration. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2015; 8591. [PMID: 26257458 DOI: 10.1117/12.2001840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Due to the increasing prevalence of diabetes, research toward painless glucose sensing continues. Oxygen sensitive phosphors with glucose oxidase (GOx) can be used to determine glucose levels indirectly by monitoring oxygen consumption. This is an attractive combination because of its speed and specificity. Packaging these molecules together in "smart materials" for implantation will enable non-invasive glucose monitoring. As glucose levels increase, oxygen levels decrease; consequently, the luminescence intensity and lifetime of the phosphor increase. Although the response of the sensor is dependent on glucose concentration, the ambient oxygen concentration also plays a key role. This could lead to inaccurate glucose readings and increase the risk of hyper- or hypoglycemia. To mitigate this risk, the dependence of hydrogel glucose sensor response on oxygen levels was investigated and compensation methods explored. Sensors were calibrated at different oxygen concentrations using a single generic logistic equation, such that trends in oxygen-dependence were determined as varying parameters in the equation. Each parameter was found to be a function of oxygen concentration, such that the correct glucose calibration equation can be calculated if the oxygen level is known. Accuracy of compensation will be determined by developing an overall calibration, using both glucose and oxygen sensors in parallel, correcting for oxygen fluctuations in real time by intentionally varying oxygen, and calculating the error in actual and predicted glucose levels. While this method was developed for compensation of enzymatic glucose sensors, in principle it can also be implemented with other kinds of sensors utilizing oxidases.
Collapse
Affiliation(s)
- Bradley B Collier
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843
| | - Michael J McShane
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 ; Department of Materials Science and Engineering Program, Texas A&M University, College Station, TX 77843
| |
Collapse
|
6
|
Unruh RM, Roberts JR, Nichols SP, Gamsey S, Wisniewski NA, McShane MJ. Preclinical Evaluation of Poly(HEMA-co-acrylamide) Hydrogels Encapsulating Glucose Oxidase and Palladium Benzoporphyrin as Fully Implantable Glucose Sensors. J Diabetes Sci Technol 2015; 9:985-92. [PMID: 26085565 PMCID: PMC4667330 DOI: 10.1177/1932296815590439] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Continuous glucose monitors (CGMs) require percutaneous wire probes to monitor glucose. Sensors based on luminescent hydrogels are being explored as fully implantable alternatives to traditional CGMs. Our previous work investigated hydrogel matrices functionalized with enzymes and oxygen-quenched phosphors, demonstrating sensitivity to glucose, range of response, and biofouling strongly depend on the matrix material. Here, we further investigate the effect of matrix composition on overall performance in vitro and in vivo. METHODS Sensors based on three hydrogels, a poly(2-hydroxyethyl methacrylate) (pHEMA) homopolymer and 2 poly(2-hydroxyethyl methacrylate-co-acrylamide) (pHEMA-co-AAm) copolymers, were compared. These were used to entrap glucose oxidase (GOx), catalase, and an oxygen-sensitive benzoporphyrin phosphor. All sensor formulations were evaluated for glucose response and stability at physiological temperatures. Selected sensors were then evaluated as implanted sensors in a porcine model challenged with glucose and insulin. The animal protocol used in this study was approved by an IACUC committee at Texas A&M University. RESULTS PHEMA-co-AAm copolymer hydrogels (75:25 HEMA:AAm) yielded the most even GOx and dye dispersion throughout the hydrogel matrix and best preserved GOx apparent activity. In response to in vitro glucose challenges, this formulation exhibited a dynamic range of 12-167 mg/dL, a sensitivity of 1.44 ± 0.46 µs/(mg/dL), and tracked closely with reference capillary blood glucose values in vivo. CONCLUSIONS The hydrogel-based sensors exhibited excellent sensitivity and sufficiently rapid response to the glucose levels achieved in vivo, proving feasibility of these materials for use in real-time glucose tracking. Extending the dynamic range and assessing long-term effects in vivo are ongoing efforts.
