1
|
Miki T, Yamamoto S, Liu C, Torikai K, Kinoshita M, Matsumori N, Kawai T. Highly sensitive two-dimensional profiling of N-linked glycans by hydrophilic interaction liquid chromatography and dual stacking capillary gel electrophoresis. Anal Chim Acta 2024; 1320:342990. [PMID: 39142768 DOI: 10.1016/j.aca.2024.342990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND N-Glycosylation is one of the most important post-translational modifications in proteins. As the N-glycan profiles in biological samples are diverse and change according to the pathological condition, various profiling methods have been developed, such as liquid chromatography (LC), capillary electrophoresis (CE), and mass spectrometry. However, conventional analytical methods have limitations in sensitivity and/or resolution, hindering the discovery of minor but specific N-glycans that are important both in the basic glycobiology research and in the medical application as biomarkers. Therefore, a highly sensitive and high-resolution N-glycan profiling method is required. RESULTS In this study, we developed a novel two-dimensional (2D) separation system, which couples hydrophilic interaction liquid chromatography (HILIC) with capillary gel electrophoresis (CGE) via large-volume dual preconcentration by isotachophoresis and stacking (LDIS). Owing to the efficient preconcentration efficiency of LDIS, limit of detection reached 12 pM (60 amol, S/N = 3) with good calibration curve linearity (R2 > 0.999) in the 2D analysis of maltoheptaose. Finally, 2D profiling of N-glycans obtained from standard glycoproteins and cell lysates were demonstrated. High-resolution 2D profiles were successfully obtained by data alignment using triple internal standards. N-glycans were well distributed on the HILIC/CGE 2D plane based on the glycan size, number of sialic acids, linkage type, and so on. As a result, specific minor glycans were successfully identified in HepG2 and HeLa cell lysates. SIGNIFICANCE AND NOVELTY In conclusion, the HILIC/CGE 2D analysis method showed sufficient sensitivity and resolution for identifying minor but specific N-glycans from complicated cellular samples, indicating the potential as a next-generation N-glycomics tool. Our novel approach for coupling LC and CE can also dramatically improve the sensitivity in other separation modes, which can be a new standard of 2D bioanalysis applicable not only to glycans, but also to other diverse biomolecules such as metabolites, proteins, and nucleic acids.
Collapse
Affiliation(s)
- Takaya Miki
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Sachio Yamamoto
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Chenchen Liu
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kohei Torikai
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; Faculty of Chemistry, National University of Uzbekistan named after Mirzo Ulugbek, 4 University Str., Tashkent, 100174, Uzbekistan
| | - Mitsuhiro Kinoshita
- Faculty of Pharmaceutical Sciences, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takayuki Kawai
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; RIKEN Center for Biosystems Dynamics Research, 6-2-4 Furuedai, Suita, Osaka, 565-0874, Japan.
| |
Collapse
|
2
|
Lam C, Sargon A, Diaz C, Lai Z, Sangaraju D, Yuk I, Barnard G, Misaghi S. Strategies to improve CHO cell culture performance: Targeted deletion of amino acid catabolism and apoptosis genes paired with growth inhibitor supplementation. Biotechnol Prog 2024; 40:e3471. [PMID: 38629737 DOI: 10.1002/btpr.3471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 10/15/2024]
Abstract
Chinese hamster ovary (CHO) cells are the predominant host of choice for recombinant monoclonal antibody (mAb) expression. Recent advancements in gene editing technology have enabled engineering new CHO hosts with higher growth, viability, or productivity. One approach involved knock out (KO) of BCAT1 gene, which codes for the first enzyme in the branched chain amino acid (BCAA) catabolism pathway; BCAT1 KO reduced accumulation of growth inhibitory short chain fatty acid (SCFA) byproducts and improved culture growth and titer when used in conjunction with high-end pH-controlled delivery of glucose (HiPDOG) technology and SCFA supplementation during production. Accumulation of SCFAs in the culture media is critical for metabolic shift toward higher specific productivity and hence titer. Here we describe knocking out BCKDHa/b genes (2XKO), which act downstream of the BCAT1, in a BAX/BAK KO CHO host cell line background to reduce accumulation of growth-inhibitory molecules in culture. Evaluation of the new 4XKO CHO cell lines in fed-batch production cultures (without HiPDOG) revealed that partial KO of BCKDHa/b genes in an apoptosis-resistant (BAX/BAK KO) background can achieve higher viabilities and mAb titers. This was evident when SCFAs were added to boost productivity as such additives negatively impacted culture viability in the WT but not BAX/BAK KO cells during batch production. Altogether, our findings suggest that SCFA addbacks can significantly increase productivity and mAb titers in the context of apoptosis-attenuated CHO cells with partial KO of BCAA genes. Such engineered CHO hosts can offer productivity advantages for expressing biotherapeutics in an industrial setting.
Collapse
Affiliation(s)
- Cynthia Lam
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Alyssa Sargon
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Camil Diaz
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Zijuan Lai
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, California, USA
| | - Dewakar Sangaraju
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, California, USA
| | - Inn Yuk
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Gavin Barnard
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Shahram Misaghi
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| |
Collapse
|
3
|
Helali Y, Delporte C. Updates of the current strategies of labeling for N-glycan analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1237:124068. [PMID: 38484674 DOI: 10.1016/j.jchromb.2024.124068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 04/13/2024]
Abstract
This mini review summarizes the current methods used for screening N-glycosylation of glycoproteins, with a specific focus on therapeutic proteins and on techniques involving the release of N-glycans. With the continuous development of biopharmaceuticals, particularly monoclonal antibodies (mAbs), which are N-glycosylated proteins, monitoring has gained importance in recent decades. Glycosylation of therapeutic glycoproteins is considered a critical quality attribute because it can impact the efficacy and safety of these therapeutic drugs. The protocols and instrumentation have evolved with the advancement of technologies. Nowadays, methods are becoming increasingly robust, rapid, and sensitive. For the release of N-glycans, the most commonly used method is enzymatic release using PNGase F. The latter is discussed in light of the advent of rapid release that is now possible. The strategy for separating N-glycans using either liquid chromatography (LC) with hydrophilic interaction liquid chromatography (HILIC) chemistry or capillary electrophoresis will be discussed. The selection of the labeling agent is a crucial step in sample preparation for the analysis of released N-glycans. This review also discusses labeling agents that are compatible with and dependent on the separation and detection techniques employed. The emergence of multiplex labeling agents is also summarized. The latter enables the analysis of multiple samples in a single run, but it requires MS analysis.
