1
|
Wang Y, Wan L, Li Y, Qu Y, Qu L, Ma X, Yu Y, Wang X, Nie Z. Profiling of carbonyl metabolic fingerprints in urine of Graves' disease patients based on atmospheric ionization mass spectrometry. Talanta 2024; 277:126329. [PMID: 38815320 DOI: 10.1016/j.talanta.2024.126329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
Graves' disease (GD) is considered among the organ autoimmune diseases and is somewhat linked to other autoimmune and secondary diseases. Commonly used detection methods rely on identifying characteristic clinical features and abnormal biochemical markers, but they have certain limitations and may be affected by patient medication. In this study, a desorption separation ionization (DSI) device coupled with a linear ion trap mass spectrometer is introduced for effective detection and screening of urine from GD patients. To enhance the sensitivity of MS analysis, derivatization reagent is utilized as a labeling method. The MS signal is used for metabolic profiling, through which differential metabolites and pathways are identified. Subsequently, processing the acquired spectra with a machine learning algorithm enables successful differentiation of GD patients and healthy individuals. This method is believed to provide versatile and powerful technical support for effective detection on the scene. Notably, this method offers the advantage of achieving early and rapid diagnosis of thyroid-related diseases.
Collapse
Affiliation(s)
- Yiran Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Wan
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuze Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yijiao Qu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangliang Qu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xiaobing Ma
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Yang Yu
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxia Wang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Goodwin J, Kenneth Marcus R, McRae G, Sturgeon RE, Mester Z. Characterization of arsenic species by liquid sampling-atmospheric pressure glow discharge ionization mass spectrometry. Anal Bioanal Chem 2024; 416:3585-3594. [PMID: 38703200 PMCID: PMC11156724 DOI: 10.1007/s00216-024-05312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
A liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source operating at a nominal power of 30 W and solution flow rate of 30 µL min-1 and supported in a He sheath gas flow rate of 500 mL min-1 was interfaced to an Orbitrap mass spectrometer and assessed for use in rapid identification of inorganic and organic arsenic species, including As(III), As(V), monomethylarsonic acid, dimethylarsinic acid, and arsenobetaine in a 2% (v/v) nitric acid medium. Mass spectral acquisition in low-resolution mode, using only the ion trap analyzer, provided detection of protonated molecular ions for AsBet (m/z 179), DMA (m/z 139), MMA (m/z 141), and As(V) (m/z 143). As(III) is oxidized to As(V), likely due to in-source processes. Typical fragmentation of these compounds resulted in the loss of either water or methyl groups, as appropriate, i.e., introducing DMA also generated ions corresponding to MMA and As(V) as dissociation products. Structure assignments were also confirmed by high-resolution Orbitrap measurements. Spectral fingerprint assignments were based on the introduction of solutions containing 5 µg mL-1 of each arsenic compound.
Collapse
Affiliation(s)
- Joseph Goodwin
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - R Kenneth Marcus
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Garnet McRae
- Metrology Research Center, National Research Council Canada, Ottawa, Ontario, K1A0R6, Canada
| | - Ralph E Sturgeon
- Metrology Research Center, National Research Council Canada, Ottawa, Ontario, K1A0R6, Canada
| | - Zoltan Mester
- Metrology Research Center, National Research Council Canada, Ottawa, Ontario, K1A0R6, Canada.
| |
Collapse
|
3
|
Sun Y, Tang Y, Chen Z, Ge M, Xiong W, Wen L. A Facile Determination of Herbicide Residues and Its Application in On-Site Analysis. Foods 2024; 13:1280. [PMID: 38672952 PMCID: PMC11049070 DOI: 10.3390/foods13081280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Abuse of herbicides in food safety is a vital concern that has an influence on the sustainable development of the world. This work presents, a modified ionization method with separation of the sample and carrier gas inlets, which was utilized for efficient ionization and analyte transfer of herbicides in crops. The working parameters of voltage, injective distance, desorption temperature, and the carrier gas flow rate were optimized to achieve the high efficiency of the transfer and ionization of the analyte. When it was applied in the analysis of herbicides in laboratory, the method exhibited excellent performance in achieving the quantitative detection of herbicides in solutions and residues spiked in an actual matrix with a limit of quantification of 1-20 μg/kg and relative standard deviations of less than 15%. Although a simple QuEchERS process was used, the programmable heating platform ensured efficient gasification and transfer of the target analyte, with the advantages of high speed and selectivity, avoiding the noted matrix effect. The method exhibited a relatively acceptable performance by using air as the discharged gas (open air). It could be used to monitor herbicide residues in the growth stage via on-site non-destructive analysis, which obtained low LODs by dissociating the herbicides from the crops without any pretreatment. It showed great potential for the supervision of the food safety market by achieving non-destructive detection of crops anytime and anywhere. This finding may provide new insights into the determination of pesticide emergence and rice quality assessment.
Collapse
Affiliation(s)
- Yifei Sun
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, China; (Y.S.); (Y.T.); (Z.C.); (M.G.); (L.W.)
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
- China Innovation Instrument Co., Ningbo 315100, China
| | - Yan Tang
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, China; (Y.S.); (Y.T.); (Z.C.); (M.G.); (L.W.)
- China Innovation Instrument Co., Ningbo 315100, China
| | - Zetao Chen
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, China; (Y.S.); (Y.T.); (Z.C.); (M.G.); (L.W.)
- China Innovation Instrument Co., Ningbo 315100, China
| | - Miaoxiu Ge
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, China; (Y.S.); (Y.T.); (Z.C.); (M.G.); (L.W.)
- China Innovation Instrument Co., Ningbo 315100, China
| | - Wei Xiong
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, China; (Y.S.); (Y.T.); (Z.C.); (M.G.); (L.W.)
- China Innovation Instrument Co., Ningbo 315100, China
| | - Luhong Wen
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, China; (Y.S.); (Y.T.); (Z.C.); (M.G.); (L.W.)
- China Innovation Instrument Co., Ningbo 315100, China
| |
Collapse
|
4
|
Zhang D, Loomer M, Gamez G. Quantitative analysis of biopolymers in lignocellulosic biomass feedstocks via laser-assisted micro-pyrolysis flowing atmospheric-pressure afterglow high-resolution ambient mass spectrometry. Talanta 2024; 268:125333. [PMID: 37931586 DOI: 10.1016/j.talanta.2023.125333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
Herein, a diode laser-assisted micro-pyrolysis (LAMP) technique coupled with FAPA high resolution mass spectrometry (HRMS) is demonstrated for fast chemical characterization of lignocellulosic biomass feedstocks. The solid lignocellulosic biomass can be analyzed directly with minimal sample preparation. The mass spectra of the pyrolysis products are interpreted with the aid of data visualization tools such as Kendrick mass defect (KMD) plots and van Krevelen plots. Furthermore, quantitation of lignin/cellulose/hemicellulose, sugar contents of glucan/xylan/galactan/arabinan and lignin monomeric unit S/G is achieved with good accuracy and precision, through multivariate analysis methods, including partial least squares regression (PLSR) and support vector regression (SVR).
Collapse
Affiliation(s)
- Dong Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Michael Loomer
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Gerardo Gamez
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA.
| |
Collapse
|
5
|
Bao M, Bai J, Wang Y, Zhu S, Liu Y, Wen T, Zhang J, Ma SC, Guo Y. Plasma-Excited Nebulizer Gas-Assisted Electrospray Ionization: Enhancing the Sensitivity of Pesticide in Mass Spectrometry. Anal Chem 2023; 95:14842-14852. [PMID: 37779463 DOI: 10.1021/acs.analchem.3c01502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) is widely used in the detection of pesticide residues. However, the detection sensitivity of low-polarity pesticides by commonly used electrospray ionization may be severely suppressed, which greatly affects the limit of detection and repeatability. Herein, a plasma-excited nebulizer gas-assisted electrospray ionization (PENG-ESI) device has been developed. By introducing the discharge plasma formed by Tesla coil into the electrospray nebulizer gas channel, the sensitivity of low-polarity pesticides was significantly increased while maintaining sensitivity to polar pesticides. Under the optimized conditions, the limit of detection for S-bioallethrin was achieved at the level of 100 pg/g with good linearity (R2 > 0.99) and precision (RSD ≤ 4.61%). The matrix effect of a series of spiked matrix samples is less than 13.1%. Finally, different pyrethroid pesticide residues were successfully analyzed without separation, highlighting that the technology has potential application prospects in food quality control, environmental monitoring, and other fields.
