1
|
Abstract
Electroporation (EP) is a commonly used strategy to increase cell permeability for intracellular cargo delivery or irreversible cell membrane disruption using electric fields. In recent years, EP performance has been improved by shrinking electrodes and device structures to the microscale. Integration with microfluidics has led to the design of devices performing static EP, where cells are fixed in a defined region, or continuous EP, where cells constantly pass through the device. Each device type performs superior to conventional, macroscale EP devices while providing additional advantages in precision manipulation (static EP) and increased throughput (continuous EP). Microscale EP is gentle on cells and has enabled more sensitive assaying of cells with novel applications. In this Review, we present the physical principles of microscale EP devices and examine design trends in recent years. In addition, we discuss the use of reversible and irreversible EP in the development of therapeutics and analysis of intracellular contents, among other noteworthy applications. This Review aims to inform and encourage scientists and engineers to expand the use of efficient and versatile microscale EP technologies.
Collapse
Affiliation(s)
- Sung-Eun Choi
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Harrison Khoo
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Oncology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 401 North Broadway, Baltimore, Maryland 21231, United States
| |
Collapse
|
2
|
Peyravian N, Malekzadeh Kebria M, Kiani J, Brouki Milan P, Mozafari M. CRISPR-Associated (CAS) Effectors Delivery via Microfluidic Cell-Deformation Chip. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3164. [PMID: 34207502 PMCID: PMC8226447 DOI: 10.3390/ma14123164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 12/26/2022]
Abstract
Identifying new and even more precise technologies for modifying and manipulating selectively specific genes has provided a powerful tool for characterizing gene functions in basic research and potential therapeutics for genome regulation. The rapid development of nuclease-based techniques such as CRISPR/Cas systems has revolutionized new genome engineering and medicine possibilities. Additionally, the appropriate delivery procedures regarding CRISPR/Cas systems are critical, and a large number of previous reviews have focused on the CRISPR/Cas9-12 and 13 delivery methods. Still, despite all efforts, the in vivo delivery of the CAS gene systems remains challenging. The transfection of CRISPR components can often be inefficient when applying conventional delivery tools including viral elements and chemical vectors because of the restricted packaging size and incompetency of some cell types. Therefore, physical methods such as microfluidic systems are more applicable for in vitro delivery. This review focuses on the recent advancements of microfluidic systems to deliver CRISPR/Cas systems in clinical and therapy investigations.
Collapse
Affiliation(s)
- Noshad Peyravian
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (N.P.); (M.M.K.)
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Maziar Malekzadeh Kebria
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (N.P.); (M.M.K.)
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (N.P.); (M.M.K.)
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
3
|
Tereshchenko V, Bulygin A, Zavodskii R, Maksyutov A, Kurilin V, Fisher M, Semenyuk N, Aladev S, Sennikov S. The murine DCs transfected with DNA-plasmid encoding CCR9 demonstrate the increased migration to CCL25 and thymic cells in vitro and to the thymus in vivo. Cytokine 2021; 142:155473. [PMID: 33647585 DOI: 10.1016/j.cyto.2021.155473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND B220+CD11c+plasmacytoid DCs(pDCs) are known to participate in the negative selection and central tolerance induction by the capturing of self-antigens in peripheral tissues and further migration to the thymus using the CCL25-CCR9 chemotaxis axis. AIM Here we investigate the possibility of DCs migration stimulation to the thymus by the transfection with plasmid DNA-constructs encoding CCR9(pmaxCCR9) to develop a system for desired antigen delivery to the thymus for central tolerance induction. METHODS Dendritic cells(DCs) cultures were generated from UBC-GFP mice bone marrow cells expressing green fluorescent protein using the rmFlt3-L. DCs cultures were transfected with pmaxCCR9 by electroporation. The efficiency of electroporation was confirmed by RT-qPCR and flow cytometry. The migration of electroporated DCs was assessed in vitro and in vivo. RESULTS Dendritic cells(DCs) cultures obtained from UBC-GFP mice contained both B220+pDCs and SIRPa+cDC2. According to the RT-qPCR assay, the electroporation of obtained DCs cultures with pmaxCCR9 resulted in a 94.4-fold increase of RNA encoding CCR9 compared with non-electroporated cultures. Flow cytometry data showed that DCs cultures electroporated with pmaxCCR9 contained a significantly higher frequency of DCs carrying significantly higher levels of surface CCR9. Migration dynamics of obtained DCs analyzed in vitro showed that pmaxCCR9 electroporated DCs migrated significantly more active to CCL25 and thymic cells than non-electroporated and mock-electroporated DCs. In vivo, 30 days after injection, the relative amount of the DCs electroporated with pmaxCCR9 and pmaxMHC encoding antigenic determinants in the mice thymuses was 2.02-fold higher than the relative amount of the DCs electroporated with control plasmid. CONCLUSION Thus, the electroporation of murine DCs with pmaxCCR9 stimulated its migration to CCL25 and thymic cells in vitro as well as to the thymus in vivo. The obtained DCs loaded with a desired antigen may be suggested for further evaluation of central tolerance induction ability in in vivo models of autoimmune diseases and transplantation.