Collapse
Affiliation(s)
- Rachel M Unruh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Jason R Roberts
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | | | | | | | - Michael J McShane
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
7
|
Analysis of biosurfaces by neutron reflectometry: from simple to complex interfaces. Biointerphases 2015; 10:019014. [PMID: 25779088 DOI: 10.1116/1.4914948] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Because of its high sensitivity for light elements and the scattering contrast manipulation via isotopic substitutions, neutron reflectometry (NR) is an excellent tool for studying the structure of soft-condensed material. These materials include model biophysical systems as well as in situ living tissue at the solid-liquid interface. The penetrability of neutrons makes NR suitable for probing thin films with thicknesses of 5-5000 Å at various buried, for example, solid-liquid, interfaces [J. Daillant and A. Gibaud, Lect. Notes Phys. 770, 133 (2009); G. Fragneto-Cusani, J. Phys.: Condens. Matter 13, 4973 (2001); J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002)]. Over the past two decades, NR has evolved to become a key tool in the characterization of biological and biomimetic thin films. In the current report, the authors would like to highlight some of our recent accomplishments in utilizing NR to study highly complex systems, including in-situ experiments. Such studies will result in a much better understanding of complex biological problems, have significant medical impact by suggesting innovative treatment, and advance the development of highly functionalized biomimetic materials.
Collapse
|
8
|
Wang XD, Wolfbeis OS. Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 2014; 43:3666-761. [PMID: 24638858 DOI: 10.1039/c4cs00039k] [Citation(s) in RCA: 569] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We review the current state of optical methods for sensing oxygen. These have become powerful alternatives to electrochemical detection and in the process of replacing the Clark electrode in many fields. The article (with 694 references) is divided into main sections on direct spectroscopic sensing of oxygen, on absorptiometric and luminescent probes, on polymeric matrices and supports, on additives and related materials, on spectroscopic schemes for read-out and imaging, and on sensing formats (such as waveguide sensing, sensor arrays, multiple sensors and nanosensors). We finally discuss future trends and applications and summarize the properties of the most often used indicator probes and polymers. The ESI† (with 385 references) gives a selection of specific applications of such sensors in medicine, biology, marine and geosciences, intracellular sensing, aerodynamics, industry and biotechnology, among others.
Collapse
Affiliation(s)
- Xu-dong Wang
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany.
| | | |
Collapse
|
9
|
Ritter DW, Roberts JR, McShane MJ. Glycosylation site-targeted PEGylation of glucose oxidase retains native enzymatic activity. Enzyme Microb Technol 2013; 52:279-85. [PMID: 23540931 DOI: 10.1016/j.enzmictec.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/04/2013] [Accepted: 01/09/2013] [Indexed: 11/29/2022]
Abstract
Targeted PEGylation of glucose oxidase at its glycosylation sites was investigated to determine the effect on enzymatic activity, as well as the bioconjugate's potential in an optical biosensing assay. Methoxy-poly(ethylene glycol)-hydrazide (4.5kDa) was covalently coupled to periodate-oxidized glycosylation sites of glucose oxidase from Aspergillus niger. The bioconjugate was characterized using gel electrophoresis, liquid chromatography, mass spectrometry, and dynamic light scattering. Gel electrophoresis data showed that the PEGylation protocol resulted in a drastic increase (ca. 100kDa) in the apparent molecular mass of the protein subunit, with complete conversion to the bioconjugate; liquid chromatography data corroborated this large increase in molecular size. Mass spectrometry data proved that the extent of PEGylation was six poly(ethylene glycol) chains per glucose oxidase dimer. Dynamic light scattering data indicated the absence of higher-order oligomers in the PEGylated GOx sample. To assess stability, enzymatic activity assays were performed in triplicate at multiple time points over the course of 29 days in the absence of glucose, as well as before and after exposure to 5% w/v glucose for 24h. At a confidence level of 95%, the bioconjugate's performance was statistically equivalent to native glucose oxidase in terms of activity retention over the 29 day time period, as well as following the 24h glucose exposure. Finally, the bioconjugate was entrapped within a poly(2-hydroxyethyl methacrylate) hydrogel containing an oxygen-sensitive phosphor, and the construct was shown to respond approximately linearly with a 220±73% signal change (n=4, 95% confidence interval) over the physiologically-relevant glucose range (i.e., 0-400mg/dL); to our knowledge, this represents the first demonstration of PEGylated glucose oxidase incorporated into an optical biosensing assay.