Collapse
Affiliation(s)
- Mingmai Bao
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Suzhen Zhu
- Analysis and Testing Center, Institute of Zhejiang University, Quzhou, 324000, China
| | - Yingchao Liu
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tianlun Wen
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jing Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shuang-Cheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
6
|
Heide M, Engelhard C. Chemical analysis of electronic cigarette liquids (e-liquids) and direct nicotine quantitation using surface-assisted flowing atmospheric-pressure afterglow desorption/ionization mass spectrometry (SA-FAPA-MS). RSC Adv 2023; 13:24150-24161. [PMID: 37583918 PMCID: PMC10424281 DOI: 10.1039/d3ra03931e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023] Open
Abstract
Ambient desorption/ionization mass spectrometry (ADI-MS) has been widely used for direct analysis of real samples without sample preparation or separation. Studies on the quantification of low molecular weight compounds in complex matrices with ADI-MS remain scarce. In this paper, we report the application of surface-assisted flowing atmospheric-pressure afterglow mass spectrometry (SA-FAPA-MS) for fast qualitative screening of electronic cigarette liquid (e-liquids) ingredients and direct quantification of nicotine. The quantification approach is rapid, uses a deuterated D4-nicotine standard spike, and does not require a preceding chromatography step or other methods to remove the complex sample matrix. Selected e-liquids were directly applied on thin-layer chromatography (TLC) plate surfaces (normal phase (NP) silica, reversed phase (RP) modified silica, cyano (CN) modified silica, and dimethyl (RP2) modified silica) after dilution and internal standard spiking. The plates served purely as sample carriers and no analyte separation was performed. Promising qualitative results were obtained, demonstrating the ability to detect nicotine alkaloids using this approach and the ability to differentiate e-liquids based on their flavor variations. In addition, dimethyl- (RP2-) and cyano-modified (CN-) silica surfaces were selected for quantification based on performance results of previous studies. It was shown that results were in high accordance with high-performance liquid chromatography (HPLC) experiments with lowest deviations <3% on dimethyl surfaces. Additional quantitative experiments including a certified reference material achieved equally satisfying results with lowest deviations of -1.1% from the certified nicotine content. For nicotine, detection limits down to the fmol range (96 fmol on CN and 20 fmol on RP2) were obtained. A detailed comparison of glass surfaces with functionalized surfaces showed that the functionalized surfaces were superior in terms of sample application reproducibility, mass spectra quality, sensitivity, and information density. Thus, functionalized thin-layer surfaces are considered promising tools for both qualitative and quantitative ADI-MS analysis of complex samples.
Collapse
Affiliation(s)
- Maximilian Heide
- Department of Chemistry and Biology, University of Siegen Adolf-Reichwein-Str. 2 Siegen 57076 Germany
| | - Carsten Engelhard
- Department of Chemistry and Biology, University of Siegen Adolf-Reichwein-Str. 2 Siegen 57076 Germany
- Research Center of Micro- and Nanochemistry and (Bio)Technology, University of Siegen Adolf-Reichwein-Str. 2 Siegen 57076 Germany
| |
Collapse
|
7
|
Heide M, Engelhard C. Effect of Sample Plates and Sample Matrix on the Quantification Capabilities of Surface-Assisted Flowing Atmospheric-Pressure Afterglow Mass Spectrometry (SA-FAPA-MS). APPLIED SPECTROSCOPY 2023; 77:928-939. [PMID: 37151022 DOI: 10.1177/00037028231168617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ambient desorption/ionization mass spectrometry (ADI-MS) has been broadly applied to accomplish direct analysis without sample preparation or separation. However, quantification capabilities and analytical performance are sometimes limited. Here, we report signal enhancement effects and improved quantification capabilities in plasma-based ADI-MS, when a flowing atmospheric-pressure afterglow (FAPA) source is used to probe analytes on tailored thin-layer chromatography (TLC) plates. It was found that quantitative results could be achieved when the TLC plate merely served as a sampling plate without a preceding separation step. Specifically, the dynamic response of caffeine, nicotine, acetaminophen, and progesterone was investigated with FAPA-MS on a variety of different TLC surfaces (normal-phase silica, reversed-phase-modified silica, cyano [CN]-modified silica, and dimethyl [RP2]-modified silica). All analytes were studied as single-analyte standards and in a multianalyte mixture to evaluate the effect of sample plates and sample matrix on analytical performance and competitive ionization processes. Overall, dimethyl (RP2)- and CN-modified silica resulted in superior performance compared to other TLC materials. After careful optimization and without the use of internal standards, linear ranges of five orders of magnitude were accessible for caffeine and nicotine. Limits of detection down to femtomole amounts of analyte were achieved. Quantitation limits using RP2-TLC and FAPA-MS were 0.062, 0.062l, 0.31, and 14 pmol for caffeine, nicotine, progesterone, and acetaminophen, respectively. Interestingly, the presence of nicotine at relatively high amounts reduced the signal of the other analytes, an observation that was found to correlate with the differences in the enthalpy of vaporization (ΔHvap) and proton affinity. To prove the quantitative capabilities, nicotine quantification in a real matrix-heavy e-liquid sample was demonstrated using an isotopically labeled standard. The use of TLC-based surfaces with FAPA-MS can aid in the direct and quantitative mass spectrometric investigation of complex mixtures.
Collapse
Affiliation(s)
- Maximilian Heide
- Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | - Carsten Engelhard
- Department of Chemistry and Biology, University of Siegen, Siegen, Germany
- Research Center of Micro- and Nanochemistry and (Bio)Technology, University of Siegen, Siegen, Germany
| |
Collapse
|
8
|
Guo X, Wang X, Tian C, Dai J, Zhao Z, Duan Y. Development of mass spectrometry imaging techniques and its latest applications. Talanta 2023; 264:124721. [PMID: 37271004 DOI: 10.1016/j.talanta.2023.124721] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Mass spectrometry imaging (MSI) is a novel molecular imaging technology that collects molecular information from the surface of samples in situ. The spatial distribution and relative content of various compounds can be visualized simultaneously with high spatial resolution. The prominent advantages of MSI promote the active development of ionization technology and its broader applications in diverse fields. This article first gives a brief introduction to the vital parts of the processes during MSI. On this basis, provides a comprehensive overview of the most relevant MS-based imaging techniques from their mechanisms, pros and cons, and applications. In addition, a critical issue in MSI, matrix effects is also discussed. Then, the representative applications of MSI in biological, forensic, and environmental fields in the past 5 years have been summarized, with a focus on various types of analytes (e.g., proteins, lipids, polymers, etc.) Finally, the challenges and further perspectives of MSI are proposed and concluded.
Collapse
Affiliation(s)
- Xing Guo
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China
| | - Xin Wang
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China
| | - Caiyan Tian
- College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Jianxiong Dai
- Aliben Science and Technology Company Limited, Chengdu, 610064, PR China
| | | | - Yixiang Duan
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China; Research Center of Analytical Instrumentation, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
9
|
Caleb Bagley M, Garrard KP, Muddiman DC. The development and application of matrix assisted laser desorption electrospray ionization: The teenage years. MASS SPECTROMETRY REVIEWS 2023; 42:35-66. [PMID: 34028071 DOI: 10.1002/mas.21696] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 05/24/2023]
Abstract
In the past 15 years, ambient ionization techniques have witnessed a significant incursion into the field of mass spectrometry imaging, demonstrating their ability to provide complementary information to matrix-assisted laser desorption ionization. Matrix-assisted laser desorption electrospray ionization is one such technique that has evolved since its first demonstrations with ultraviolet lasers coupled to Fourier transform-ion cyclotron resonance mass spectrometers to extensive use with infrared lasers coupled to orbitrap-based mass spectrometers. Concurrently, there have been transformative developments of this imaging platform due to the high level of control the principal group has retained over the laser technology, data acquisition software (RastirX), instrument communication, and image processing software (MSiReader). This review will discuss the developments of MALDESI since its first laboratory demonstration in 2005 to the most recent advances in 2021.
Collapse
Affiliation(s)
- Michael Caleb Bagley
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Kenneth P Garrard
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
- The Precision Engineering Consortium, North Carolina State University, Raleigh, North Carolina, USA
- Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina, USA
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
- Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
10
|
Yue H, He F, Zhao Z, Duan Y. Plasma-based ambient mass spectrometry: Recent progress and applications. MASS SPECTROMETRY REVIEWS 2023; 42:95-130. [PMID: 34128567 DOI: 10.1002/mas.21712] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 06/12/2023]
Abstract
Ambient mass spectrometry (AMS) has grown as a group of advanced analytical techniques that allow for the direct sampling and ionization of the analytes in different statuses from their native environment without or with minimum sample pretreatments. As a significant category of AMS, plasma-based AMS has gained a lot of attention due to its features that allow rapid, real-time, high-throughput, in vivo, and in situ analysis in various fields, including bioanalysis, pharmaceuticals, forensics, food safety, and mass spectrometry imaging. Tens of new methods have been developed since the introduction of the first plasma-based AMS technique direct analysis in real-time. This review first provides a comprehensive overview of the established plasma-based AMS techniques from their ion source configurations, mechanisms, and developments. Then, the progress of the representative applications in various scientific fields in the past 4 years (January 2017 to January 2021) has been summarized. Finally, we discuss the current challenges and propose the future directions of plasma-based AMS from our perspective.