Collapse
Affiliation(s)
- Valeriy Tereshchenko
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Aleksei Bulygin
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Roman Zavodskii
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Amir Maksyutov
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; State Research Center of Virology and Biotechnology "Vector", 630559 Koltsovo, Russia
| | - Vasiliy Kurilin
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Marina Fisher
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | | | | | - Sergey Sennikov
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; Novosibirsk State University, 630090 Novosibirsk, Russia.
| |
Collapse
|
4
|
Safa N, Vaithiyanathan M, Sombolestani S, Charles S, Melvin AT. Population-based analysis of cell-penetrating peptide uptake using a microfluidic droplet trapping array. Anal Bioanal Chem 2019; 411:2729-2741. [PMID: 30854596 PMCID: PMC6472966 DOI: 10.1007/s00216-019-01713-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 01/09/2023]
Abstract
Cell-penetrating peptides (CPPs) have garnered significant attention as a method to introduce reporters and therapeutics into intact cells. While numerous studies have been performed identifying new CPP sequences, relatively little is known about their uptake efficiency at the single-cell level. Here, a droplet microfluidic trapping array was used to characterize CPP uptake across a population of single intact cells. The microfluidic device allowed for facile and rapid isolation and analysis of single-cell fluorescence in a 787-member overhead trapping array with > 99% droplet trapping efficiency. The permeability efficiencies of four different CPPs were studied and compared in HeLa cells. Population analysis was performed using linkage hierarchical cluster analysis by R programming to bin cells into subpopulations expressing very low to very high peptide uptake efficiencies. CPP uptake was observed to be heterogeneous across the population of cells with peptide concentration and sequence both playing important roles in the diversity of CPP uptake, the overall peptide uptake efficiency, and the intracellular homogeneity of peptide distribution. This microfluidic-based analytical approach finds application in personalized medicine and provides new insight in the heterogeneity of CPP uptake which has the potential to affect both biosensor and drug internalization in intact cells. Graphical abstract .
Collapse
Affiliation(s)
- Nora Safa
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | | | - Shayan Sombolestani
- Craft and Hawkins Department of Petroleum Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Seleipiri Charles
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
5
|
Murphy TW, Zhang Q, Naler LB, Ma S, Lu C. Recent advances in the use of microfluidic technologies for single cell analysis. Analyst 2017; 143:60-80. [PMID: 29170786 PMCID: PMC5839671 DOI: 10.1039/c7an01346a] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The inherent heterogeneity in cell populations has become of great interest and importance as analytical techniques have improved over the past decades. With the advent of personalized medicine, understanding the impact of this heterogeneity has become an important challenge for the research community. Many different microfluidic approaches with varying levels of throughput and resolution exist to study single cell activity. In this review, we take a broad view of the recent microfluidic developments in single cell analysis based on microwell, microchamber, and droplet platforms. We cover physical, chemical, and molecular biology approaches for cellular and molecular analysis including newly emerging genome-wide analysis.