Collapse
Affiliation(s)
- Dustin W Ritter
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | |
Collapse
|
10
|
Roberts JR, Ritter DW, McShane MJ. A Design Full of Holes: Functional Nanofilm-Coated Microdomains in Alginate Hydrogels. J Mater Chem B 2013; 107:3195-3201. [PMID: 24040514 PMCID: PMC3770476 DOI: 10.1039/c3tb20477d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study demonstrates the successful manufacture and functional characterization of alginate hydrogels containing a variety of encapsulates within polyelectrolyte multilayer-coated micropores. These microporous alginate (MPA) hydrogels are prepared via one-step internal ionotropic gelation of the alginate using polyelectrolyte multilayer-coated CaCO3 microspheres along with the weak acid glucono-δ-lactone. Here, successful encapsulation of a model macromolecule and fluorescent nanoparticles within microcapsules-distributed throughout the larger alginate hydrogel-is confirmed with confocal microscopy, while the porous morphology of the MPA hydrogels is examined with scanning electron microscopy. Hydrogels constructed with uncoated CaCO3 microspheres release their contents into the surrounding environment, while those constructed with polyelectrolyte multilayer-coated CaCO3 microspheres retain the materials within the pores. MPA hydrogels containing the model enzyme glucose oxidase retained activity and are capable of reacting with small molecules from the external environment. The ability to encapsulate an assortment of functional materials within a moldable, biocompatible alginate matrix gives this approach great flexibility and potential in a wide variety of biomedical applications.
Collapse
Affiliation(s)
- Jason R. Roberts
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, United States
| | - Dustin W. Ritter
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, United States
| | - Michael J. McShane
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, United States
- Materials Science and Engineering Program, Texas A&M University, College Station, TX 77843-3120, United States
| |
Collapse
|
11
|
Roberts JR, Park J, Helton K, Wisniewski N, McShane MJ. Biofouling of polymer hydrogel materials and its effect on diffusion and enzyme-based luminescent glucose sensor functional characteristics. J Diabetes Sci Technol 2012; 6:1267-75. [PMID: 23294771 PMCID: PMC3570866 DOI: 10.1177/193229681200600605] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Continuous glucose monitoring is crucial to developing a successful artificial pancreas. However, biofouling and host response make in vivo sensor performance difficult to predict. We investigated changes in glucose diffusivity and sensor response of optical enzymatic glucose sensors due to biological exposure. METHOD Three hydrogel materials, poly(2-hydroxyethyl methacrylate) (pHEMA), poly(acrylamide) (pAM), and poly(2-hydroxyethyl methacrylate)-co-poly(acrylamide) (p(HEMA-co-AM)), were tested for glucose diffusivity before and after exposure to serum or implantation in rats for 1 month. Luminescent sensors based on these materials were measured to compare the response to glucose before and after serum exposure. RESULTS Glucose diffusivity through the pHEMA [(8.1 ± 0.38) × 10(-8) cm(2)/s] slabs was much lower than diffusivity through pAM [(2.7 ± 0.15) × 10(-6) cm(2)/s] and p(HEMA-co-AM) [(2.5 ± 0.08) × 10(-6)]. As expected from these differences, sensor response was highly dependent on material type. The pHEMA sensors had a maximum sensitivity of 2.5%/(mg/dl) and an analytical range of 4.2-356 mg/dl, while the p(HEMA-co-AM) sensors had a higher sensitivity [14.9%/(mg/dl)] and a narrower analytical range (17.6-70.5 mg/dl). After serum exposure, the pHEMA sensors were unaffected, whereas the p(HEMA-co-AM) sensors exhibited significantly decreased sensitivity and increased analytical range. CONCLUSIONS Decreases in glucose diffusivity in the polymers resulting from in vitro serum exposure and residence in vivo were shown to be similar, suggesting that serum incubation was a reasonable approximation of in vivo fouling. While biofouling is expected to affect the response of flux-based sensors, we have shown that this depended on the type of sensor and matrix used. Therefore, proper design and materials selection may minimize response alterations occurring upon implantation.