Collapse
Affiliation(s)
- Hanlu Yue
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Feiyao He
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhongjun Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yixiang Duan
- College of Life Sciences, Sichuan University, Chengdu, China
- School of Manufacturing Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Xiang Z, Zheng Y, Huang Y, Shi J, Zhang Z. Focusing Plasma Desorption/Ionization Mass Spectrometry. Anal Chem 2022; 94:17090-17101. [PMID: 36444961 DOI: 10.1021/acs.analchem.2c03237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A plasma-based source named focusing plasma desorption/ionization (FPDI) is described, which applies a high direct current voltage between a metal wire inside a polymeric hollow truncated cone and a piece of a one-sided coated conducting paper substrate. The conducting paper acts as both the counter electrode and the sample carrier. Upon the generation of a visible plasma beam, it would directly ionize the samples spotted on the conducting paper substrate or located around the plasma beam. The signal intensity of target analytes in mass spectrometric analysis is dependent highly on whether the conducting paper substrate is grounded or not, the type of conducting paper substrate, the inside diameter of the polymeric hollow truncated cone tip, the metal wire tip-to-polymer tip distance, the polymer tip-to-paper substrate distance, the applied voltage, and the helium flow rate. Based on the experimental observation, a plausible mechanism is proposed for the generation of the plasma beam from FPDI. Compared to the available low-temperature plasma, flowing atmospheric-pressure afterglow, and helium plasma ionization sources, FPDI has demonstrated higher sensitivity and better compatibility with commercial mass spectrometers without any extra power supplies. As a proof of concept, FPDI coupled with a mass spectrometer has also been applied for the discrimination of different brands of gasoline and determination of solid tablets and pesticides with limits of detection in the range of 2.2 to 30.7 ng mL-1.
Collapse
Affiliation(s)
- Zhicheng Xiang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
| | - Yajun Zheng
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
| | - Yajie Huang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
| | - Jun Shi
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
| | - Zhiping Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
| |
Collapse
|
12
|
Baghernia H, Seyed Golestan SMJ, Hajiani S, Shokri B, Ghassempour A. Increasing DESI-MS Ion Signal by Plasma Treatment. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:907-916. [PMID: 35522602 DOI: 10.1021/jasms.1c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Many studies are focused on using plasma in mass spectrometry as an ionization source or postionization method. In this study, the effect of plasma treatment in the sample preparation step of desorption electrospray ionization (DESI) has been investigated. The plasma treatment of polar samples, including morphine, codeine, captopril, theophylline, fructose, and amphiphilic compounds such as phosphatidylethanolamine (PE) in E. coli bacteria, as well as nonpolar compounds, including thebaine, papaverine, and noscapine, has been followed for ionization efficiency in DESI technique. An atmospheric-pressure glow discharge plasma (GDP) along with the electrospray ionization technique is examined. Plasma treatment before ambient ionization has a dramatic effect on polar and nonpolar sample signals in DESI-TOF mass spectrometry. The intensity of the mass spectrum shows an increase of 1.9-3.4 times for polar compounds, 2.1-2.5 times for nonpolar compounds, and 3.0 times for PE in E. coli bacteria (N = 4). Plasma is a source of reactive atoms, molecules, ions, radicals, and ultraviolet radiation. Plasma surface treatment before DESI analysis by energetic species through momentum/energy transfer yields higher energy surface molecules, leading to more/easier desorption. Under optimal treatment conditions, an improved ion signal intensity is observed without any fragmentation, decomposition, or chemical changes. Ion signals are increased possibly by both increased ionization through protonation of molecules and enhanced subsequent desorption during DESI analysis.
Collapse
Affiliation(s)
- Hasan Baghernia
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran 1983969411, Iran
| | | | - Shahedeh Hajiani
- Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 1983969411, Iran
| | - Babak Shokri
- Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 1983969411, Iran
- Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin, Tehran 1983969411, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran 1983969411, Iran
| |
Collapse
|
13
|
Zhang D, Zeldes D, Gamez G. Three-Dimensional Mass Spectral Imaging of Polymers Via Laser-Assisted Micro-Pyrolysis Program with Flowing Atmospheric-Pressure Afterglow Ambient Mass Spectrometry. Anal Chem 2022; 94:3335-3342. [PMID: 35138081 DOI: 10.1021/acs.analchem.1c05413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, a novel diode laser-assisted micro-pyrolysis program (LAMP) technique is demonstrated and coupled with flowing atmospheric-pressure afterglow ambient mass spectrometry for instantaneously profiling polymers and polymer additives. Laser power modulation allows thermal separation of additives and different pyrolysis products, as shown through positive- and negative-mode high-resolution mass spectra and Kendrick mass defect plots of homopolymers, copolymers, polymer blends, and complex polymer samples. LAMP allows much faster temperature control through real-time duty cycle changes and gives significantly better spatial confinement compared to typical resistive heating pyrolysis approaches. Finally, MS imaging, with lateral and depth resolution, is demonstrated for a complex polymer pressure-sensitive adhesive tape sample.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - David Zeldes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Gerardo Gamez
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
14
|
Wang Y, Li Y, Wang X, Yu D, Nie Z. Rapid detection and classification of hongmu by atmospheric pressure ionization mass spectrometry. Analyst 2022; 147:4857-4865. [DOI: 10.1039/d2an01169g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A schematic diagram of atmospheric pressure glow discharge mass spectrometry (APGD-MS) for hongmu detection.
Collapse
Affiliation(s)
- Yiran Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuze Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dehua Yu
- Art and Design School, Beijing Institute of Technology, Beijing, 100081, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Oliva M, Zhang D, Prada-Tiedemann P, Gamez G. Laser assisted sampling vs direct desorption flowing atmospheric pressure afterglow mass spectrometry of complex polymer samples: Forensic implications for pressure sensitive tape chemical analysis. Talanta 2021; 231:122333. [PMID: 33965014 DOI: 10.1016/j.talanta.2021.122333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/29/2022]
Abstract
Flowing atmospheric pressure afterglow (FAPA) mass spectrometry (MS) is an easy-to-use, cost-effective, and potentially portable technique that allows direct desorption/ionization from samples with little-to-no sample preparation for real-time chemical analysis. However, it has limitations regarding analytes with low desorption efficiency, such as polymers. Here, laser assisted sampling (LAS) is developed and coupled to FAPA MS to allow access to a wider range of chemical information from polymer samples. This is achieved through laser-induced pyrolysis conditions that provide a much higher degree of spatio-temporal control compared to typical pyrolysis techniques. LAS FAPA MS, together with direct desorption FAPA MS, is implemented on pressure sensitive adhesive (PSA) tape samples, which are often found at crime scenes and recovered as forensic evidence. Comparative PSA tape examination is typically performed to assess any differences in the comparison of unknown and known samples and provide an evidentiary association between suspects and crime scenes in forensic applications. PSA tape samples from several manufacturers of duct, masking, and electrical tape were analyzed from the adhesive and backing side. Direct desorption FAPA provides top-surface selectivity and the tape mass spectra are dominated by more peaks at lower m/z, many of which correspond to polymer additives. LAS gives access to sampling from all of the tape layers and the FAPA mass spectra is extended to higher m/z, while polymer fragmentation patterns are evident. Principal components analysis (PCA) was implemented to assess the ability of each technique to distinguish and categorize identified tape classes within the sampled population. The complementary nature of the resulting mass spectra from direct desorption vs LAS FAPA was evident from the PCA as different tape brands sub-sets were discriminated by each technique. The differentiation obtained by combining both methods is already competitive, or better, than conventional techniques, with the additional benefits of AMS.