Collapse
Affiliation(s)
- Travis W Murphy
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | |
Collapse
|
6
|
Ma S, Murphy TW, Lu C. Microfluidics for genome-wide studies involving next generation sequencing. BIOMICROFLUIDICS 2017; 11:021501. [PMID: 28396707 PMCID: PMC5346105 DOI: 10.1063/1.4978426] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/16/2017] [Indexed: 05/11/2023]
Abstract
Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine.
Collapse
Affiliation(s)
- Sai Ma
- Department of Biomedical Engineering and Mechanics, Virginia Tech , Blacksburg, Virginia 24061, USA
| | - Travis W Murphy
- Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia 24061, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia 24061, USA
| |
Collapse
|
7
|
Bian S, Zhou Y, Hu Y, Cheng J, Chen X, Xu Y, Liu P. High-throughput in situ cell electroporation microsystem for parallel delivery of single guide RNAs into mammalian cells. Sci Rep 2017; 7:42512. [PMID: 28211892 PMCID: PMC5304186 DOI: 10.1038/srep42512] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/13/2017] [Indexed: 02/06/2023] Open
Abstract
Arrayed genetic screens mediated by the CRISPR/Cas9 technology with single guide RNA (sgRNA) libraries demand a high-throughput platform capable of transfecting diverse cell types at a high efficiency in a genome-wide scale for detection and analysis of sophisticated cellular phenotypes. Here we developed a high-throughput in situ cell electroporation (HiCEP) microsystem which leveraged the superhydrophobic feature of the microwell array to achieve individually controlled conditions in each microwell and coupled an interdigital electrode array chip with the microwells in a modular-based scheme for highly efficient delivery of exogenous molecules into cells. Two plasmids encoding enhanced green and red fluorescent proteins (EGFP and ERFP), respectively, were successfully electroporated into attached HeLa cells on a 169-microwell array chip with transfection efficiencies of 71.6 ± 11.4% and 62.9 ± 2.7%, and a cell viability above 95%. We also successfully conducted selective electroporation of sgRNA into 293T cells expressing the Cas9 nuclease in a high-throughput manner and observed the four-fold increase of the GFP intensities due to the repair of the protein coding sequences mediated by the CRISPR/Cas9 system. This study proved that this HiCEP system has the great potential to be used for arrayed functional screens with genome-wide CRISPR libraries on hard-to-transfect cells in the future.
Collapse
Affiliation(s)
- Shengtai Bian
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Yicen Zhou
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Yawei Hu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Jing Cheng
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Xiaofang Chen
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Youchun Xu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Peng Liu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Cao Z, Lu C. Quantitative Detection of Nucleocytoplasmic Transport of Native Proteins in Single Cells. Methods Mol Biol 2015; 1346:239-52. [PMID: 26542726 DOI: 10.1007/978-1-4939-2987-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The detection of protein translocation (i.e., the movement of intracellular proteins among various subcellular compartments) conventionally relies on imaging and subcellular-fractionation-based techniques that do not generate information on a large cell population with single-cell resolution. Although special flow cytometric tools such as imaging flow cytometry may generate single-cell data on processes such as nucleocytoplasmic transport, such equipment is expensive (thus has limited accessibility) and has low throughput for examining cells due to the reliance on high-speed imaging. Here we describe a protocol for detecting translocation of native proteins using a common flow cytometer which detects fluorescence intensity without imaging. We conduct chemical release of cytosolic proteins and fluorescence immunostaining of a targeted protein. The detected fluorescence intensity is quantitatively correlated to the cytosolic/nuclear localization of the protein at the single cell level. Our technique provides a simple route for studying nucleocytoplasmic transport with single-cell resolution using common flow cytometers.