Collapse
Affiliation(s)
- Yosra Helali
- RD3-Pharmacognosis, Bioanalysis and Drug Discovery Unit & Analytical Platform of the Faculty of Pharmacy (APFP), Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Delporte
- RD3-Pharmacognosis, Bioanalysis and Drug Discovery Unit & Analytical Platform of the Faculty of Pharmacy (APFP), Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
4
|
Li J, Huang L, Guo Y, Cupp-Sutton KA, Wu S. An automated spray-capillary platform for the microsampling and CE-MS analysis of picoliter- and nanoliter-volume samples. Anal Bioanal Chem 2023; 415:6961-6973. [PMID: 37581707 PMCID: PMC10843549 DOI: 10.1007/s00216-023-04870-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 08/16/2023]
Abstract
Capillary electrophoresis mass spectrometry (CE-MS) is an emerging analytical tool for microscale biological sample analysis that offers high separation resolution, low detection limit, and low sample consumption. We recently developed a novel microsampling device, "spray-capillary," for quantitative low-volume sample extraction (as low as 15 pL/s) and online CE-MS analysis. This platform can efficiently analyze picoliter samples (e.g., single cells) with minimal sample loss and no additional offline sample-handling steps. However, our original spray-capillary-based experiments required manual manipulation of the sample inlet for sample collection and separation, which is time consuming and requires proficiency in device handling. To optimize the performance of spray-capillary CE-MS analysis, we developed an automated platform for robust, high-throughput analysis of picoliter samples using a commercially available CE autosampler. Our results demonstrated high reproducibility among 50 continuous runs using the standard peptide angiotensin II (Ang II), with an RSD of 14.70% and 0.62% with respect to intensity and elution time, respectively. We also analyzed Ang II using varying injection times to evaluate the capability of the spray-capillary to perform quantitative sampling and found high linearity for peptide intensity with respect to injection time (R2 > 0.99). These results demonstrate the capability of the spray-capillary sampling platform for high-throughput quantitative analysis of low-volume, low-complexity samples using pressure elution (e.g., direct injection). To further evaluate and optimize the automated spray-capillary platform to analyze complex biological samples, we performed online CE-MS analysis on Escherichia coli lysate digest spiked with Ang II using varying injection times. We maintained high linearity of intensity with respect to injection time for Ang II and E. coli peptides (R2 > 0.97 in all cases). Furthermore, we observed good CE separation and high reproducibility between automated runs. Overall, we demonstrated that the automated spray-capillary CE-MS platform can efficiently and reproducibly sample picoliter and nanoliter biological samples for high-throughput proteomics analysis.
Collapse
Affiliation(s)
- Jiaxue Li
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA
| | - Lushuang Huang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA
| | - Yanting Guo
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA.
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA.
| |
Collapse
|
5
|
Liew CY, Chen JL, Tsai ST, Ni CK. Identification of side-reaction products generated during the ammonia-catalyzed release of N-glycans. Carbohydr Res 2022; 522:108686. [DOI: 10.1016/j.carres.2022.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022]
|
6
|
Tang D, Lam C, Bauer N, Auslaender S, Snedecor B, Laird MW, Misaghi S. Bax and Bak knockout apoptosis-resistant CHO cell lines significantly improve culture viability and titer in intensified fed-batch culture process. Biotechnol Prog 2021; 38:e3228. [PMID: 34951158 DOI: 10.1002/btpr.3228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 11/10/2022]
Abstract
In the field of therapeutic protein production, process intensification strategies entailing higher starting cell seeding densities, can potentially increase culture productivity, lower cost of goods and improve facility utilization. However, increased cell densities often trigger apoptotic cell death at the end of the cell culture process and thus reduce total viable cell count. Apoptosis-resistant Chinese hamster ovary (CHO) cell lines may offer the possibility to diminish this undesired outcome of the intensified production process. In this study, we have generated and tested Bax/Bak double-knock-out (DKO) apoptosis resistant hosts to produce standard and bispecific antibodies, as well as complex molecules in intensified production processes both as pools and single cell clones, and at different scales. In all cases, therapeutic proteins expressed from clones or pools generated from the Bax/Bak DKO hosts showed not only better viability but also enabled extended productivity in the later stages of the 14-day intensified production process. The product qualities of the produced molecules were comparable between Bax/Bak DKO and wild type (WT) cells. Overall, we showed that Bax/Bak DKO apoptosis-resistant host cell lines significantly improve viability and volumetric productivity of the intensified production cultures without altering product qualities. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Danming Tang
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Cynthia Lam
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Niels Bauer
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Simon Auslaender
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Brad Snedecor
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Michael W Laird
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Shahram Misaghi
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| |
Collapse
|
7
|
Analysis of Monoclonal Antibodies by Capillary Electrophoresis: Sample Preparation, Separation, and Detection. SEPARATIONS 2021. [DOI: 10.3390/separations8010004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are dominating the biopharmaceutical field due to the fact of their high specificity in the treatment of diverse diseases. Nevertheless, mAbs are very complex glycoproteins exhibiting several macro- and microheterogeneities that may affect their safety, quality, and efficacy. This complexity is very challenging for mAbs development, formulation, and quality control. To tackle the quality issue, a combination of multiple analytical approaches is necessary. In this perspective, capillary electrophoresis has gained considerable interest over the last decade due to the fact of its complementary features to chromatographic approaches. This review provides an overview of the strategies of mAbs and derivatives analysis by capillary electrophoresis hyphenated to ultraviolet, fluorescence, and mass spectrometry detection. The main sample preparation approaches used for mAb analytical characterization (i.e., intact, middle-up/down, and bottom-up) are detailed. The different electrophoretic modes used as well as integrated analysis approaches (sample preparation and separation) are critically discussed.
Collapse
|
8
|
Habazin S, Štambuk J, Šimunović J, Keser T, Razdorov G, Novokmet M. Mass Spectrometry-Based Methods for Immunoglobulin G N-Glycosylation Analysis. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:73-135. [PMID: 34687008 DOI: 10.1007/978-3-030-76912-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mass spectrometry and its hyphenated techniques enabled by the improvements in liquid chromatography, capillary electrophoresis, novel ionization, and fragmentation modes are truly a cornerstone of robust and reliable protein glycosylation analysis. Boost in immunoglobulin G (IgG) glycan and glycopeptide profiling demands for both applied biomedical and research applications has brought many new advances in the field in terms of technical innovations, sample preparation, improved throughput, and confidence in glycan structural characterization. This chapter summarizes mass spectrometry basics, focusing on IgG and monoclonal antibody N-glycosylation analysis on several complexity levels. Different approaches, including antibody enrichment, glycan release, labeling, and glycopeptide preparation and purification, are covered and illustrated with recent breakthroughs and examples from the literature omitting excessive theoretical frameworks. Finally, selected highly popular methodologies in IgG glycoanalytics such as liquid chromatography-mass spectrometry and matrix-assisted laser desorption ionization are discussed more thoroughly yet in simple terms making this text a practical starting point either for the beginner in the field or an experienced clinician trying to make sense out of the IgG glycomic or glycoproteomic dataset.
Collapse
Affiliation(s)
- Siniša Habazin
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Jerko Štambuk
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | | | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Mislav Novokmet
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia.
| |
Collapse
|
9
|
Saadé J, Biacchi M, Giorgetti J, Lechner A, Beck A, Leize-Wagner E, François YN. Analysis of Monoclonal Antibody Glycopeptides by Capillary Electrophoresis-Mass Spectrometry Coupling (CE-MS). Methods Mol Biol 2021; 2271:97-106. [PMID: 33908002 DOI: 10.1007/978-1-0716-1241-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glycosylation is a crucial posttranslational modification (PTM) that might affect the safety and efficacy of monoclonal antibodies (mAbs). Capillary electrophoresis-mass spectrometry (CE-MS) enables the characterization of the primary structure of mAbs. A bottom-up proteomic workflow is designed to provide detailed information about the glycosylation. In this chapter, we describe the validated experimental protocol applied for the characterization and relative quantification of mAbs N-glycosylation at the glycopeptide level.