Collapse
Affiliation(s)
- Jason R. Roberts
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Jaebum Park
- Materials Science and Engineering Program, Texas A&M UniversityCollege Station, Texas
| | - Kristen Helton
- PROFUSA, Inc., San Francisco, California
- University of Washington, Seattle, Washington
| | - Natalie Wisniewski
- PROFUSA, Inc., San Francisco, California
- Medical Device Consultancy, San Francisco, California
| | - Michael J. McShane
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
- Materials Science and Engineering Program, Texas A&M UniversityCollege Station, Texas
| |
Collapse
|
12
|
Abstract
Fluorescence represents a promising alternative technology to electrochemistry and spectroscopy for accurate analysis of glucose in diabetes; however, no implanted fluorescence glucose assay is currently commercially available. The method depends on the principle of fluorescence, which is the emission of light by a substance after absorbing light. A fluorophore is a molecule that will absorb energy of a specific wavelength and reemit energy at a different wavelength. A fluorescence glucose-sensing molecule can be constructed to increase or decrease in fluorescence from baseline according to the ambient concentration of glucose. A quantum dot is a semiconductor crystal that can serve as a sensor by fluorescing at a desired wavelength or color, depending on the crystal size and materials used. If receptor molecules for glucose can be adsorbed to single-wall carbon nanotubules, then the resulting binding of glucose to these receptors will alter the nanotubes' fluorescence. Fluorescence glucose sensors can provide a continuous glucose reading by being embedded into removable wire-shaped subcutaneous or intravenous catheters as well as other types of implanted structures, such as capsules, microcapsules, microbeads, nano-optodes, or capillary tubes. Fluorescence glucose-sensing methods, which are under development, offer four potential advantages over commercially used continuous glucose monitoring technologies: (1) greater sensitivity to low concentrations of glucose, (2) the possibility of constructing sensors that operate most accurately in the hypoglycemic range by using binding proteins with disassociation constants in this range, (3) less need to recalibrate in response to local tissue reactions around the sensor, and (4) no need to implant either a transmitter or a power source for wireless communication of glucose data. Fluorescence glucose sensors also have four significant disadvantages compared with commercially used continuous glucose monitoring technologies: (1) a damaging foreign body response; (2) a sensitivity to local pH and/or oxygen, which can affect the dye response; (3) potential toxicity of implanted dyes, especially if the implanted fluorophore cannot be fully removed; and (4) the necessity of always carrying a dedicated light source to interrogate the implanted sensor. Fluorescence sensing is a promising method for measuring glucose continuously, especially in the hypoglycemic range. If currently vexing technical and engineering and biocompatibility problems can be overcome, then this approach could lead to a new family of continuous glucose monitors.
Collapse
|
13
|
Long R, McShane M. Design of an Optical System for Interrogation of Implanted Luminescent Sensors and Verification with Silicone Skin Phantoms. IEEE Trans Biomed Eng 2012; 59:2459-65. [DOI: 10.1109/tbme.2012.2203306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Long R, McShane M. High-throughput spectral system for interrogation of dermally-implanted luminescent sensors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2012:2351-2354. [PMID: 23366396 DOI: 10.1109/embc.2012.6346435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ratiometric luminescent microparticle sensors have been developed for sensing biochemical targets such as glucose in interstitial fluid, enabling use of dermal implants for on-demand monitoring. For these sensor systems to be deployed in vivo, a matched optoelectronic system for interrogation of dermally-implanted sensors was previously designed, constructed, and evaluated experimentally. During evaluation experiments, it revealed that the system efficiency was compromised by losses due to fiber connections of a commercial spectrometer. In this work, a high-throughput spectral system was presented to solve the photon loss problem. This system was designed, constructed, and tested. The throughput was around hundred time more than the previous system we used, and it was cost-effective, as well. It enables use of an integrated system for excitation, collection and measurement of luminescent emission, and will be used as a tool for in vivo studies with animal models or human subjects.