Collapse
Affiliation(s)
- Zhenning Cao
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Suite 235 Goodwin Hall, 635 Prices Fork Road, Blacksburg, VA, 24061, USA.
| |
Collapse
|
9
|
Cao Z, Geng S, Li L, Lu C. Detecting intracellular translocation of native proteins quantitatively at the single cell level. Chem Sci 2014. [DOI: 10.1039/c4sc00578c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Abstract
Electroporation is a simple yet powerful technique for breaching the cell membrane barrier. The applications of electroporation can be generally divided into two categories: the release of intracellular proteins, nucleic acids and other metabolites for analysis and the delivery of exogenous reagents such as genes, drugs and nanoparticles with therapeutic purposes or for cellular manipulation. In this review, we go over the basic physics associated with cell electroporation and highlight recent technological advances on microfluidic platforms for conducting electroporation. Within the context of its working mechanism, we summarize the accumulated knowledge on how the parameters of electroporation affect its performance for various tasks. We discuss various strategies and designs for conducting electroporation at the microscale and then focus on analysis of intracellular contents and delivery of exogenous agents as two major applications of the technique. Finally, an outlook for future applications of microfluidic electroporation in increasingly diverse utilities is presented.
Collapse
Affiliation(s)
- Tao Geng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. Fax: +1-540-231-5022; Tel: +1-540-231-8681
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA 24061, USA
| |
Collapse
|
11
|
|
12
|
Abstract
BACKGROUND Microfluidic technology emerges as a convenient route to applying automated and reliable assays in a high-throughput manner with low cost. OBJECTIVE This review aims to answer questions related to the capabilities and potential applications of microfluidic assays that can benefit the drug development process and extends an outlook on its future trends. METHODS This article reviews recent publications in the field of microfluidics, with an emphasis on novel applications for drug development. RESULTS/CONCLUSION Microfluidics affords unique capabilities in sample preparation and separation, combinatorial synthesis and array formation, and incorporating nanotechnology for more functionalities. The pharmaceutical industry, facing challenges from limited productivity and accelerated competition, can thus greatly benefit from applying new microfluidic assays in various drug development stages, from target screening and lead optimization to absorption distribution metabolism elimination and toxicity studies in preclinical evaluations, diagnostics in clinical trials and drug formulation and manufacturing process optimization.
Collapse
Affiliation(s)
- Yuan Wen
- The Ohio State University, Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, Columbus, Ohio 43210, USA +1 614 2926611 ; +1 614 2923769 ;
| | | |
Collapse
|
13
|
Abstract
Electroporation is a powerful technique to increase the permeability of cell membranes and subsequently introduce foreign materials into cells. Pores are created in the cell membrane upon application of an electric field (kV/cm). Most applications employ bulk electroporation, at the scale of 1 mL of cells (ca. one million cells). However, recent progresses have shown the interest to miniaturize the technique to a single cell. Single cell electroporation is achieved either using microelectrodes which are placed in close vicinity to one cell, or in a microfluidic format. We focus here on this second approach, where individual cells are trapped in micrometer-size structures within a microchip, exposed in situ to a high electric field and loaded with either a dye (proof-of-principle experiments) or a plasmid. Specifically, we present one device that includes an array of independent electroporation sites for customized and successive poration of nine cells. The different steps of the single cell electroporation protocol are detailed including cell sample preparation, cell trapping, actual cell poration and on-chip detection of pore formation. Electroporation is illustrated here with the transport of dyes through the plasma membrane, the transfection of cells with GFP-encoding plasmids, and the study of the ERK1 signaling pathway using a GFP-ERK1 protein construct expressed by the cells after their transfection with the corresponding plasmid. This last example highlights the power of microfluidics with the implementation of various steps of a process (cell poration, culture, imaging) performed at the single cell level, on a single device.