Collapse
Affiliation(s)
- Josiane Saadé
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Michael Biacchi
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Jérémie Giorgetti
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Antony Lechner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Alain Beck
- Centre d'Immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
10
|
Cajic S, Hennig R, Burock R, Rapp E. Capillary (Gel) Electrophoresis-Based Methods for Immunoglobulin (G) Glycosylation Analysis. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:137-172. [PMID: 34687009 DOI: 10.1007/978-3-030-76912-3_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The in-depth characterization of protein glycosylation has become indispensable in many research fields and in the biopharmaceutical industry. Especially knowledge about modulations in immunoglobulin G (IgG) N-glycosylation and their effect on immunity enabled a better understanding of human diseases and the development of new, more effective drugs for their treatment. This chapter provides a deeper insight into capillary (gel) electrophoresis-based (C(G)E) glycan analysis, addressing its impressive performance and possibilities, its great potential regarding real high-throughput for large cohort studies, as well as its challenges and limitations. We focus on the latest developments with respect to miniaturization and mass spectrometry coupling, as well as data analysis and interpretation. The use of exoglycosidase sequencing in combination with current C(G)E technology is discussed, highlighting possible difficulties and pitfalls. The application section describes the detailed characterization of N-glycosylation, utilizing multiplexed CGE with laser-induced fluorescence detection (xCGE-LIF). Besides a comprehensive overview on antibody glycosylation by comparing species-specific IgGs and human immunoglobulins A, D, E, G, and M, the chapter comprises a comparison of therapeutic monoclonal antibodies from different production cell lines, as well as a detailed characterization of Fab and Fc glycosylation. These examples illustrate the full potential of C(G)E, resolving the smallest differences in sugar composition and structure.
Collapse
Affiliation(s)
- Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - René Hennig
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
- glyXera GmbH, Magdeburg, Germany.
| | | | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- glyXera GmbH, Magdeburg, Germany
| |
Collapse
|
11
|
Wang D, Nowak C, Mason B, Katiyar A, Liu H. Analytical artifacts in characterization of recombinant monoclonal antibody therapeutics. J Pharm Biomed Anal 2020; 183:113131. [DOI: 10.1016/j.jpba.2020.113131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 01/12/2023]
|
12
|
Krenkova J, Dusa F, Cmelik R. Comparison of oligosaccharide labeling employing reductive amination and hydrazone formation chemistries. Electrophoresis 2020; 41:684-690. [DOI: 10.1002/elps.201900475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Jana Krenkova
- Institute of Analytical Chemistry of the Czech Academy of Sciences Brno Czech Republic
| | - Filip Dusa
- Institute of Analytical Chemistry of the Czech Academy of Sciences Brno Czech Republic
| | - Richard Cmelik
- Institute of Analytical Chemistry of the Czech Academy of Sciences Brno Czech Republic
| |
Collapse
|
13
|
Krenkova J, Liskova M, Cmelik R, Vigh G, Foret F. Multi-cationic aminopyrene-based labeling tags for oligosaccharide analysis by capillary electrophoresis-mass spectrometry. Anal Chim Acta 2020; 1095:226-232. [DOI: 10.1016/j.aca.2019.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/08/2019] [Accepted: 10/16/2019] [Indexed: 11/25/2022]
|
14
|
Serum N-Glycosylation in Parkinson's Disease: A Novel Approach for Potential Alterations. Molecules 2019; 24:molecules24122220. [PMID: 31200590 PMCID: PMC6630595 DOI: 10.3390/molecules24122220] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 01/01/2023] Open
Abstract
In this study, we present the application of a novel capillary electrophoresis (CE) method in combination with label-free quantitation and support vector machine-based feature selection (support vector machine-estimated recursive feature elimination or SVM-RFE) to identify potential glycan alterations in Parkinson’s disease. Specific focus was placed on the use of neutral coated capillaries, by a dynamic capillary coating strategy, to ensure stable and repeatable separations without the need of non-mass spectrometry (MS) friendly additives within the separation electrolyte. The developed online dynamic coating strategy was applied to identify serum N-glycosylation by CE-MS/MS in combination with exoglycosidase sequencing. The annotated structures were quantified in 15 controls and 15 Parkinson’s disease patients by label-free quantitation. Lower sialylation and increased fucosylation were found in Parkinson’s disease patients on tri-antennary glycans with 2 and 3 terminal sialic acids. The set of potential glycan alterations was narrowed by a recursive feature elimination algorithm resulting in the efficient classification of male patients.
Collapse
|
15
|
Lim MS, So MK, Lim CS, Song DH, Kim JW, Woo J, Ko BJ. Validation of Rapi-Fluor method for glycan profiling and application to commercial antibody drugs. Talanta 2019; 198:105-110. [DOI: 10.1016/j.talanta.2019.01.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 01/09/2023]
|
16
|
Szarka M, Szigeti M, Guttman A. Imaging Laser-Induced Fluorescence Detection at the Taylor Cone of Electrospray Ionization Mass Spectrometry. Anal Chem 2019; 91:7738-7743. [DOI: 10.1021/acs.analchem.9b01028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Máte Szarka
- Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt, Debrecen 4032, Hungary
| | - Márton Szigeti
- Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt, Debrecen 4032, Hungary
- Translational Glycomics Laboratory, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 10 Egyetem Street, Veszprem 8200, Hungary
| | - András Guttman
- Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt, Debrecen 4032, Hungary
- Translational Glycomics Laboratory, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 10 Egyetem Street, Veszprem 8200, Hungary
| |
Collapse
|
17
|
Seo Y, Oh MJ, Park JY, Ko JK, Kim JY, An HJ. Comprehensive Characterization of Biotherapeutics by Selective Capturing of Highly Acidic Glycans Using Stepwise PGC-SPE and LC/MS/MS. Anal Chem 2019; 91:6064-6071. [DOI: 10.1021/acs.analchem.9b00603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Youngsuk Seo
- Asia
Glycomics
Reference Site, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Myung Jin Oh
- Asia
Glycomics
Reference Site, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jin Young Park
- Asia
Glycomics
Reference Site, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jae Kyoung Ko
- Asia
Glycomics
Reference Site, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jin Young Kim
- Department of Mass Spectrometry, Korea Basic Science Institute, Ochang 28119, Korea
| | - Hyun Joo An
- Asia
Glycomics
Reference Site, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
18
|
Ouyang Y, Han X, Xia Q, Chen J, Velagapudi S, Xia K, Zhang Z, Linhardt RJ. Negative-Ion Mode Capillary Isoelectric Focusing Mass Spectrometry for Charge-Based Separation of Acidic Oligosaccharides. Anal Chem 2018; 91:846-853. [DOI: 10.1021/acs.analchem.8b03500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yilan Ouyang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Xiaorui Han
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Qiangwei Xia
- CMP Scientific Corporation, 760 Parkside Avenue, STE 211, Brooklyn, New York 11226, United States
| | - Jianle Chen
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Sheila Velagapudi
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Ke Xia
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Robert J. Linhardt
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|
19
|
Beutner A, Herl T, Matysik FM. Selectivity enhancement in capillary electrophoresis by means of two-dimensional separation or dual detection concepts. Anal Chim Acta 2018; 1057:18-35. [PMID: 30832915 DOI: 10.1016/j.aca.2018.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
Abstract
For the identification and quantification of analytes in complex samples, highly selective analytical strategies are required. The selectivity of single separation techniques such as gas chromatography (GC), liquid chromatography (LC), or capillary electrophoresis (CE) with common detection principles can be enhanced by hyphenating orthogonal separation techniques but also by using complementary detection systems. In this review, two-dimensional systems containing CE in at least one dimension are reviewed, namely LC-CE or 2D CE systems. Particular attention is paid to the aspect of selectivity enhancement due to the orthogonality of the different separation mechanisms. As an alternative concept, dual detection approaches are reviewed using the common detectors of CE such as UV/VIS, laser-induced fluorescence, capacitively coupled contactless conductivity (C4D), electrochemical detection, and mass spectrometry. Special emphasis is given to dual detection systems implementing the highly flexible C4D as one detection component. Selectivity enhancement can be achieved in case of complementarity of the different detection techniques.