Collapse
Affiliation(s)
- Maureen Oliva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA; Department of Environmental Toxicology, Institute for Forensic Science, Texas Tech University, Lubbock, TX, 79414, USA
| | - Dong Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Paola Prada-Tiedemann
- Department of Environmental Toxicology, Institute for Forensic Science, Texas Tech University, Lubbock, TX, 79414, USA
| | - Gerardo Gamez
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA.
| |
Collapse
|
16
|
Zhang D, Latif M, Gamez G. Instantaneous Differentiation of Functional Isomers via Reactive Flowing Atmospheric Pressure Afterglow Mass Spectrometry. Anal Chem 2021; 93:9986-9994. [PMID: 34251188 DOI: 10.1021/acs.analchem.0c04867] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ambient mass spectrometry (AMS) allows direct desorption and ionization of analytes in real time with minimal-to-no sample preparation. However, it may present inadequate capabilities for differentiating isomers. Here, a reactive flowing atmospheric-pressure afterglow (reactive-FAPA) AMS source is developed for rapid isomer differentiation by derivatization of analytes in real time. The effects of the reactive-FAPA operating conditions on the reagent and product ions were studied and optimized for highly volatile and non-volatile model compounds with different carbonyl functional groups. In addition, two functional isomers of valproic acid (VPA) metabolites, 4-ene VPA and γ-valprolactone, are successfully differentiated for the first time by incorporating methylamine (MA) reagent vapor into the plasma effluent used for desorption/ionization. Reactive-FAPAMS for 4-ene VPA shows only detectable peaks of the protonated acylation product [M + MA-H2O + H]+, while for γ-valprolactone, it shows detectable peaks for both protonated acylation product [M + MA-H2O + H]+ and protonated intermediate [M + MA + H]+. A method for quantitative characterization of mixtures of 4-ene VPA and γ-valprolactone is also developed and validated. In addition, reactive-FAPAMS also shows better detection sensitivity compared to nonreactive-FAPAMS for some larger analyte types, such as UV filters and steroids. The limit of detection (LOD) of pregnenolone acetate in reactive-FAPAMS is 310 ng/mL, which is about 10 times better than its LOD in nonreactive-FAPA.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Mohsen Latif
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Gerardo Gamez
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
17
|
Latif M, Zhang D, Gamez G. Flowing atmospheric-pressure afterglow drift tube ion mobility spectrometry. Anal Chim Acta 2021; 1163:338507. [PMID: 34024423 DOI: 10.1016/j.aca.2021.338507] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
In this work, the flowing atmospheric-pressure afterglow (FAPA) ambient desorption/ionization source has been coupled with stand-alone Drift Tube Ion Mobility Spectrometry (DTIMS) for the first time. A tip repeller electrode, modified to allow higher bias potential still below the Townsend's breakdown, was implemented at the FAPA/DTIMS interface to overcome the opposing potentials and facilitate ion transmission. The effect of the lab-built DTIMS and FAPA's operating conditions (such as plasma voltage, current, gas flow rate, repeller's potential and positioning, FAPA orientation, etc.) on the signal of selected analytes was studied, for both gas-phase injection and desorption. The FAPA reactant ion peak (RIP) reduced mobility coefficient (K0) corresponds to protonated water clusters (H2O)nH+. The FAPA-DTIMS spectra of several selected compounds showed that their K0 agrees with literature values. Moreover, quantitative characterization of acetaminophen and 2,6-di-tert-butylpyridine (2,6-DTBP) based on desorption or gas-phase injection yield limits of detection (LODs) of 0.03 μg and 18 ppb, respectively.
Collapse
Affiliation(s)
- Mohsen Latif
- Department of Chemistry and Biochemistry, Texas Tech University, TX, 79409-1061, Lubbock, USA
| | - Dong Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, TX, 79409-1061, Lubbock, USA
| | - Gerardo Gamez
- Department of Chemistry and Biochemistry, Texas Tech University, TX, 79409-1061, Lubbock, USA.
| |
Collapse
|
18
|
Aghaei M, Bogaerts A. Flowing Atmospheric Pressure Afterglow for Ambient Ionization: Reaction Pathways Revealed by Modeling. Anal Chem 2021; 93:6620-6628. [PMID: 33877800 DOI: 10.1021/acs.analchem.0c04076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the plasma chemistry in a helium flowing atmospheric pressure afterglow (FAPA) used for analytical spectrometry, by means of a quasi-one-dimensional (1D) plasma chemical kinetics model. We study the effect of typical impurities present in the feed gas, as well as the afterglow in ambient humid air. The model provides the species density profiles in the discharge and afterglow regions and the chemical pathways. We demonstrate that H, N, and O atoms are formed in the discharge region, while the dominant reactive neutral species in the afterglow are O3 and NO. He* and He2* are responsible for Penning ionization of O2, N2, H2O, H2, and N, and especially O and H atoms. Besides, He2+ also contributes to ionization of N2, O2, H2O, and O through charge transfer reactions. From the pool of ions created in the discharge, NO+ and (H2O)3H+ are the dominant ions in the afterglow. Moreover, negatively charged clusters, such as NO3H2O- and NO2H2O-, are formed and their pathway is discussed as well. Our model predictions are in line with earlier observations in the literature about the important reagent ions and provide a comprehensive overview of the underlying pathways. The model explains in detail why helium provides a high analytical sensitivity because of high reagent ion formation by both Penning ionization and charge transfer. Such insights are very valuable for improving the analytical performance of this (and other) ambient desorption/ionization source(s).
Collapse
Affiliation(s)
- Maryam Aghaei
- Research group PLASMANT, Chemistry Department, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Annemie Bogaerts
- Research group PLASMANT, Chemistry Department, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
19
|
He F, Yin J, Wang T, Pu J, Dai J, Zhao Z, Duan Y. Synergetic effect of laser and micro-fabricated glow discharge plasma in a new ion source for ambient mass spectrometry. Talanta 2021; 225:121847. [PMID: 33592690 DOI: 10.1016/j.talanta.2020.121847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
A new ambient ionization technique named laser ablation micro-fabricated glow discharge plasma (LA-MFGDP) was developed for mass spectrometry in this study. This technique used low energy laser for sample ablation and ionized sample aerosol with MFGDP in sequence. The combination of laser ablation and MFGDP exhibited a synergetic effect that significantly improved the performance of MFGDP. Experimental results showed that MFGDP dominated the ionization process while laser played the role of desorption in LA-MFGDP. [M+H]+ and M+ proved that proton transfer reactions and charge transfer reactions were involved in the ionization process, respectively, indicating that the ionization character was the same as MFGDP. LA-MFGDP could analyze less volatile samples that were unable to be detected by MFGDP because laser significantly improved the ionization capability of MFGDP. Strong ion signals were obtained by LA-MFGDP with low sample consumption. The limits of detection (LODs) of LA-MFGDP was as low as three orders of magnitude than that of MFGDP, which demonstrated that LA-MFGDP possessed an outstanding advantage in detecting trace substances. LA-MFGDP was successfully applied to detect pharmaceutical tablets without any pretreatment. Benefited from the excellent performance, LA-MFGDP offers great potential in broadening the application of ambient mass spectrometry.
Collapse
Affiliation(s)
- Feiyao He
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China
| | - Jinwei Yin
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China
| | - Tianzhi Wang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China
| | - Juan Pu
- College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Jianxiong Dai
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China
| | - Zhongjun Zhao
- College of Chemical Engineering, Sichuan University, Chengdu, 610064, PR China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
20
|
Davis EJ, Walker D, Gibney M, Clowers BH. Optical and mass spectral characterization of the electrospray ionization/corona discharge ionization interface. Talanta 2021; 224:121870. [PMID: 33379080 DOI: 10.1016/j.talanta.2020.121870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 11/24/2022]
Abstract
The interchange between electrospray ionization (ESI) and corona discharge ionization (CDI) with respect to applied bias on the needle is customarily placed at the point where light production begins at the tip of the needle. If a liquid sample is flowing through a needle that is observed to produce light, the ionization process is assumed to be harsher and the term coronaspray ionization has been coined to describe this hybrid ionization mechanism. In this work, the transition between ESI and CDI is investigated with respect to applied bias through optical and mass spectrometric measurements. As a function of applied bias potential, the optical signal at the tip of the needle was recorded simultaneously with the resultant ionization products. In this effort, the production of ions from an electrospray ionization needle has been demonstrated to produce light regardless of bias if ions are also formed. With this understanding, an ESI/CDI needle was designed to allow the bias to be temporarily pulsed over the 'onset' voltage necessary for ionization and the rise and decay of the optical signal was measured. Positive mode CDI onset to a stable discharge state within 0.05 ms, while positive ESI required 1.9 ms to reach a stable condition. In the negative mode, the stability of the ionization process was highly variable in both ESI and CDI modes, though CDI was generally faster to reach the stable mode of operation. When the resultant ions were investigated, the effect of increased bias on an ESI needle was found to be species-dependent. Recognizing that the range of compounds probed was limited, for those examined, it appears that stable, non-labile species may be investigated via ESI under extremely high biases while labile species demonstrate a narrow range of stable biases before significant fragmentation occurs.