Collapse
Affiliation(s)
- Ruiqi Long
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | |
Collapse
|
15
|
Long R, McShane M. High-efficiency optical systems for interrogation of dermally-implanted sensors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2010:1033-6. [PMID: 21097206 DOI: 10.1109/iembs.2010.5628059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ratiometric Luminescent microparticle sensors have been developed for sensing biochemical targets such as glucose in interstitial fluid, enabling use of dermal implants for on-demand monitoring. For these sensor systems to be deployed in vivo, a matched optoelectronic system for interrogation of dermally-implanted sensors was previously designed, constructed, and evaluated experimentally. During evaluation experiments, it revealed that the system efficiency was compromised by losses due to fiber connections, the entrance aperture, and the entrance slit of the spectrometer. In this work, two optimization methods were investigated to overcome photon loss at fiber connections and internal trade-off between resolution and input light power of the current spectrometer: 1) Replacement of the CCD spectrometer with a two-detector system, enabling extraction of key spectral information by integrating signals over two wavelength regions (reference and sensing emission peaks); and 2) Free-space coupling of the optical probe to a custom low-resolution spectrometer. Photon loss was evaluated by experiments and simulations, preliminary hardware of two-detector system was constructed, and optimization simulations were performed to explore conceptual feasibility of the free-space coupling custom-designed spectrometer.
Collapse
Affiliation(s)
- Ruiqi Long
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | |
Collapse
|
16
|
Collier BB, Singh S, McShane M. Microparticle ratiometric oxygen sensors utilizing near-infrared emitting quantum dots. Analyst 2011; 136:962-7. [DOI: 10.1039/c0an00661k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Singh S, McShane M. Role of porosity in tuning the response range of microsphere-based glucose sensors. Biosens Bioelectron 2010; 26:2478-83. [PMID: 21111602 DOI: 10.1016/j.bios.2010.10.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 11/19/2022]
Abstract
Luminescent microspheres encapsulating glucose oxidase have recently been developed as implantable glucose sensors. Previous work has shown that the response range and sensitivity can be tuned by varying the thickness and composition of transport-controlling nanofilm coatings. Nevertheless, the linear response range of these sensors falls significantly below the desired clinical range for in vivo monitoring. We report here an alternative means of tuning the response range by adjusting microsphere porosity. A reaction-diffusion model was first used to evaluate whether increased porosity would be expected to extend the response range by decreasing the flux of glucose relative to oxygen. Sensors exhibiting linear response (R(2)>0.90) up to 600 mg/dL were then experimentally demonstrated by using amine-functionalized mesoporous silica microspheres and polyelectrolyte nanofilm coatings. The model was then used for sensor design, which led to the prediction that sensors constructed from ∼12 μm microspheres having an effective porosity between 0.005 and 0.01 and ∼65 nm transport-limiting coatings would respond over the entire physiological glucose range (up to 600 mg/dL) with maximized sensitivity.
Collapse
Affiliation(s)
- Saurabh Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
18
|
Tohda K, Yamamoto T, Gratzl M. Modelling the response function of enzyme-based optical glucose-sensing capsules. Supramol Chem 2010. [DOI: 10.1080/10610278.2010.483734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Park J, McShane MJ. Dual-function nanofilm coatings with diffusion control and protein resistance. ACS APPLIED MATERIALS & INTERFACES 2010; 2:991-7. [PMID: 20384292 DOI: 10.1021/am900673r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To date, limited examples of polyelectrolyte multilayers (PEMs) can be found that truly exploit the power of layer-by-layer nanoassembly to combine multiple functions into a complex multilayer. We demonstrate that PEMs can be designed as optimized coatings for implantable biosensors, exhibiting both diffusion control and protein resistance. PEM coatings comprising strong-weak and weak-weak pairs were evaluated, resulting in decreases in glucose diffusivity up to 5 orders of magnitude compared to water. Addition of poly(ethylene glycol) (PEG)-grafted terminal layers on the base diffusion-controlling multilayers substantially improved resistance to albumin adsorption relative to unmodified PEMs. For transport-controlling films comprising strong-weak polyelectrolyte pairs, the consistent diffusivity was observed even after exposure to protein-containing solutions, indicating minimal effects of biofouling. In contrast, the transport behavior of weak-weak polyelectrolyte pairs was susceptible to alteration by protein exposure, resulting in large variation in diffusivity, even when protein-resistant outer layers were employed.