Collapse
Affiliation(s)
- Séverine Le Gac
- BIOS the Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands.
| | | |
Collapse
|
14
|
Wang J, Ahmad H, Ma C, Shi Q, Vermesh O, Vermesh U, Heath J. A self-powered, one-step chip for rapid, quantitative and multiplexed detection of proteins from pinpricks of whole blood. LAB ON A CHIP 2010; 10:3157-62. [PMID: 20924527 PMCID: PMC3651856 DOI: 10.1039/c0lc00132e] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We describe an automated, self-powered chip based on lateral flow immunoassay for rapid, quantitative, and multiplex protein detection from pinpricks of whole blood. The device incorporates on-chip purification of blood plasma by employing inertial forces to focus blood cells away from the assay surface, where plasma proteins are captured and detected on antibody "barcode" arrays. Power is supplied from the capillary action of a piece of adsorbent paper, and sequentially drives, over a 40 minute period, the four steps required to capture serum proteins and then develop a multiplex immunoassay. An 11 protein panel is assayed from whole blood, with high sensitivity and high reproducibility. This inexpensive, self-contained, and easy to operate chip provides a useful platform for point-of-care diagnoses, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Jun Wang
- NanoSystems Biology Cancer Center, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
- Kavli Nanoscience Institute, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
| | - Habib Ahmad
- NanoSystems Biology Cancer Center, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
- Kavli Nanoscience Institute, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
| | - Chao Ma
- NanoSystems Biology Cancer Center, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
- Kavli Nanoscience Institute, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
| | - Qihui Shi
- NanoSystems Biology Cancer Center, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
- Kavli Nanoscience Institute, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
| | - Ophir Vermesh
- NanoSystems Biology Cancer Center, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
- Kavli Nanoscience Institute, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
| | - Udi Vermesh
- NanoSystems Biology Cancer Center, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
- Kavli Nanoscience Institute, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
| | - James Heath
- NanoSystems Biology Cancer Center, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
- Kavli Nanoscience Institute, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, 1200 E. California Blvd., Pasadena, California, 91125, USA
| |
Collapse
|
15
|
Wang J, Fei B, Zhan Y, Geahlen RL, Lu C. Kinetics of NF-κB nucleocytoplasmic transport probed by single-cell screening without imaging. LAB ON A CHIP 2010; 10:2911-6. [PMID: 20835431 PMCID: PMC2954252 DOI: 10.1039/c0lc00094a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Transport of protein and RNA cargoes between the nucleus and cytoplasm (nucleocytoplasmic transport) is vital for a variety of cellular functions. The studies of kinetics involved in such processes have been hindered by the lack of quantitative tools for measurement of the nuclear and cytosolic fractions of an intracellular protein at the single cell level for a cell population. In this report, we describe using a novel method, microfluidic electroporative flow cytometry, to study kinetics of nucleocytoplasmic transport of an important transcription factor NF-κB. With data collected from single cells, we quantitatively characterize the population-averaged kinetic parameters such as the rate constants and apparent activation barrier for NF-κB transport. Our data demonstrate that NF-κB nucleocytoplasmic transport fits first-order kinetics very well and is a fairly reversible process governed by equilibrium thermodynamics.
Collapse
Affiliation(s)
- Jun Wang
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Bei Fei
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Yihong Zhan
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Robert L. Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA. ; Tel: +1 540-231-8681
| |
Collapse
|
16
|
Wang J, Fei B, Geahlen RL, Lu C. Quantitative analysis of protein translocations by microfluidic total internal reflection fluorescence flow cytometry. LAB ON A CHIP 2010; 10:2673-9. [PMID: 20820633 PMCID: PMC2948076 DOI: 10.1039/c0lc00131g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Protein translocation, or the change in a protein's location between different subcellular compartments, is a critical process by which intracellular proteins carry out their cellular functions. Aberrant translocation events contribute to various diseases ranging from metabolic disorders to cancer. In this study, we demonstrate the use of a newly developed single-cell tool, microfluidic total internal reflection fluorescence flow cytometry (TIRF-FC), for detecting both cytosol to plasma membrane and cytosol to nucleus translocations using the tyrosine kinase Syk and the transcription factor NF-κB as models. This technique detects fluorescent molecules at the plasma membrane and in the membrane-proximal cytosol in single cells. We were able to record quantitatively changes in the fluorescence density in the evanescent field associated with these translocation processes for large cell populations with single cell resolution. We envision that TIRF-FC will provide a new approach to explore the molecular biology and clinical relevance of protein translocations.