Collapse
Affiliation(s)
- Eric J Davis
- Whitworth University, Department of Chemistry, Spokane, WA, 99251, USA.
| | - David Walker
- Azusa Pacific University, Department of Biology and Chemistry, Azusa, CA, 91702, USA
| | - Molly Gibney
- Azusa Pacific University, Department of Biology and Chemistry, Azusa, CA, 91702, USA
| | - Brian H Clowers
- Washington State University, Department of Chemistry, Pullman, WA, 99164, USA
| |
Collapse
|
21
|
Beneito-Cambra M, Gilbert-López B, Moreno-González D, Bouza M, Franzke J, García-Reyes JF, Molina-Díaz A. Ambient (desorption/ionization) mass spectrometry methods for pesticide testing in food: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4831-4852. [PMID: 33000770 DOI: 10.1039/d0ay01474e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ambient mass spectrometry refers to the family of techniques that allows ions to be generated from condensed phase samples under ambient conditions and then, collected and analysed by mass spectrometry. One of their key advantages relies on their ability to allow the analysis of samples with minimal to no sample workup. This feature maps well to the requirements of food safety testing, in particular, those related to the fast determination of pesticide residues in foods. This review discusses the application of different ambient ionization methods for the qualitative and (semi)quantitative determination of pesticides in foods, with the focus on different specific methods used and their ionization mechanisms. More popular techniques used are those commercially available including desorption electrospray ionization (DESI-MS), direct analysis on real time (DART-MS), paper spray (PS-MS) and low-temperature plasma (LTP-MS). Several applications described with ambient MS have reported limits of quantitation approaching those of reference methods, typically based on LC-MS and generic sample extraction procedures. Some of them have been combined with portable mass spectrometers thus allowing "in situ" analysis. In addition, these techniques have the ability to map surfaces (ambient MS imaging) to unravel the distribution of agrochemicals on crops.
Collapse
Affiliation(s)
- Miriam Beneito-Cambra
- Analytical Chemistry Research Group (FQM-323), Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaén, Spain.
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhu SZ, Zhang L, Zhang J, Guo YL. Arc Plasma-Based Dissociation Device: Fingerprinting Mass Spectrometric Analysis Realized at Atmospheric Condition. Anal Chem 2020; 92:14633-14639. [DOI: 10.1021/acs.analchem.0c03127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Su-zhen Zhu
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Li Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jing Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yin-long Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
23
|
Vogel P, Lazarou C, Gazeli O, Brandt S, Franzke J, Moreno-González D. Study of Controlled Atmosphere Flexible Microtube Plasma Soft Ionization Mass Spectrometry for Detection of Volatile Organic Compounds as Potential Biomarkers in Saliva for Cancer. Anal Chem 2020; 92:9722-9729. [PMID: 32579344 DOI: 10.1021/acs.analchem.0c01063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new soft ionization device for mass spectrometry is presented using the flexible microtube plasma under controlled atmospheric conditions. The controlled atmosphere flexible microtube plasma consists of the plasma source itself connected to a gas chromatograph and a mass spectrometer using a borosilicate glass cross piece. Controlled atmosphere, for example, nitrogen and/or an oxygen mixture, is introduced to the system to create a clean ionization environment. Reproducibility issues are discussed, and solutions are presented manipulating the gas flow in the cross piece. A proof of concept is shown using a ketone mixture introduced to the mass spectrometer to optimize atmospheric conditions. Furthermore, application of the presented device for the sensitive and nonfragmenting ionization of volatile organic biomarkers relevant for cancer is carried out. Sample treatment for human saliva is described, and relevant candidate biomarkers are measured in the saliva matrix, showing a very good ionization efficiency and neglectable matrix effects with limits of detection below 80 ppt.
Collapse
Affiliation(s)
- Pascal Vogel
- ISAS-Leibniz-Institut für Analytische Wissenschaften, Bunsen Kirchhoff Strasse 11, Dortmund 44139, Germany
| | - Constantinos Lazarou
- FOSS Research Centre for Sustainable Energy, PV Technology, University of Cyprus, 75 Kallipoleos Street, Nicosia 1678, Cyprus
| | - Odhisea Gazeli
- FOSS Research Centre for Sustainable Energy, PV Technology, University of Cyprus, 75 Kallipoleos Street, Nicosia 1678, Cyprus
| | - Sebastian Brandt
- ISAS-Leibniz-Institut für Analytische Wissenschaften, Bunsen Kirchhoff Strasse 11, Dortmund 44139, Germany
| | - Joachim Franzke
- ISAS-Leibniz-Institut für Analytische Wissenschaften, Bunsen Kirchhoff Strasse 11, Dortmund 44139, Germany
| | - David Moreno-González
- ISAS-Leibniz-Institut für Analytische Wissenschaften, Bunsen Kirchhoff Strasse 11, Dortmund 44139, Germany
| |
Collapse
|
24
|
Wang Y, Jin Q, Shiea J, Sun W. Wire Desorption Combined with Electrospray Ionization Mass Spectrometry: Direct Analysis of Small Organic and Large Biological Compounds. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1656-1664. [PMID: 32559077 DOI: 10.1021/jasms.0c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel atmospheric pressure ionization mass spectrometry based on wire desorption and electrospray ionization (WD-ESI) for direct analysis was developed to characterize chemical compounds with different polarities and thermal stabilities at atmospheric pressure. This technique is a variant of the thermal desorption electrospray ion source developed by Shiea et al. One large improvement is that the heating speed (>500 °C/s) of the thermal desorption in this work is extremely fast, using a self-heating metal wire, with which sample solution can splash from the surface to form small droplets and thus the analytes can be protected from thermal decomposition. With this feature, we have successfully achieved soft ionization of highly polar organic and biological compounds such as aflatoxin, small peptides, and even large proteins from complex matrices. The simple structure and self-cleaning capability of the WD-ESI source make it ideal for on-site screening in various applications such as food safety and biodrug testing, especially when coupled with a transportable mass spectrometer.
Collapse
Affiliation(s)
- Yuanlong Wang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, People's Republic of China
| | - Qiao Jin
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, People's Republic of China
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Wenjian Sun
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, People's Republic of China
| |
Collapse
|
25
|
Zhao Z, Pu J, Dai J, He F, Ren B, Zhang C, Duan Y. A mechanism study of positive ionization processes in flowing atmospheric-pressure afterglow (FAPA) ambient ion source with controlled plasma and ambient conditions. Talanta 2019; 205:120090. [PMID: 31450470 DOI: 10.1016/j.talanta.2019.06.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 01/10/2023]
Abstract
Although plasma based ambient desorption/ionization (ADI) sources have been widely used for direct analysis of complex samples, mass spectrometric imaging, high throughput screening etc., the ionization mechanism of plasma-based ADI remains a mystery by now. In this report, a targeted study was conducted aiming at a better understanding of the ionization processes of plasma-based ambient desorption ionization source. As a representative of ambient desorption ionization source, an FAPA source was used and modified as a test platform to control the plasma discharge parameters and ambient ionization environment such as discharge gases, environmental gases and sampling conditions. Based on the ionization results from different ambient ionization conditions, a new mechanism was proposed to reveal the nature of regent ion production of FAPA. At the same time, the effect of buffer gas was investigated. For the first time, the multi-clustered hydronium ions formed by the massive water vapor in the air were explored to clarify reasons for the occurrence of selective ionization and the factors affecting ionization efficiency in such complex events. In addition, the formation of molecular ions and relevant reagent ions was speculated based on experimental observations.
Collapse
Affiliation(s)
- Zhongjun Zhao
- School of Chemical Engineering, Chengdu, 610064, PR China
| | - Juan Pu
- College of Chemistry, Chengdu, 610064, PR China
| | - Jianxiong Dai
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China
| | - Feiyao He
- School of Manufacturing Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Biao Ren
- School of Manufacturing Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Chaofan Zhang
- School of Manufacturing Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Yixiang Duan
- School of Manufacturing Science and Engineering, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
26
|
Kuhlmann C, Shelley JT, Engelhard C. Plasma-Based Ambient Desorption/Ionization Mass Spectrometry for the Analysis of Liquid Crystals Employed in Display Devices. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2101-2113. [PMID: 31385257 DOI: 10.1007/s13361-019-02280-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Liquid-crystal displays (LCDs) are the most frequently used display technology worldwide these days. Due to the rather complex manufacturing process and purity requirements for the chemicals used, quality control and display failure analysis are important analytical tasks. Currently, the state-of-the-art techniques (e.g., high-performance liquid chromatography (HPLC), gas chromatography (GC) coupled to mass spectrometry (MS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), or high-resolution microscopy) are costly and time-consuming. Hence, a new pathway to precisely analyze liquid-crystalline materials and LCDs in their native state is reported. A new approach for direct analysis via plasma-based ambient desorption/ionization mass spectrometry (ADI-MS) offers an inexpensive and faster alternative. In this study, direct analysis in real time (DART), the low-temperature plasma (LTP) probe, and flowing atmospheric-pressure afterglow (FAPA) ADI sources coupled to high-resolution mass spectrometry (HR-MS) are compared based on their capabilities and performance for liquid-crystal analysis. These sources enable direct analyte desorption from a sample surface at ambient conditions and ionize the vaporized analyte molecules in a subsequent step. Primarily, the ionization capabilities of the three ADI sources are compared for individual liquid-crystal standards, mixtures of liquid crystals (LCs), and complex liquid crystal/additive mixtures applied in commercially available LCDs. Furthermore, direct surface analysis from a glass substrate is also performed with ADI-MS to compare their applicability to this type of sample matrix.