Collapse
Affiliation(s)
- Jaebum Park
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
20
|
Long R, McShane M. Three-dimensional, multiwavelength Monte Carlo simulations of dermally implantable luminescent sensors. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:027011. [PMID: 20459285 PMCID: PMC2874051 DOI: 10.1117/1.3374180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 02/04/2010] [Accepted: 02/11/2010] [Indexed: 05/29/2023]
Abstract
Dermally implanted luminescent sensors have been proposed for monitoring of tissue biochemistry, which has the potential to improve treatments for conditions such as diabetes and kidney failure. Effective in vivo monitoring via noninvasive transdermal measurement of emission from injected microparticles requires a matched optoelectronic system for excitation and collection of luminescence. We applied Monte Carlo modeling to predict the characteristics of output luminescence from microparticles in skin to facilitate hardware design. Three-dimensional, multiwavelength Monte Carlo simulations were used to determine the spatial and spectral distribution of the escaping luminescence for different implantation depths, excitation light source properties, particle characteristics, and particle packing density. Results indicate that the ratio of output emission to input excitation power ranged 10(-3) to 10(-6) for sensors at the upper and lower dermal boundaries, respectively, and 95% of the escaping emission photons induced by a 10-mm-diam excitation beam were confined within an 18-mm circle. Tightly packed sensor configurations yielded higher output intensity with fewer particles, even after luminophore concentration effects were removed. Most importantly, for the visible wavelengths studied, the ability to measure spectral changes in emission due to glucose changes was not significantly affected by absorption and scattering of tissue, which supports the potential to accurately track changes in luminescence of sensor implants that respond to the biochemistry of the skin.
Collapse
Affiliation(s)
- Ruiqi Long
- Texas A&M University, Biomedical Engineering, College Station, Texas 77843-3120, USA
| | | |
Collapse
|
21
|
Borisov SM, Mayr T, Mistlberger G, Klimant I. Dye-Doped Polymeric Particles for Sensing and Imaging. ADVANCED FLUORESCENCE REPORTERS IN CHEMISTRY AND BIOLOGY II 2010. [DOI: 10.1007/978-3-642-04701-5_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Borisov SM, Nuss G, Klimant I. Red light-excitable oxygen sensing materials based on platinum(II) and palladium(II) benzoporphyrins. Anal Chem 2009; 80:9435-42. [PMID: 19006407 DOI: 10.1021/ac801521v] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
New optical oxygen-sensing materials make use of highly luminescent NIR platinum(II) and palladium(II) complexes with benzoporphyrins. Bulk optodes based on polystyrene and sensing nanobeads based on poly(styrene-block-vinylpyrrolidone) and polysulfone are prepared and characterized. The versatility of the new materials is demonstrated. The features include excellent compatibility with most common excitation sources, high brightness, and suitability for subcutaneous oxygen monitoring.