Collapse
Affiliation(s)
- Andrea Beutner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Thomas Herl
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Frank-Michael Matysik
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
20
|
Krenkova J, Bobal P, Partyka J, Cmelik R, Foret F. Investigation of a side reaction occurring during -linked glycan labeling by cationic tags. J Chromatogr A 2018; 1570:67-74. [DOI: 10.1016/j.chroma.2018.07.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/25/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022]
|
21
|
Zhang Q, Li Z, Wang Y, Zheng Q, Li J. Mass spectrometry for protein sialoglycosylation. MASS SPECTROMETRY REVIEWS 2018; 37:652-680. [PMID: 29228471 DOI: 10.1002/mas.21555] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Sialic acids are a family of structurally unique and negatively charged nine-carbon sugars, normally found at the terminal positions of glycan chains on glycoproteins and glycolipids. The glycosylation of proteins is a universal post-translational modification in eukaryotic species and regulates essential biological functions, in which the most common sialic acid is N-acetyl-neuraminic acid (2-keto-5-acetamido-3,5-dideoxy-D-glycero-D-galactononulopyranos-1-onic acid) (Neu5NAc). Because of the properties of sialic acids under general mass spectrometry (MS) conditions, such as instability, ionization discrimination, and mixed adducts, the use of MS in the analysis of protein sialoglycosylation is still challenging. The present review is focused on the application of MS related methodologies to the study of both N- and O-linked sialoglycans. We reviewed MS-based strategies for characterizing sialylation by analyzing intact glycoproteins, proteolytic digested glycopeptides, and released glycans. The review concludes with future perspectives in the field.
Collapse
Affiliation(s)
- Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Zack Li
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
| | - Jianjun Li
- National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Profiling of N-linked glycans from 100 cells by capillary electrophoresis with large-volume dual preconcentration by isotachophoresis and stacking. J Chromatogr A 2018; 1565:138-144. [DOI: 10.1016/j.chroma.2018.06.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 01/19/2023]
|
23
|
Khan S, Liu J, Szabo Z, Kunnummal B, Han X, Ouyang Y, Linhardt RJ, Xia Q. On-line capillary electrophoresis/laser-induced fluorescence/mass spectrometry analysis of glycans labeled with Teal™ fluorescent dye using an electrokinetic sheath liquid pump-based nanospray ion source. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:882-888. [PMID: 29575162 DOI: 10.1002/rcm.8116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/27/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE N-linked glycan analysis of recombinant therapeutic proteins, such as monoclonal antibodies, Fc-fusion proteins, and antibody-drug conjugates, provides valuable information regarding protein therapeutics glycosylation profile. Both qualitative identification and quantitative analysis of N-linked glycans on recombinant therapeutic proteins are critical analytical tasks in the biopharma industry during the development of a biotherapeutic. METHODS Currently, such analyses are mainly carried out using capillary electrophoresis/laser-induced fluorescence (CE/LIF), liquid chromatography/fluorescence (LC/FLR), and liquid chromatography/fluorescence/mass spectrometry (LC/FLR/MS) technologies. N-linked glycans are first released from glycoproteins by enzymatic digestion, then labeled with fluorescence dyes for subsequent CE or LC separation, and LIF or MS detection. Here we present an on-line CE/LIF/MS N-glycan analysis workflow that incorporates the fluorescent Teal™ dye and an electrokinetic pump-based nanospray sheath liquid capillary electrophoresis/mass spectrometry (CE/MS) ion source. RESULTS Electrophoresis running buffer systems using ammonium acetate and ammonium hydroxide were developed for the negative ion mode CE/MS analysis of fluorescence-labeled N-linked glycans. Results show that on-line CE/LIF/MS analysis can be readily achieved using this versatile CE/MS ion source on common CE/MS instrument platforms. CONCLUSIONS This on-line CE/LIF/MS method using Teal™ fluorescent dye and electrokinetic pump-based nanospray sheath liquid CE/MS coupling technology holds promise for on-line quantitation and identification of N-linked glycans on recombinant therapeutic proteins.