Collapse
Affiliation(s)
- Christopher Kuhlmann
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Jacob T Shelley
- Department of Chemistry and Biochemistry, Kent State University, 1175 Risman Drive, Kent, OH, 44242, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA
| | - Carsten Engelhard
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany.
- Center for Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany.
| |
Collapse
|
27
|
Fast screening and quantitative mass spectral imaging of thin-layer chromatography plates with flowing atmospheric-pressure afterglow high-resolution mass spectrometry. Anal Bioanal Chem 2019; 411:6213-6225. [DOI: 10.1007/s00216-019-02013-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 01/21/2023]
|
28
|
Labuz K, Adamowicz P, Kała M, Pyrc K, Reszke E, Mielczarek P, Silberring J, Smoluch M. Detection of legal highs in the urine of methadone-treated patient by LC-MS. Basic Clin Pharmacol Toxicol 2019; 125:253-258. [PMID: 31188528 DOI: 10.1111/bcpt.13270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/02/2019] [Indexed: 11/30/2022]
Abstract
Urine tests are the commonly accepted methods to control abstinence and adherence to treatment of patients who undergo methadone maintenance treatment (MMT). Depending on various national guidelines and accessibility of techniques, only selected psychoactive substances are routinely tested in urine of MMT patients. In general, they belong to the few groups of compounds: THC, cocaine, amphetamines, opiates, PCP and benzodiazepines. It is, however, well known that patients enrolled in such replacement programmes take psychoactive substances that are not routinely detected by the toxicology laboratories, to escape unexpected tests. Here, we report semiquantitative detection of legal highs taken by the MMT patient, using high-pressure liquid chromatography coupled to the flowing atmospheric pressure afterglow ion source (LC-FAPA-MS). To demonstrate effectivity of this technique, the data were confirmed by quantitative analysis using LC-ESI-MS/MS. In the analysed sample of MMT patient, a mixture of psychoactive compounds was found, namely 3-MMC (3-methylmethcathinone), pentedrone and methcathinone and determined at the concentrations of 670; 50 and 0.2 µg/mL, respectively. Such fast analytical technique may be useful for the efficient control of substances taken intentionally by MMT patients.
Collapse
Affiliation(s)
- Krzysztof Labuz
- Nordhemskliniken, Unit of Addiction, Sahlgrenska University Hospital, Göteborg, Sweden.,The Rydygier Hospital in Krakow, Addiction Outpatient Clinic, Krakow, Poland
| | | | - Maria Kała
- Cracow School of Health Promotion, Kraków, Poland
| | - Krzysztof Pyrc
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Przemyslaw Mielczarek
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland.,Laboratory of Proteomics and Mass Spectrometry, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland.,Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Marek Smoluch
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland
| |
Collapse
|
29
|
Kulyk DS, Sahraeian T, Wan Q, Badu-Tawiah AK. Reactive Olfaction Ambient Mass Spectrometry. Anal Chem 2019; 91:6790-6799. [PMID: 31030519 DOI: 10.1021/acs.analchem.9b00857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chemical ionization of organic compounds with negligible vapor pressures (VP) is achieved at atmospheric pressure when the proximal sample is exposed to corona discharge. The vapor-phase analyte is produced through a reactive olfaction process, which is determined to include electrostatic charge induction in the proximal condensed-phase sample, resulting in the liberation of free particles. With no requirement for physical contact, a new contained nano-atmospheric pressure chemical ionization (nAPCI) source was developed that allowed direct mass spectrometry analysis of complex mixtures at a sample consumption rate less than nmol/min. The contained nAPCI source was applied to analyze a wide range of samples including the detection of 1 ng/mL cocaine in serum and 200 pg/mL caffeine in raw urine, as well as the differentiation of chemical composition of perfumes and beverages. Polar (e.g., carminic acid; estimated VP 5.1 × 10-25 kPa) and nonpolar (e.g., vitamin D2; VP 8.5 × 10-11 kPa) compounds were successfully ionized by the contained nAPCI ion source under ambient conditions, with the corresponding ion types of 78 other organic compounds characterized.
Collapse
Affiliation(s)
- Dmytro S Kulyk
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Taghi Sahraeian
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Qiongqiong Wan
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| |
Collapse
|
30
|
Bierstedt A, You Y, van Wasen S, Bosc-Bierne G, Weller M, Riedel J. Laser-Induced Microplasma as an Ambient Ionization Approach for the Mass-Spectrometric Analysis of Liquid Samples. Anal Chem 2019; 91:5922-5928. [DOI: 10.1021/acs.analchem.9b00329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andreas Bierstedt
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Yi You
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Sebastian van Wasen
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Gaby Bosc-Bierne
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Michael Weller
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Jens Riedel
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| |
Collapse
|
31
|
Vogel P, Marggraf U, Brandt S, García-Reyes JF, Franzke J. Analyte-Tailored Controlled Atmosphere Improves Dielectric Barrier Discharge Ionization Mass Spectrometry Performance. Anal Chem 2019; 91:3733-3739. [PMID: 30672695 DOI: 10.1021/acs.analchem.9b00112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Plasma sources in atmospheric pressure soft-ionization mass spectrometry have gained significant interest in recent years. As many of these sources are used under ambient air conditions, their interaction with the surrounding atmosphere plays an important role in the ionization pathway. This study focuses on the interaction between the plasma source and the surrounding atmosphere by connecting the plasma source to the mass spectrometer using a 2 mm ID closed reactant capillary supplied by a reactant gas up to 500 mL per minute to gain a controlled atmosphere. Different reactant gases (Ar, He, O2, and N2) and reactant gas mixtures are tested with regard to the DBDI performance and then used to improve the ionization efficiency. Tailoring the controlled atmosphere for a certain analyte, for example, perfluorinated compounds, leads to significantly improved limits of detection up to 2 ppb.
Collapse
Affiliation(s)
- Pascal Vogel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. , Bunsen-Kirchhoff-Straße 11 , 44139 Dortmund , Germany
| | - Ulrich Marggraf
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. , Bunsen-Kirchhoff-Straße 11 , 44139 Dortmund , Germany
| | - Sebastian Brandt
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. , Bunsen-Kirchhoff-Straße 11 , 44139 Dortmund , Germany
| | - Juan F García-Reyes
- Analytical Chemistry Research Group , University of Jaén , Campus Las Lagunillas , 23071 Jaén , Spain
| | - Joachim Franzke
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. , Bunsen-Kirchhoff-Straße 11 , 44139 Dortmund , Germany
| |
Collapse
|
32
|
Kiontke A, Billig S, Birkemeyer C. Response in Ambient Low Temperature Plasma Ionization Compared to Electrospray and Atmospheric Pressure Chemical Ionization for Mass Spectrometry. Int J Anal Chem 2018; 2018:5647536. [PMID: 30723503 PMCID: PMC6339754 DOI: 10.1155/2018/5647536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
Modern technical evolution made mass spectrometry (MS) an absolute must for analytical chemistry in terms of application range, detection limits and speed. When it comes to mass spectrometric detection, one of the critical steps is to ionize the analyte and bring it into the gas phase. Several ionization techniques were developed for this purpose among which electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) are two of the most frequently applied atmospheric pressure methods to ionize target compounds from liquid matrices or solutions. Moreover, recent efforts in the emerging field of "ambient" MS enable the applicability of newly developed atmospheric pressure techniques to solid matrices, greatly simplifying the analysis of samples with MS and anticipating, to ease the required or even leave out any sample preparation and enable analysis at ambient conditions, outside the instrument itself. These developments greatly extend the range of applications of modern mass spectrometry (MS). Ambient methods comprise many techniques; a particular prominent group is, however, the plasma-based methods. Although ambient MS is a rather new field of research, the interest in further developing the corresponding techniques and enhancing their performance is very strong due to their simplicity and often low cost of manufacturing. A precondition for improving the performance of such ion sources is a profound understanding how ionization works and which parameters determine signal response. Therefore, we review relevant compound characteristics for ionization with the two traditional methods ESI and APCI and compare those with one of the most frequently employed representatives of the plasma-based methods, i.e., low temperature plasma ionization. We present a detailed analysis in which compound characteristics are most beneficial for the response of aromatic nitrogen-containing compounds with these three methods and provide evidence that desorption characteristics appear to have the main common, general impact on signal response. In conclusion, our report provides a very useful resource to the optimization of instrumental conditions with respect to most important requirements of the three ionization techniques and, at the same time, for future developments in the field of ambient ionization.