Collapse
Affiliation(s)
- Jun Wang
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Bei Fei
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Robert L. Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA, Tel: +1 540-231-8681
| |
Collapse
|
17
|
Abstract
Electroporation is one of the most widely used methods to deliver exogenous DNA payloads into cells, but a major limitation is that only a small fraction of the total membrane surface is permeabilized. Here we show how this barrier can be easily overcome by harnessing hydrodynamic effects associated with Dean flows that occur along curved paths. Under these conditions, cells are subjected to a combination of transverse vortex motion and rotation that enables the entire membrane surface to become uniformly permeabilized. Greatly improved transfection efficiencies are achievable with only a simple modification to the design of existing continuous flow electroporation systems.
Collapse
Affiliation(s)
- Jun Wang
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
18
|
Le Gac S, van den Berg A. Single cells as experimentation units in lab-on-a-chip devices. Trends Biotechnol 2009; 28:55-62. [PMID: 19914725 DOI: 10.1016/j.tibtech.2009.10.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/12/2009] [Accepted: 10/22/2009] [Indexed: 12/12/2022]
Abstract
'Lab-on-a-chip' technology (LOC) has now reached a mature state and is employed commonly in research in the life sciences. LOC devices make novel experimentation possible while providing a sophisticated environment for cellular investigation. As a next step, we introduce here the concept of a 'lab-in-a-cell': the use of a single cell as a minimal and highly confined experimental unit, or experimentation in the simple, but still unequalled, platform provided by nature itself. LOC provides the appropriate format and set of tools for LIC experimentation, and we discuss here three types of LIC investigation: the elucidation of signaling pathways; the creation of novel production units; and the use of microfluidics for assisted reproduction techniques.
Collapse
Affiliation(s)
- Séverine Le Gac
- BIOS The Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | | |
Collapse
|
19
|
Wang J, Bao N, Paris LL, Geahlen RL, Lu C. Total internal reflection fluorescence flow cytometry. Anal Chem 2009; 80:9840-4. [PMID: 19007249 DOI: 10.1021/ac801940w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Total internal reflection fluorescence microscopy (TIRFM) has been widely used to explore biological events that are close to the cell membrane by illuminating fluorescent molecules using the evanescent wave. However, TIRFM is typically limited to the examination of a low number of cells, and the results do not reveal potential heterogeneity in the cell population. In this report, we develop an analytical tool referred to as total internal reflection fluorescence flow cytometry (TIRF-FC) to examine the region of the cell membrane with a throughput of approximately 100-150 cells/s and single cell resolution. We use an elastomeric valve that is partially closed to force flowing cells in contact with the glass surface where the evanescent field resides. We demonstrate that TIRF-FC is able to detect the differences in the subcellular location of an intracellular fluorescent protein. Proper data processing and analysis allows TIRF-FC to be quantitative. With the high throughput, TIRF-FC will be a very useful tool for generating information on cell populations with events and dynamics close to the cell surface.
Collapse
Affiliation(s)
- Jun Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
20
|
Microfluidic chip: Next-generation platform for systems biology. Anal Chim Acta 2009; 650:83-97. [DOI: 10.1016/j.aca.2009.04.051] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/16/2009] [Accepted: 04/27/2009] [Indexed: 12/30/2022]
|
21
|
Wang S, Zhang X, Wang W, Lee LJ. Semicontinuous flow electroporation chip for high-throughput transfection on mammalian cells. Anal Chem 2009; 81:4414-21. [PMID: 19419195 PMCID: PMC2700304 DOI: 10.1021/ac9002672] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have recently developed a semicontinuous flow electroporation (SFE) device for in vitro DNA delivery. Cells mixed with plasmid DNA continuously flowed through a serpentine channel, the side walls of which also serving as electrodes. With the use of pWizGFP plasmid and K562 cells as a model system, SFE showed better transgene expression (10-15%) compared to a commercial electroporation system. Quantitative results via MTS assay also revealed a 50% or higher cell viability. Similar observations were also found with pWizGFP transfection to mouse embryonic stem cells. Such improvements were attributed to less gas formation and Joule heating in SFE.