Collapse
Affiliation(s)
- Shaheer Khan
- Pharma Analytics, BioProduction Division, Thermo Fisher Scientific, 180 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Jenkuei Liu
- Pharma Analytics, BioProduction Division, Thermo Fisher Scientific, 180 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Zoltan Szabo
- Pharma Analytics, BioProduction Division, Thermo Fisher Scientific, 180 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Baburaj Kunnummal
- Pharma Analytics, BioProduction Division, Thermo Fisher Scientific, 180 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Xiaorui Han
- Rensselaer Polytechnic Institute, Biotech 4005, 110 8th Street, Troy, NY, 12180, USA
| | - Yilan Ouyang
- Rensselaer Polytechnic Institute, Biotech 4005, 110 8th Street, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Rensselaer Polytechnic Institute, Biotech 4005, 110 8th Street, Troy, NY, 12180, USA
| | - Qiangwei Xia
- CMP Scientific Corp, 760 Parkside Ave, STE 211, Brooklyn, NY, 11226, USA
| |
Collapse
|
24
|
Subramanian J, Aulakh RPS, Grewal PS, Sanford M, Pynn AFJ, Yuk IH. Short- and long-term effects on mAb-producing CHO cell lines after cryopreservation. Biotechnol Prog 2018; 34:463-477. [DOI: 10.1002/btpr.2599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/04/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Jayashree Subramanian
- Early Stage Cell Culture, Pharma Technical Development, Genentech, 1 DNA Way; South San Francisco CA 94080
| | - Rigzen P. S. Aulakh
- Early Stage Cell Culture, Pharma Technical Development, Genentech, 1 DNA Way; South San Francisco CA 94080
| | - Parbir S. Grewal
- Early Stage Cell Culture, Pharma Technical Development, Genentech, 1 DNA Way; South San Francisco CA 94080
| | - Mark Sanford
- Early Stage Cell Culture, Pharma Technical Development, Genentech, 1 DNA Way; South San Francisco CA 94080
| | - Abigail F. J. Pynn
- Early Stage Cell Culture, Pharma Technical Development, Genentech, 1 DNA Way; South San Francisco CA 94080
| | - Inn H. Yuk
- Late Stage Cell Culture, Pharma Technical Development, Genentech, 1 DNA Way; South San Francisco CA 94080
| |
Collapse
|
25
|
Isomeric Separation and Characterisation of Glycoconjugates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:77-99. [DOI: 10.1007/978-981-13-2158-0_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Immunoaffinity capture coupled with capillary electrophoresis - mass spectrometry to study therapeutic protein stability in vivo. Anal Biochem 2017; 539:118-126. [DOI: 10.1016/j.ab.2017.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 01/09/2023]
|
27
|
Dada OO, Zhao Y, Jaya N, Salas-Solano O. High-Resolution Capillary Zone Electrophoresis with Mass Spectrometry Peptide Mapping of Therapeutic Proteins: Peptide Recovery and Post-translational Modification Analysis in Monoclonal Antibodies and Antibody–Drug Conjugates. Anal Chem 2017; 89:11236-11242. [DOI: 10.1021/acs.analchem.7b03643] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Oluwatosin O. Dada
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Yimeng Zhao
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Nomalie Jaya
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| | - Oscar Salas-Solano
- Department of Analytical
Sciences, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, Washington 98021, United States
| |
Collapse
|
28
|
Huang Y, Orlando R. Kinetics of N-Glycan Release from Human Immunoglobulin G (IgG) by PNGase F: All Glycans Are Not Created Equal. J Biomol Tech 2017; 28:150-157. [PMID: 29042829 DOI: 10.7171/jbt.17-2804-002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The biologic activity of IgG molecules is modulated by its crystallizable fragment N-glycosylation, and thus, the analysis of IgG glycosylation is critical. A standard approach to analyze glycosylation of IgGs involves the release of the N-glycans by the enzyme peptide N-glycosidase F, which cleaves the linkage between the asparagine residue and innermost N-acetylglucosamine (GlcNAc) of all N-glycans except those containing a 3-linked fucose attached to the reducing terminal GlcNAc residue. The importance of obtaining complete glycan release for accurate quantitation led us to investigate the kinetics of this de-glycosylation reaction for IgG glycopeptides and to determine the effect of glycan structure and amino acid sequence on the rate of glycan release from glycopeptides of IgGs. This study revealed that the slight differences in amino acid sequences did not lead to a statistically different deglycosylation rate. However, statistically significant differences in the deglycosylation rate constants were observed between glycopeptides differing only in glycan structure (i.e., nonfucosylated, fucosylated, bisecting-GlcNAc, sialylated, etc.). For example, a single sialic acid residue was found to decrease the rate by a factor of 3. Similar reductions in rate were associated with the presence of a bisecting-GlcNAc. We predict the differences in release kinetics can lead to significant quantitative variations of the glycosylation study of IgGs.
Collapse
Affiliation(s)
- Yining Huang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
29
|
Giorgetti J, D'Atri V, Canonge J, Lechner A, Guillarme D, Colas O, Wagner-Rousset E, Beck A, Leize-Wagner E, François YN. Monoclonal antibody N-glycosylation profiling using capillary electrophoresis - Mass spectrometry: Assessment and method validation. Talanta 2017; 178:530-537. [PMID: 29136858 DOI: 10.1016/j.talanta.2017.09.083] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023]
Abstract
Characterization of therapeutic proteins represents a major challenge for analytical sciences due to their heterogeneity caused by post-translational modifications (PTM). Among these PTM, glycosylation which is possibly the most prominent, require comprehensive identification because of their major influence on protein structure and effector functions of monoclonal antibodies (mAbs). As a consequence, glycosylation profiling must be deeply characterized. For this application, several analytical methods such as separation-based or MS-based methods, were evaluated. However, no CE-ESI-MS approach has been assessed and validated. Here, we illustrate how the use of CE-ESI-MS method permits the comprehensive characterization of mAbs N-glycosylation at the glycopeptide level to perform relative quantitation of N-glycan species. Validation of the CE-ESI-MS method in terms of robustness and reproducibility was demonstrated through the relative quantitation of glycosylation profiles for ten different mAbs produced in different cell lines. Glycosylation patterns obtained for each mAbs were compared to Hydrophilic Interaction Chromatography of 2-aminobenzamide labelled glycans with fluorescence detector (HILIC-FD) analysis considered as a reference method. Very similar glycoprofiling were obtained with the CE-ESI-MS and HILIC-FD demonstrating the attractiveness of CE-ESI-MS method to characterize and quantify the glycosylation heterogeneity of a wide range of therapeutic mAbs with high accuracy and precision.
Collapse
Affiliation(s)
- Jérémie Giorgetti
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Julie Canonge
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Antony Lechner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Olivier Colas
- Centre d'immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | | | - Alain Beck
- Centre d'immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140 (Unistra-CNRS), Université de Strasbourg, France.
| |
Collapse
|
30
|
Khatri K, Klein JA, Haserick JR, Leon DR, Costello CE, McComb ME, Zaia J. Microfluidic Capillary Electrophoresis-Mass Spectrometry for Analysis of Monosaccharides, Oligosaccharides, and Glycopeptides. Anal Chem 2017; 89:6645-6655. [PMID: 28530388 PMCID: PMC5554952 DOI: 10.1021/acs.analchem.7b00875] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glycomics and glycoproteomics analyses by mass spectrometry require efficient front-end separation methods to enable deep characterization of heterogeneous glycoform populations. Chromatography methods are generally limited in their ability to resolve glycoforms using mobile phases that are compatible with online liquid chromatography-mass spectrometry (LC-MS). The adoption of capillary electrophoresis-mass spectrometry methods (CE-MS) for glycomics and glycoproteomics is limited by the lack of convenient interfaces for coupling the CE devices to mass spectrometers. Here, we describe the application of a microfluidics-based CE-MS system for analysis of released glycans, glycopeptides and monosaccharides. We demonstrate a single CE method for three different modalities, thus contributing to comprehensive glycoproteomics analyses. In addition, we explored compatible sample derivatization methods. We used glycan TMT-labeling to improve electrophoretic migration and enable multiplexed quantitation by tandem MS. We used sialic acid linkage-specific derivatization methods to improve separation and the level of information obtained from a single analytical step. Capillary electrophoresis greatly improved glycoform separation for both released glycans and glycopeptides over that reported for chromatography modes more frequently employed for such analyses. Overall, the CE-MS method described here enables rapid setup and analysis of glycans and glycopeptides using mass spectrometry.