Collapse
Affiliation(s)
- Andreas Kiontke
- Research Group of Mass Spectrometry at the Faculty of Chemistry and Mineralogy, University of Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Susan Billig
- Research Group of Mass Spectrometry at the Faculty of Chemistry and Mineralogy, University of Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Claudia Birkemeyer
- Research Group of Mass Spectrometry at the Faculty of Chemistry and Mineralogy, University of Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| |
Collapse
|
33
|
Lu H, Zhang H, Chingin K, Xiong J, Fang X, Chen H. Ambient mass spectrometry for food science and industry. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Analyte and matrix evaporability - key players of low-temperature plasma ionization for ambient mass spectrometry. Anal Bioanal Chem 2018; 410:5123-5130. [PMID: 29951773 DOI: 10.1007/s00216-018-1152-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 10/28/2022]
Abstract
The introduction of ambient ionization at atmospheric pressure for mass spectrometry (AI-MS) attracted the interest of many researchers in the field and various ionization techniques have been described in recent years that allow a quick and easy-to-handle analysis of samples under ambient conditions without or with only minor sample preparation. Among those, plasma-based techniques including the low-temperature plasma probe require very little resources thereby providing great potential for implementation in mobile analytical devices. However, systematic studies on signal responsiveness with this technique, such as the influence of the analyte and matrix characteristics on relative signal intensity, are still rare. Therefore, we used a low-temperature plasma source based on dielectric barrier discharge with helium as process gas to assess influencing factors on signal intensity in mass spectrometry. Among 12 tested molecular descriptors, in particular a low vaporization enthalpy and a large molecular nonpolar surface area improve the relative signal intensity. In addition, we show that the impact of compound characteristics strongly outperforms the influence of simple sample matrices such as different organic solvents and water, with a weak trend that volatile solvents tend to decrease the signal responsiveness of the analytes. However, several specific solvent-analyte interactions occurred, which have to be considered in targeted applications of this method. Our results will help further in improving the implementation and standardization of low-temperature plasma ionization for ambient mass spectrometry and understanding the requirements and selectivity of this technique. Graphical abstract Influencing factors (analyte and matrix characteristics) on signal intensity in dielectric-barrier discharge plasma for ionization in mass spectrometry.
Collapse
|
35
|
Kiontke A, Holzer F, Belder D, Birkemeyer C. The requirements for low-temperature plasma ionization support miniaturization of the ion source. Anal Bioanal Chem 2018; 410:3715-3722. [PMID: 29651530 DOI: 10.1007/s00216-018-1033-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/23/2018] [Accepted: 03/19/2018] [Indexed: 01/12/2023]
Abstract
Ambient ionization mass spectrometry (AI-MS), the ionization of samples under ambient conditions, enables fast and simple analysis of samples without or with little sample preparation. Due to their simple construction and low resource consumption, plasma-based ionization methods in particular are considered ideal for use in mobile analytical devices. However, systematic investigations that have attempted to identify the optimal configuration of a plasma source to achieve the sensitive detection of target molecules are still rare. We therefore used a low-temperature plasma ionization (LTPI) source based on dielectric barrier discharge with helium employed as the process gas to identify the factors that most strongly influence the signal intensity in the mass spectrometry of species formed by plasma ionization. In this study, we investigated several construction-related parameters of the plasma source and found that a low wall thickness of the dielectric, a small outlet spacing, and a short distance between the plasma source and the MS inlet are needed to achieve optimal signal intensity with a process-gas flow rate of as little as 10 mL/min. In conclusion, this type of ion source is especially well suited for downscaling, which is usually required in mobile devices. Our results provide valuable insights into the LTPI mechanism; they reveal the potential to further improve its implementation and standardization for mobile mass spectrometry as well as our understanding of the requirements and selectivity of this technique. Graphical abstract Optimized parameters of a dielectric barrier discharge plasma for ionization in mass spectrometry. The electrode size, shape, and arrangement, the thickness of the dielectric, and distances between the plasma source, sample, and MS inlet are marked in red. The process gas (helium) flow is shown in black.
Collapse
Affiliation(s)
- Andreas Kiontke
- Institute of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103, Leipzig, Germany.
| | - Frank Holzer
- Department of Environmental Engineering, Helmholtz-Centre for Environmental Research, Permoser Str. 15, 04318, Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103, Leipzig, Germany
| | - Claudia Birkemeyer
- Institute of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103, Leipzig, Germany.
| |
Collapse
|
36
|
Badal SP, Ratcliff TD, You Y, Breneman CM, Shelley JT. Formation of Pyrylium from Aromatic Systems with a Helium:Oxygen Flowing Atmospheric Pressure Afterglow (FAPA) Plasma Source. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1013-1020. [PMID: 28361384 DOI: 10.1007/s13361-017-1625-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 06/07/2023]
Abstract
The effects of oxygen addition on a helium-based flowing atmospheric pressure afterglow (FAPA) ionization source are explored. Small amounts of oxygen doped into the helium discharge gas resulted in an increase in abundance of protonated water clusters by at least three times. A corresponding increase in protonated analyte signal was also observed for small polar analytes, such as methanol and acetone. Meanwhile, most other reagent ions (e.g., O2+·, NO+, etc.) significantly decrease in abundance with even 0.1% v/v oxygen in the discharge gas. Interestingly, when analytes that contained aromatic constituents were subjected to a He:O2-FAPA, a unique (M + 3)+ ion resulted, while molecular or protonated molecular ions were rarely detected. Exact-mass measurements revealed that these (M + 3)+ ions correspond to (M - CH + O)+, with the most likely structure being pyrylium. Presence of pyrylium-based ions was further confirmed by tandem mass spectrometry of the (M + 3)+ ion compared with that of a commercially available salt. Lastly, rapid and efficient production of pyrylium in the gas phase was used to convert benzene into pyridine. Though this pyrylium-formation reaction has not been shown before, the reaction is rapid and efficient. Potential reactant species, which could lead to pyrylium formation, were determined from reagent-ion mass spectra. Thermodynamic evaluation of reaction pathways was aided by calculation of the formation enthalpy for pyrylium, which was found to be 689.8 kJ/mol. Based on these results, we propose that this reaction is initiated by ionized ozone (O3+·), proceeds similarly to ozonolysis, and results in the neutral loss of the stable CHO2· radical. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sunil P Badal
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA
| | - Tyree D Ratcliff
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Yi You
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA
| | - Curt M Breneman
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jacob T Shelley
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| |
Collapse
|
37
|
Zhao W, Zhang Q, Lu B, Sun S, Zhang S, Zhang J. Rapid Determination of Six Low Molecular Carbonyl Compounds in Tobacco Smoke by the APCI-MS/MS Coupled to Data Mining. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:8260860. [PMID: 28512594 PMCID: PMC5415865 DOI: 10.1155/2017/8260860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/14/2017] [Accepted: 02/15/2017] [Indexed: 06/07/2023]
Abstract
A simple method was established for the rapid determination of low molecular carbonyl compounds by the combination of atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) and data mining. The ionization was carried out in positive mode, and six low molecular carbonyl compounds of acrolein, acetone, propionaldehyde, crotonaldehyde, butanone, and butyraldehyde were analyzed by both full scan mode and daughter scan mode. To overcome the quantitative difficulties from isomer of acetone/propionaldehyde and butanone/butyraldehyde, the quantitation procedure was performed with the characteristic ion of [CH3O]+ under CID energy of 5 and 15 eV. Subsequently, the established method was successfully applied to analysis of six low molecular carbonyl compounds in tobacco smoke with analytical period less than four minutes. The contents of acrolein, acetone, propionaldehyde, crotonaldehyde, butanone, and butyraldehyde for a cigarette were about 63 ± 5.8, 325 ± 82, 55 ± 9.7, 11 ± 1.4, 67 ± 5.9, and 12 ± 1.8 μg/cig, respectively. The experimental results indicated that the established method had the potential application in rapid determination of low molecular carbonyl compounds.