Collapse
Affiliation(s)
- Shengnian Wang
- Institute for Micromanufacturing and Chemical Engineering Program, Louisiana Tech University, Ruston, Louisiana 71272
| | - Xulang Zhang
- Department of Chemical and Biomolecular Engineering, NSF Center for Affordable Nanoengineering of Polymer Biomedical Devices (CANPBD), The Ohio State University, 140w 19 Avenue, Columbus, Ohio 43210
| | - Weixiong Wang
- Department of Chemical and Biomolecular Engineering, NSF Center for Affordable Nanoengineering of Polymer Biomedical Devices (CANPBD), The Ohio State University, 140w 19 Avenue, Columbus, Ohio 43210
| | - L. James Lee
- Department of Chemical and Biomolecular Engineering, NSF Center for Affordable Nanoengineering of Polymer Biomedical Devices (CANPBD), The Ohio State University, 140w 19 Avenue, Columbus, Ohio 43210
| |
Collapse
|
22
|
Lee WG, Demirci U, Khademhosseini A. Microscale electroporation: challenges and perspectives for clinical applications. Integr Biol (Camb) 2009; 1:242-51. [PMID: 20023735 DOI: 10.1039/b819201d] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Microscale engineering plays a significant role in developing tools for biological applications by miniaturizing devices and providing controllable microenvironments for in vitro cell research. Miniaturized devices offer numerous benefits in comparison to their macroscale counterparts, such as lower use of expensive reagents, biomimetic environments, and the ability to manipulate single cells. Microscale electroporation is one of the main beneficiaries of microscale engineering as it provides spatial and temporal control of various electrical parameters. Microscale electroporation devices can be used to reduce limitations associated with the conventional electroporation approaches such as variations in the local pH, electric field distortion, sample contamination, and the difficulties in transfecting and maintaining the viability of desired cell types. Here, we present an overview of recent advances of the microscale electroporation methods and their applications in biology, as well as current challenges for its use for clinical applications. We categorize microscale electroporation into microchannel and microcapillary electroporation. Microchannel-based electroporation can be used for transfecting cells within microchannels under dynamic flow conditions in a controlled and high-throughput fashion. In contrast, microcapillary-based electroporation can be used for transfecting cells within controlled reaction chambers under static flow conditions. Using these categories we examine the use of microscale electroporation for clinical applications related to HIV-1, stem cells, cancer and other diseases and discuss the challenges in further advancing this technology for use in clinical medicine and biology.
Collapse
Affiliation(s)
- Won Gu Lee
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
23
|
Bao N, Wang J, Lu C. Microfluidic electroporation for selective release of intracellular molecules at the single-cell level. Electrophoresis 2008; 29:2939-44. [PMID: 18551712 DOI: 10.1002/elps.200700856] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Analysis of intracellular materials at the single-cell level presents opportunities for probing the heterogeneity of a cell population. Lysis by electroporation has been gaining popularity as a rapid method for disruption of the cell membrane and release of intracellular contents. In this report, we selectively released specific intracellular molecules for interrogation at the single-cell level by tuning the parameters of electroporation. We examined the release of a small molecule, calcein (MW approximately 600), and a 72-kDa protein kinase, Syk, tagged by enhanced green fluorescent protein (EGFP) from chicken B cells during electroporation at the single-cell level. We studied the effects of the field intensity and the field duration on the release of the two molecules. We found that calcein in general was released at lower field intensities and shorter durations than did SykEGFP. By tuning the electrical parameters, we were able to deplete calcein from the cells before SykEGFP started to release. This approach potentially provides a high-throughput alternative for probing different intracellular molecules at the single-cell level compared to chemical cytometry by eliminating complete disruption of the cell membrane.
Collapse
Affiliation(s)
- Ning Bao
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
24
|
Bao N, Zhan Y, Lu C. Microfluidic Electroporative Flow Cytometry for Studying Single-Cell Biomechanics. Anal Chem 2008; 80:7714-9. [PMID: 18798650 DOI: 10.1021/ac801060t] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ning Bao
- Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Yihong Zhan
- Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Chang Lu
- Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|