Collapse
Affiliation(s)
- Kshitij Khatri
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts 02215, United States
| | - Joshua A. Klein
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, United States
| | - John R. Haserick
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts 02215, United States
| | - Deborah R. Leon
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts 02215, United States
| | - Catherine E. Costello
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts 02215, United States
| | - Mark E. McComb
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts 02215, United States
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts 02215, United States
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
31
|
Váradi C, Mittermayr S, Millán-Martín S, Bones J. Quantitative twoplex glycan analysis using 12C6 and 13C6 stable isotope 2-aminobenzoic acid labelling and capillary electrophoresis mass spectrometry. Anal Bioanal Chem 2016; 408:8691-8700. [DOI: 10.1007/s00216-016-9935-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
|
32
|
Morbioli GG, Mazzu-Nascimento T, Aquino A, Cervantes C, Carrilho E. Recombinant drugs-on-a-chip: The usage of capillary electrophoresis and trends in miniaturized systems – A review. Anal Chim Acta 2016; 935:44-57. [DOI: 10.1016/j.aca.2016.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 01/09/2023]
|
33
|
Cutting-edge capillary electrophoresis characterization of monoclonal antibodies and related products. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:61-78. [PMID: 27265157 DOI: 10.1016/j.jchromb.2016.05.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023]
Abstract
Out of all categories, monoclonal antibodies (mAbs), biosimilar, antibody-drug conjugates (ADCs) and Fc-fusion proteins attract the most interest due to their strong therapeutic potency and specificity. Because of their intrinsic complexity due to a large number of micro-heterogeneities, there is a crucial need of analytical methods to provide comprehensive in-depth characterization of these molecules. CE presents some obvious benefits as high resolution separation and miniaturized format to be widely applied to the analysis of biopharmaceuticals. CE is an effective method for the separation of proteins at different levels. capillary gel electrophoresis (CGE), capillary isoelectric focusing (cIEF) and capillary zone electrophoresis (CZE) have been particularly relevant for the characterization of size and charge variants of intact and reduced mAbs, while CE-MS appears to be a promising analytical tool to assess the primary structure of mAbs and related products. This review will be dedicated to detail the current and state-of-the-art CE-based methods for the characterization of mAbs and related products.
Collapse
|
34
|
Bodnar J, Szekrenyes A, Szigeti M, Jarvas G, Krenkova J, Foret F, Guttman A. Enzymatic removal of N-glycans by PNGase F coated magnetic microparticles. Electrophoresis 2016; 37:1264-9. [DOI: 10.1002/elps.201500575] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Judit Bodnar
- MTA-PE Translational Glycomics Research Group; University of Pannonia; Veszprem Hungary
| | - Akos Szekrenyes
- Horváth Csaba Laboratory of Bioseparation Sciences; University of Debrecen; Debrecen Hungary
| | - Marton Szigeti
- Horváth Csaba Laboratory of Bioseparation Sciences; University of Debrecen; Debrecen Hungary
| | - Gabor Jarvas
- MTA-PE Translational Glycomics Research Group; University of Pannonia; Veszprem Hungary
- Institute of Analytical Chemistry; Brno Czech Republic
| | - Jana Krenkova
- Institute of Analytical Chemistry; Brno Czech Republic
| | | | - Andras Guttman
- MTA-PE Translational Glycomics Research Group; University of Pannonia; Veszprem Hungary
- Horváth Csaba Laboratory of Bioseparation Sciences; University of Debrecen; Debrecen Hungary
| |
Collapse
|
35
|
N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur J Pharm Biopharm 2016; 100:94-100. [DOI: 10.1016/j.ejpb.2016.01.005] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/18/2022]
|
36
|
Zhang L, Luo S, Zhang B. Glycan analysis of therapeutic glycoproteins. MAbs 2015; 8:205-15. [PMID: 26599345 PMCID: PMC4966609 DOI: 10.1080/19420862.2015.1117719] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 11/02/2015] [Indexed: 01/02/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are glycoproteins produced by living cell systems. The glycan moieties attached to the proteins can directly affect protein stability, bioactivity, and immunogenicity. Therefore, glycan variants of a glycoprotein product must be adequately analyzed and controlled to ensure product quality. However, the inherent complexity of protein glycosylation poses a daunting analytical challenge. This review provides an update of recent advances in glycan analysis, including the potential utility of lectin-based microarray for high throughput glycan profiling. Emphasis is placed on comparison of the major types of analytics for use in determining unique glycan features such as glycosylation site, glycan structure, and content.
Collapse
Affiliation(s)
- Lei Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Shen Luo
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
37
|
Dotz V, Haselberg R, Shubhakar A, Kozak RP, Falck D, Rombouts Y, Reusch D, Somsen GW, Fernandes DL, Wuhrer M. Mass spectrometry for glycosylation analysis of biopharmaceuticals. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Reusch D, Haberger M, Maier B, Maier M, Kloseck R, Zimmermann B, Hook M, Szabo Z, Tep S, Wegstein J, Alt N, Bulau P, Wuhrer M. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles--part 1: separation-based methods. MAbs 2015; 7:167-79. [PMID: 25524468 PMCID: PMC4623496 DOI: 10.4161/19420862.2014.986000] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Immunoglobulin G (IgG) crystallizable fragment (Fc) glycosylation is crucial for antibody effector functions, such as antibody-dependent cell-mediated cytotoxicity, and for their pharmacokinetic and pharmacodynamics behavior. To monitor the Fc-glycosylation in bioprocess development, as well as product characterization and release analytics, reliable techniques for glycosylation analysis are needed. A wide range of analytical methods has found its way into these applications. In this study, a comprehensive comparison was performed of separation-based methods for Fc-glycosylation profiling of an IgG biopharmaceutical. A therapeutic antibody reference material was analyzed 6-fold on 2 different days, and the methods were compared for precision, accuracy, throughput and other features; special emphasis was placed on the detection of sialic acid-containing glycans. Seven, non-mass spectrometric methods were compared; the methods utilized liquid chromatography-based separation of fluorescent-labeled glycans, capillary electrophoresis-based separation of fluorescent-labeled glycans, or high-performance anion exchange chromatography with pulsed amperometric detection. Hydrophilic interaction liquid chromatography-ultra high performance liquid chromatography of 2-aminobenzamide (2-AB)-labeled glycans was used as a reference method. All of the methods showed excellent precision and accuracy; some differences were observed, particularly with regard to the detection and quantitation of minor glycan species, such as sialylated glycans.