Collapse
Affiliation(s)
- Wuduo Zhao
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou 450001, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qidong Zhang
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou 450001, China
| | - Binbin Lu
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou 450001, China
| | - Shihao Sun
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou 450001, China
| | - Shusheng Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jianxun Zhang
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou 450001, China
| |
Collapse
|
38
|
Martínez-Jarquín S, Winkler R. Low-temperature plasma (LTP) jets for mass spectrometry (MS): Ion processes, instrumental set-ups, and application examples. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Yuill EM, Baker LA. Electrochemical Aspects of Mass Spectrometry: Atmospheric Pressure Ionization and Ambient Ionization for Bioanalysis. ChemElectroChem 2017. [DOI: 10.1002/celc.201600751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elizabeth M. Yuill
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington, Indiana 47405 USA
| | - Lane A. Baker
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington, Indiana 47405 USA
| |
Collapse
|
40
|
Ambient Desorption/Ionization. Mass Spectrom (Tokyo) 2017. [DOI: 10.1007/978-3-319-54398-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
41
|
Pei J, Hsu CC, Wang Y, Yu K. Corona discharge-induced reduction of quinones in negative electrospray ionization mass spectrometry. RSC Adv 2017. [DOI: 10.1039/c7ra08523k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quinone reduction during negative ESI MS was illustrated to be closely related to corona discharge (CD).
Collapse
Affiliation(s)
- Jiying Pei
- School of Marine Sciences
- Guangxi University
- Nanning
- P. R. China
- Coral Reef Research Center of China
| | - Cheng-Chih Hsu
- Department of Chemistry
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Yinghui Wang
- School of Marine Sciences
- Guangxi University
- Nanning
- P. R. China
- Coral Reef Research Center of China
| | - Kefu Yu
- School of Marine Sciences
- Guangxi University
- Nanning
- P. R. China
- Coral Reef Research Center of China
| |
Collapse
|
42
|
Brandt S, Klute FD, Schütz A, Franzke J. Dielectric barrier discharges applied for soft ionization and their mechanism. Anal Chim Acta 2017; 951:16-31. [DOI: 10.1016/j.aca.2016.10.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 01/17/2023]
|
43
|
Atmospheric-pressure solution-cathode glow discharge: A versatile ion source for atomic and molecular mass spectrometry. Anal Chim Acta 2017; 950:119-128. [DOI: 10.1016/j.aca.2016.10.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 01/12/2023]
|
44
|
Ellis WC, Lewis CR, Openshaw AP, Farnsworth PB. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1539-1549. [PMID: 27380389 DOI: 10.1007/s13361-016-1432-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/06/2016] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Wade C Ellis
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Charlotte R Lewis
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Anna P Openshaw
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Paul B Farnsworth
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
45
|
Keelor JD, Farnsworth PB, L Weber A, Abbott-Lyon H, Fernández FM. Multimodal Vacuum-Assisted Plasma Ion (VaPI) Source with Transmission Mode and Laser Ablation Sampling Capabilities. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:897-907. [PMID: 26883531 DOI: 10.1007/s13361-016-1354-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
We have developed a multimodal ion source design that can be configured on the fly for various analysis modes, designed for more efficient and reproducible sampling at the mass spectrometer atmospheric pressure (AP) interface in a number of different applications. This vacuum-assisted plasma ionization (VaPI) source features interchangeable transmission mode and laser ablation sampling geometries. Operating in both AC and DC power regimes with similar results, the ion source was optimized for parameters including helium flow rate and gas temperature using transmission mode to analyze volatile standards and drug tablets. Using laser ablation, matrix effects were studied, and the source was used to monitor the products of model prebiotic synthetic reactions.
Collapse
Affiliation(s)
- Joel D Keelor
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Paul B Farnsworth
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | | | - Heather Abbott-Lyon
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
46
|
Badal SP, Michalak SD, Chan GCY, You Y, Shelley JT. Tunable Ionization Modes of a Flowing Atmospheric-Pressure Afterglow (FAPA) Ambient Ionization Source. Anal Chem 2016; 88:3494-503. [DOI: 10.1021/acs.analchem.5b03434] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sunil P. Badal
- Department
of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | | | - George C.-Y. Chan
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yi You
- Department
of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Jacob T. Shelley
- Department
of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
47
|
Bouza M, Orejas J, López-Vidal S, Pisonero J, Bordel N, Pereiro R, Sanz-Medel A. A flowing atmospheric pressure afterglow as an ion source coupled to a differential mobility analyzer for volatile organic compound detection. Analyst 2016; 141:3437-43. [DOI: 10.1039/c5an01938a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A FAPA is a good alternative to traditional ion mobility ionization sources.
Collapse
Affiliation(s)
- Marcos Bouza
- Department of Physical and Analytical Chemistry
- Faculty of Chemistry
- University of Oviedo
- 33006 Oviedo
- Spain
| | - Jaime Orejas
- Department of Physics
- Faculty of Science
- University of Oviedo
- 33007 Oviedo
- Spain
| | | | - Jorge Pisonero
- Department of Physics
- Faculty of Science
- University of Oviedo
- 33007 Oviedo
- Spain
| | - Nerea Bordel
- Department of Physics
- Faculty of Science
- University of Oviedo
- 33007 Oviedo
- Spain
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry
- Faculty of Chemistry
- University of Oviedo
- 33006 Oviedo
- Spain
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry
- Faculty of Chemistry
- University of Oviedo
- 33006 Oviedo
- Spain
| |
Collapse
|
48
|
Flowing atmospheric pressure afterglow combined with laser ablation for direct analysis of compounds separated by thin-layer chromatography. Anal Bioanal Chem 2015; 408:815-23. [PMID: 26563110 PMCID: PMC4709388 DOI: 10.1007/s00216-015-9165-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 11/06/2022]
Abstract
A thin-layer chromatography-mass spectrometry (TLC-MS) setup for characterization of low molecular weight compounds separated on standard TLC plates has been constructed. This new approach successfully combines TLC separation, laser ablation, and ionization using flowing atmospheric pressure afterglow (FAPA) source. For the laser ablation, a low-priced 445-nm continuous-wave diode laser pointer, with a power of 1 W, was used. The combination of the simple, low-budget laser pointer and the FAPA ion source has made this experimental arrangement broadly available, also for small laboratories. The approach was successfully applied for the characterization of low molecular weight compounds separated on TLC plates, such as a mixture of pyrazole derivatives, alkaloids (nicotine and sparteine), and an extract from a drug tablet consisting of paracetamol, propyphenazone, and caffeine. The laser pointer used was capable of ablating organic compounds without the need of application of any additional substances (matrices, staining, etc.) on the TLC spots. The detection limit of the proposed method was estimated to be 35 ng/cm2 of a pyrazole derivative. Schematic illustration of new TLC-FAPA setup with diode laser ablation ![]()
Collapse
|
49
|
Cegłowski M, Kurczewska J, Smoluch M, Reszke E, Silberring J, Schroeder G. Magnetic scavengers as carriers of analytes for flowing atmospheric pressure afterglow mass spectrometry (FAPA-MS). Analyst 2015. [PMID: 26222687 DOI: 10.1039/c5an00976f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, a procedure for the preconcentration and transport of mixtures of acids, bases, and drug components to a mass spectrometer using magnetic scavengers is presented. Flowing atmospheric pressure afterglow mass spectrometry (FAPA-MS) was used as an analytical method for identification of the compounds by thermal desorption from the scavengers. The proposed procedure is fast and cheap, and does not involve time-consuming purification steps. The developed methodology can be applied for trapping harmful substances in minute quantities, to transport them to specialized, remotely located laboratories.
Collapse
Affiliation(s)
- Michał Cegłowski
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań, Poland.
| | | | | | | | | | | |
Collapse
|
50
|
Some Rare Earth Elements Analysis by Microwave Plasma Torch Coupled with the Linear Ion Trap Mass Spectrometry. Int J Anal Chem 2015; 2015:156509. [PMID: 26421013 PMCID: PMC4572474 DOI: 10.1155/2015/156509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/17/2022] Open
Abstract
A sensitive mass spectrometric analysis method based on the microwave plasma technique is developed for the fast detection of trace rare earth elements (REEs) in aqueous solution. The plasma was produced from a microwave plasma torch (MPT) under atmospheric pressure and was used as ambient ion source of a linear ion trap mass spectrometer (LTQ). Water samples were directly pneumatically nebulized to flow into the plasma through the central tube of MPT. For some REEs, the generated composite ions were detected in both positive and negative ion modes and further characterized in tandem mass spectrometry. Under the optimized conditions, the limit of detection (LOD) was at the level 0.1 ng/mL using MS2 procedure in negative mode. A single REE analysis can be completed within 2~3 minutes with the relative standard deviation ranging between 2.4% and 21.2% (six repeated measurements) for the 5 experimental runs. Moreover, the recovery rates of these REEs are between the range of 97.6%–122.1%. Two real samples have also been analyzed, including well and orange juice. These experimental data demonstrated that this method is a useful tool for the field analysis of REEs in water and can be used as an alternative supplement of ICP-MS.
Collapse
|