Collapse
Affiliation(s)
- S M Borisov
- Institute of Analytical Chemistry and Radiochemistry, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria.
| | | | | |
Collapse
|
23
|
Singh S, McShane M. Enhancing the longevity of microparticle-based glucose sensors towards 1 month continuous operation. Biosens Bioelectron 2009; 25:1075-81. [PMID: 19926464 DOI: 10.1016/j.bios.2009.09.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/18/2009] [Accepted: 09/21/2009] [Indexed: 02/03/2023]
Abstract
Luminescent microspheres encapsulating glucose oxidase have recently been reported as potential implantable sensors, but the operational lifetime of these systems has been limited by enzyme degradation. We report here that the longevity of these enzymatic microparticle-based sensors has been extended by the coimmobilization of glucose oxidase (GOx) and catalase (CAT) into the sensor matrix. A mathematical model was used to compare the response and longevity of the sensors with and without catalase. To experimentally test the longevity, sensors were continuously operated under normoglycemic dermal substrate concentrations and physiological conditions (5.5 mM glucose and 140 microM O(2), 37 degrees C and pH 7.4). The sensors incorporating CAT were experimentally shown to be approximately 5 times more stable than those without CAT; nevertheless, the response of sensors with CAT still changed by approximately 20%, when operated continuously for 7 days. The experimentally determined trends obtained for the variation in sensor response due to enzyme deactivation were in close agreement with modeling predictions, which also revealed a significant apparent loss in enzyme activity upon immobilization. It was further predicted via modeling that by incorporating 0.1 mM each of active GOx and CAT, the sensors will exhibit less than 2% variation in response over 1 month of continuous operation.
Collapse
Affiliation(s)
- Saurabh Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
24
|
Long R, McShane M. Experimental validation of an optical system for interrogation of dermally-implanted microparticle sensors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2009:122-5. [PMID: 19964925 PMCID: PMC3718048 DOI: 10.1109/iembs.2009.5334722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dermally-implanted microparticle sensors are being developed for on-demand monitoring of blood sugar levels. For these to be deployed in vivo, a matched optoelectronic system for delivery of excitation, collection and analysis of escaping fluorescent signal is needed. Previous studies predicted the characteristics of fluorescence from microparticle sensors to facilitate design of hardware system. Based on the results of simulations, we designed and constructed the optical part of this opto-electronic system. This study experimentally verified the simulation results and tested the capability of the designed optical system. Reliable skin phantoms sufficient for future dynamic tests were developed. Skin phantoms with different thicknesses were made and the optical properties of skin phantoms were determined with an integrating sphere system and Inverse Adding-Doubling method. Measurements of sensor emission spectrum through phantoms with different thicknesses were done with the designed optical system. Simulations for the experiment situation were performed. The experimental measurements agreed well with simulations in most cases. The results of hardware experiment and validation with skin phantoms provided us with critical information for future dynamic tests and animal experiments.
Collapse
Affiliation(s)
- Ruiqi Long
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 USA ()
| | - Mike McShane
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 USA (phone: 979-845-7941; fax: 979-845-4450; )
| |
Collapse
|
25
|
Pescador P, Katakis I, Toca-Herrera JL, Donath E. Efficiency of a bienzyme sequential reaction system immobilized on polyelectrolyte multilayer-coated colloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:14108-14114. [PMID: 19360959 DOI: 10.1021/la8027435] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We assembled multilayer films of glucose oxidase (GOx) and horseradish peroxidase (HRP) coimmobilized together with polyelectrolyte layers on the surface of silica microparticles. The influence of different polyelectrolyte combinations on the immobilization and functionality of the enzymes was examined for several multilayer configurations. Precomplexation of the enzymes with a polyvinylpyridine-based polyamine allowed the stable adsorption of enzyme layers without affecting their catalytic activity. The efficiency of the sequential reaction between GOx and HRP on the surface of the colloids was quantitatively analyzed and rationalized in terms of the kinetic parameters of both enzymes and the reaction-diffusion kinetics of the system. In the optimized configuration, with GOx and HRP coimmobilized in the same layer, the overall rate of hydrogen peroxide conversion was around 2.5 times higher than for GOx and HRP in separate layers or for equivalent amounts of both enzymes free in solution.
Collapse
Affiliation(s)
- Paula Pescador
- Bioengineering and Bioelectrochemistry Group, Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria Química, Universitat Rovira i Virgili, E-43007 Tarragona, Spain.
| | | | | | | |
Collapse
|