Collapse
Key Words
- 2-AB labeling
- 2-AB, 2-aminobenzamide
- ANTS, 8-aminonaphthalene-1, 3, 6-trisulfonate
- APTS labeling
- APTS, 8-aminopyrene-1, 3, 6-trisulfonic acid
- CCGE, cartridge-based capillary gel electrophoresis
- CE-LIF
- CE-LIF, capillary electrophoresis-laser induced fluorescence
- CHO, Chinese hamster ovary
- DNA analyzer
- DSA-FACE, DNA-sequencer-aided fluorophore-assisted carbohydrate electrophoresis
- ESI-MS, electrospray ionization-mass spectrometry
- Fab, fragment, antigen-binding
- Fc, fragment crystallizable
- HILIC-UPLC
- HILIC-UPLC, hydrophilic interaction liquid chromatography-ultra high performance liquid chromatography
- HPAEC
- HPAEC-PAD, high-performance anion exchange chromatography with pulsed amperometric detection
- HPLC, high performance liquid chromatography
- HR, high resolution
- IAB, InstantAB labeling
- IgG glycosylation
- IgG, immunoglobulin G
- MALDI-MS, matrix-assisted laser desorption/ionization-mass spectrometry
- glycan analysis
- high-throughput
- mAb, monoclonal antibody
- method comparison
- monoclonal antibody (mAb)
Collapse
Affiliation(s)
- Dietmar Reusch
- a Pharma Biotech Development Penzberg; Roche Diagnostics GmbH ; Penzberg , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lukose V, Whitworth G, Guan Z, Imperiali B. Chemoenzymatic Assembly of Bacterial Glycoconjugates for Site-Specific Orthogonal Labeling. J Am Chem Soc 2015; 137:12446-9. [PMID: 26352466 PMCID: PMC4599313 DOI: 10.1021/jacs.5b07146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The
cell surfaces of bacteria are replete with diverse glycoconjugates
that play pivotal roles in determining how bacteria interact with
the environment and the hosts that they colonize. Studies to advance
our understanding of these interactions rely on the availability of
chemically defined glycoconjugates that can be selectively modified
under orthogonal reaction conditions to serve as discrete ligands
to probe biological interactions, in displayed arrays and as imaging
agents. Herein, enzymes in the N-linked protein glycosylation
(Pgl) pathway of Campylobacter jejuni are evaluated
for their tolerance for azide-modified UDP-sugar substrates, including
derivatives of 2,4-diacetamidobacillosamine and N-acetylgalactosamine. In vitro analyses reveal that
chemoenzymatic approaches are useful for the preparation of undecaprenol
diphosphate-linked glycans and glycopeptides with site-specific introduction
of azide functionality for orthogonal labeling at three specific sites
in the heptasaccharide glycan. The uniquely modified glycoconjugates
represent valuable tools for investigating the roles of C.
jejuni cell surface glycoconjugates in host pathogen interactions.
Collapse
Affiliation(s)
- Vinita Lukose
- Departments of Biology and Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Garrett Whitworth
- Departments of Biology and Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Barbara Imperiali
- Departments of Biology and Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
40
|
Zhong X, Chen Z, Snovida S, Liu Y, Rogers JC, Li L. Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry for Quantitative Analysis of Glycans Labeled with Multiplex Carbonyl-Reactive Tandem Mass Tags. Anal Chem 2015; 87:6527-34. [PMID: 25981625 DOI: 10.1021/acs.analchem.5b01835] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recently developed carbonyl-reactive aminoxy tandem mass tag (aminoxyTMT) reagents enable multiplexed characterization and quantitative comparison of structurally complex glycans between different biological samples. Compared to some previously reported isotopic labeling strategies for glycans, the use of the aminoxyTMT method features a simple labeling procedure, excellent labeling efficiency, and reduced spectral complexity at the MS(1) level. Presence of the tertiary amine functionality in the reporter region of the aminoxyTMT labels leads to increased ionization efficiency of the labeled glycans thus improving electrospray ionization (ESI)-mass spectrometry (MS) detection sensitivity. The use of the labeling reagent also makes electrophoretic separation of the labeled neutral and acidic glycans feasible. In this work, we characterized the ESI and collision induced dissociation (CID) behavior of the aminoxyTMT-labeled neutral and sialylated glycans. For the high-mannose N-glycans and small sialylated oligosaccharides, CID fragmentation of [M + Na + H](2+) provides the most informative MS(2) spectra for both quantitative and qualitative analysis. For complex N-glycans, MS(3) of the protonated Y1(H) ion can be used for relative quantification without interference from the HexNAc fragments. Online capillary electrophoresis (CE)-ESI-MS/MS analyses of multiplexed aminoxyTMT-labeled human milk oligosaccharides (HMOs) and different types of N-glycans released from glycoprotein standards were demonstrated. Improved resolution and quantification accuracy of the labeled HMO isomers was achieved by coupling CE with traveling wave ion mobility (TWIM)-CID-MS/MS. N-Glycans released from human serum protein digests were labeled with six-plex aminoxyTMT and subjected to CE-ESI-MS/pseudo-MS(3) analysis, which demonstrated the potential utility of this glycan relative quantification platform for more complex biological samples.
Collapse
Affiliation(s)
- Xuefei Zhong
- †School of Pharmacy, University of Wisconsin, Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Zhengwei Chen
- ‡Department of Chemistry, University of Wisconsin, Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Sergei Snovida
- §Thermo Scientific Pierce Protein Research, Thermo Fisher Scientific, Rockford, Illinois 61105, United States
| | - Yan Liu
- ∥School of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - John C Rogers
- §Thermo Scientific Pierce Protein Research, Thermo Fisher Scientific, Rockford, Illinois 61105, United States
| | - Lingjun Li
- †School of Pharmacy, University of Wisconsin, Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States.,‡Department of Chemistry, University of Wisconsin, Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
41
|
Guttman M, Váradi C, Lee KK, Guttman A. Comparative glycoprofiling of HIV gp120 immunogens by capillary electrophoresis and MALDI mass spectrometry. Electrophoresis 2015; 36:1305-13. [PMID: 25809283 PMCID: PMC4544863 DOI: 10.1002/elps.201500054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 01/14/2023]
Abstract
The human immunodeficiency virus (HIV) envelope glycoprotein (Env) is the primary antigenic feature on the surface of the virus and is of key importance in HIV vaccinology. Vaccine trials with the gp120 subunit of Env are ongoing, with the recent RV144 trial showing moderate efficacy. gp120 is densely covered with N-linked glycans that are thought to help evade the host's humoral immune response. To assess how the global glycosylation patterns vary between gp120 constructs, the glycan profiles of several gp120s were examined by CE with LIF detection and MALDI-MS. The glycosylation profiles were found to be similar for chronic versus transmitter/founder isolates and only varied moderately between gp120s from different clades. This study revealed that the addition of specific tags, such as the herpes simplex virus glycoprotein D tag used in the RV144 trial, had significant effects on the overall glycosylation patterns. Such effects are likely to influence the immunogenicity of various Env immunogens and should be considered for future vaccine strategies, emphasizing the importance of the glycosylation analysis approach described in this paper.
Collapse
Affiliation(s)
- Miklós Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Csaba Váradi
- Horváth Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Debrecen, Hungary
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - András Guttman
- Horváth Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Debrecen, Hungary
- MTA-PE Translational Glycomics Research Group, MUKKI, University of Pannonia, Veszprem, Hungary
| |
Collapse
|
42
|
Alinat E, Delaunay N, Przybylski C, Daniel R, Archer X, Gareil P. Capillary electrophoresis fingerprinting of 8-aminopyrene-1,3,6-trisulfonate derivatized nitrocellulose after partial acid depolymerization. J Chromatogr A 2015; 1387:134-43. [DOI: 10.1016/j.chroma.2015.01.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
|
43
|
Zhang YW, Zhao MZ, Liu JX, Zhou YL, Zhang XX. Double-layer poly(vinyl alcohol)-coated capillary for highly sensitive and stable capillary electrophoresis and capillary electrophoresis with mass spectrometry glycan analysis. J Sep Sci 2015; 38:475-82. [DOI: 10.1002/jssc.201401025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Yi-Wei Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS); MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering; College of Chemistry, Peking University; Beijing China
| | - Ming-Zhe Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS); MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering; College of Chemistry, Peking University; Beijing China
| | - Jing-Xin Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS); MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering; College of Chemistry, Peking University; Beijing China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS); MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering; College of Chemistry, Peking University; Beijing China
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS); MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering; College of Chemistry, Peking University; Beijing China
| |
Collapse
|
44
|
Liu H, Ponniah G, Zhang HM, Nowak C, Neill A, Gonzalez-Lopez N, Patel R, Cheng G, Kita AZ, Andrien B. In vitro and in vivo modifications of recombinant and human IgG antibodies. MAbs 2014; 6:1145-54. [PMID: 25517300 DOI: 10.4161/mabs.29883] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tremendous knowledge has been gained in the understanding of various modifications of IgG antibodies, driven mainly by the fact that antibodies are one of the most important groups of therapeutic molecules and because of the development of advanced analytical techniques. Recombinant monoclonal antibody (mAb) therapeutics expressed in mammalian cell lines and endogenous IgG molecules secreted by B cells in the human body share some modifications, but each have some unique modifications. Modifications that are common to recombinant mAb and endogenous IgG molecules are considered to pose a lower risk of immunogenicity. On the other hand, modifications that are unique to recombinant mAbs could potentially pose higher risk. The focus of this review is the comparison of frequently observed modifications of recombinant monoclonal antibodies to those of endogenous IgG molecules.
Collapse
Affiliation(s)
- Hongcheng Liu
- a Protein Characterization; Alexion Pharmaceuticals Inc .; Cheshire , CT USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yuk IH, Russell S, Tang Y, Hsu WT, Mauger JB, Aulakh RPS, Luo J, Gawlitzek M, Joly JC. Effects of copper on CHO cells: Cellular requirements and product quality considerations. Biotechnol Prog 2014; 31:226-38. [DOI: 10.1002/btpr.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/11/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Inn H. Yuk
- Early Stage Cell Culture, Bioprocess Development; Genentech, 1 DNA Way South San Francisco CA 94080
| | - Stephen Russell
- Analytical Operations; Genentech, 1 DNA Way South San Francisco CA 94080
| | - Yun Tang
- Analytical Operations; Genentech, 1 DNA Way South San Francisco CA 94080
| | - Wei-Ting Hsu
- Early Stage Cell Culture, Bioprocess Development; Genentech, 1 DNA Way South San Francisco CA 94080
| | - Jacob B. Mauger
- Early Stage Cell Culture, Bioprocess Development; Genentech, 1 DNA Way South San Francisco CA 94080
| | - Rigzen P. S. Aulakh
- Early Stage Cell Culture, Bioprocess Development; Genentech, 1 DNA Way South San Francisco CA 94080
| | - Jun Luo
- Vacaville Manufacturing Sciences and Technology; Genentech, 1000 New Horizons Way Vacaville CA 95688
| | - Martin Gawlitzek
- Late Stage Cell Culture, Bioprocess Development; Genentech, 1 DNA Way South San Francisco CA 94080
| | - John C. Joly
- Early Stage Cell Culture, Bioprocess Development; Genentech, 1 DNA Way South San Francisco CA 94080
| |
Collapse
|
46
|
|
47
|
Jayo RG, Thaysen-Andersen M, Lindenburg PW, Haselberg R, Hankemeier T, Ramautar R, Chen DDY. Simple Capillary Electrophoresis–Mass Spectrometry Method for Complex Glycan Analysis Using a Flow-Through Microvial Interface. Anal Chem 2014; 86:6479-86. [DOI: 10.1021/ac5010212] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roxana G. Jayo
- Department
of Chemistry, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Morten Thaysen-Andersen
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Petrus W. Lindenburg
- Division
of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, 2311 EZ Leiden, the Netherlands
- Netherlands Metabolomics Centre, 2333
CC Leiden, the Netherlands
| | - Rob Haselberg
- Division
of BioAnalytical Chemistry, AIMMS research group BioMolecular Analysis, VU University 1081 HV Amsterdam, the Netherlands
| | - Thomas Hankemeier
- Division
of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, 2311 EZ Leiden, the Netherlands
- Netherlands Metabolomics Centre, 2333
CC Leiden, the Netherlands
| | - Rawi Ramautar
- Division
of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, 2311 EZ Leiden, the Netherlands
- Netherlands Metabolomics Centre, 2333
CC Leiden, the Netherlands
| | - David D. Y. Chen
- Department
of Chemistry, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
48
|
Yang Y, Stella C, Wang W, Schöneich C, Gennaro L. Characterization of Oxidative Carbonylation on Recombinant Monoclonal Antibodies. Anal Chem 2014; 86:4799-806. [DOI: 10.1021/ac4039866] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Cinzia Stella
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, P.O. Box 12425, Lancaster, Pennsylvania 17605, United States
| | | | - Christian Schöneich
- Department
of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | | |
Collapse
|
49
|
Nebija D, Noe CR, Urban E, Lachmann B. Quality control and stability studies with the monoclonal antibody, trastuzumab: application of 1D- vs. 2D-gel electrophoresis. Int J Mol Sci 2014; 15:6399-411. [PMID: 24739811 PMCID: PMC4013636 DOI: 10.3390/ijms15046399] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/10/2014] [Accepted: 03/31/2014] [Indexed: 12/05/2022] Open
Abstract
Recombinant monoclonal antibodies (rmAbs) are medicinal products obtained by rDNA technology. Consequently, like other biopharmaceuticals, they require the extensive and rigorous characterization of the quality attributes, such as identity, structural integrity, purity and stability. The aim of this work was to study the suitability of gel electrophoresis for the assessment of charge heterogeneity, post-translational modifications and the stability of the therapeutic, recombinant monoclonal antibody, trastuzumab. One-dimensional, SDS-PAGE, under reducing and non-reducing conditions, and two-dimensional gel electrophoresis were used for the determination of molecular mass (Mr), the isoelectric point (pI), charge-related isoform patterns and the stability of trastuzumab, subjected to stressed degradation and long-term conditions. For the assessment of the influence of glycosylation in the charge heterogeneity pattern of trastuzumab, an enzymatic deglycosylation study has been performed using N-glycosidase F and sialidase, whereas carboxypeptidase B was used for the lysine truncation study. Experimental data documented that 1D and 2D gel electrophoresis represent fast and easy methods to evaluate the quality of biological medicinal products. Important stability parameters, such as the protein aggregation, can be assessed, as well.
Collapse
Affiliation(s)
- Dashnor Nebija
- Department of Pharmaceutical Chemistry, Medical Faculty, Rr. Bulevardi i Deshmoreve, n.n. 10000 Pristina, Kosovo.
| | - Christian R Noe
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Bodo Lachmann
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
50
|
Balonova L, Hernychova L, Bilkova Z. Bioanalytical tools for the discovery of eukaryotic glycoproteins applied to the analysis of bacterial glycoproteins. Expert Rev Proteomics 2014; 6:75-85. [DOI: 10.1586/14789450.6.1.75] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|