1
|
Akhmadeev BS, Retyunskaya OO, Podyachev SN, Katsyuba SA, Gubaidullin AT, Sudakova SN, Syakaev VV, Babaev VM, Sinyashin OG, Mustafina AR. Supramolecular Optimization of Sensory Function of a Hemicurcuminoid through Its Incorporation into Phospholipid and Polymeric Polydiacetylenic Vesicles: Experimental and Computational Insight. Polymers (Basel) 2023; 15:polym15030714. [PMID: 36772015 PMCID: PMC9920781 DOI: 10.3390/polym15030714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
This work presents the synthesis of a new representative of hemicurcuminoids with a nonyloxy substituent (HCur) as a fluorescent amphiphilic structural element of vesicular aggregates based on phosphatidylcholine (PC), phosphatidylserine (PS), and 10,12-pentacosadiynoic acid (PCDA). Both X-ray diffraction analysis of the single crystal and 1H NMR spectra of HCur in organic solvents indicate the predominance of the enol-tautomer of HCur. DFT calculations show the predominance of the enol tautomer HCur in supramolecular assemblies with PC, PS, and PCDA molecules. The results of the molecular modeling show that HCur molecules are surrounded by PC and PS with a rather weak exposure to water molecules, while an exposure of HCur molecules to water is enhanced under its supramolecular assembly with PCDA molecules. This is in good agreement with the higher loading of HCur into PC(PS) vesicles compared to PCDA vesicles converted into polydiacetylene (PDA) ones by photopolymerization. HCur molecules incorporated into HCur-PDA vesicles exhibit greater planarity distortion and hydration effect in comparison with HCur-PC(PS) ones. HCur-PDA is presented as a dual fluorescence-chromatic nanosensor responsive to a change in pH within 7.5-9.5, heavy metal ions and polylysine, and the concentration-dependent fluorescent response is more sensitive than the chromatic one. Thus, the fluorescent response of HCur-PDA allows for the distinguishing between Cd2+ and Pb2+ ions in the concentration range 0-0.01 mM, while the chromatic response allows for the selective sensing of Pb2+ over Cd2+ ions at their concentrations above 0.03 mM.
Collapse
Affiliation(s)
- Bulat S. Akhmadeev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
- Correspondence:
| | - Olga O. Retyunskaya
- Department of Organic and Medicinal Chemistry, Kazan (Volga region) Federal University, Kremlyovskaya Str., 18, 420008 Kazan, Russia
| | - Sergey N. Podyachev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Sergey A. Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Svetlana N. Sudakova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Victor V. Syakaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Vasily M. Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Oleg G. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| | - Asiya R. Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia
| |
Collapse
|
2
|
Akhmadeev B, Podyachev S, Katsyuba S, Spicher S, Sudakova S, Gimazetdinova GS, Syakaev V, Sinyashin O, Mustafina A. The incorporation of upper vs lower rim substituted thia- and calix[4]arene ligands into polydiacethylene polymeric bilayers for rational design of sensors to heavy metal ions. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
3
|
Novel aminocalixarene-modified polydiacetylene vesicles: Synthesis and naked-eye detection of ATP. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Advances in Fabrication of Polydiacetylene Vesicles and Their Applications in Medical Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(19)61213-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Li Q, Ren S, Peng Y, Lv Y, Wang W, Wang Z, Gao Z. A Colorimetric Strip for Rapid Detection and Real-Time Monitoring of Histamine in Fish Based on Self-Assembled Polydiacetylene Vesicles. Anal Chem 2019; 92:1611-1617. [DOI: 10.1021/acs.analchem.9b04927] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qiaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic of China
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People’s Republic of China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People’s Republic of China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People’s Republic of China
| | - Yan Lv
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Weiya Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People’s Republic of China
| | - Zhouping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People’s Republic of China
| |
Collapse
|
6
|
Bnyan R, Khan I, Ehtezazi T, Saleem I, Gordon S, O’Neill F, Roberts M. Formulation and optimisation of novel transfersomes for sustained release of local anaesthetic. J Pharm Pharmacol 2019; 71:1508-1519. [DOI: 10.1111/jphp.13149] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/26/2019] [Accepted: 07/06/2019] [Indexed: 01/28/2023]
Abstract
Abstract
Objective
To investigate the effect of formulation parameters on the preparation of transfersomes as sustained-release delivery systems for lidocaine and to develop and validate a new high-performance liquid chromatography (HPLC) method for analysis.
Method
Taguchi design of experiment (DOE) was used to optimise lidocaine-loaded transfersomes in terms of phospholipid, edge activator (EA) and phospholipid : EA ratio. Transfersomes were characterised for size, polydispersity index (PDI), charge and entrapment efficiency (%EE). A HPLC method for lidocaine quantification was optimised and validated using a mobile phase of 30%v/v PBS (0.01 m) : 70%v/v Acetonitrile at a flow rate of 1 ml/min, detected at 255 nm with retention time of 2.84 min. The release of lidocaine from selected samples was assessed in vitro.
Key findings
Transfersomes were 200 nm in size, with PDI ~ 0.3. HPLC method was valid for linearity (0.1–2 mg/ml, R2 0.9999), accuracy, intermediate precision and repeatability according to ICH guidelines. The %EE was between 44% and 56% and dependent on the formulation parameters. Taguchi DOE showed the effect of factors was in the rank order : lipid : EA ratio ˃ EA type ˃ lipid type. Optimised transfersomes sustained the release of lidocaine over 24 h.
Conclusion
Sustained-release, lidocaine-loaded transfersomes were successfully formulated and optimised using a DOE approach, and a new HPLC method for lidocaine analysis was developed and validated.
Collapse
Affiliation(s)
- Ruba Bnyan
- Formulation and Drug Delivery Research Group, School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Iftikhar Khan
- Formulation and Drug Delivery Research Group, School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Touraj Ehtezazi
- Formulation and Drug Delivery Research Group, School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Imran Saleem
- Formulation and Drug Delivery Research Group, School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sarah Gordon
- Formulation and Drug Delivery Research Group, School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Francis O’Neill
- Institute of Clinical Sciences, University of Liverpool Dental School, Liverpool, UK
| | - Matthew Roberts
- Formulation and Drug Delivery Research Group, School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
7
|
Kim T, Moon D, Park JH, Yang H, Cho S, Park TH, Ahn DJ. Visual detection of odorant geraniol enabled by integration of a human olfactory receptor into polydiacetylene/lipid nano-assembly. NANOSCALE 2019; 11:7582-7587. [PMID: 30964490 DOI: 10.1039/c9nr00249a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A new polydiacetylene lipid/human olfactory receptor nano-assembly was fabricated for the visual detection of an odorant for the first time. The assembly consisted of phospholipid-mixed polydiacetylenes (PDAs) and human olfactory receptors (hORs) in detergent micelles. To overcome the limitations of bioelectronic noses, hOR-embedded chromatic complexes (PDA/hORs) were developed, introducing PDAs that showed color and fluorescence transitions against various stimuli. The chromatic nanocomplexes reacted with target molecules, showing a fluorescence intensity increase in a dose-dependent manner and target selectivity among various odorants. As a result, a color transition of the assembly from blue to purple occurred, allowing the visual detection of the odorant geraniol. Through circular dichroism (CD) spectroscopy and a tryptophan fluorescence quenching method, the structural and functional properties of the hORs embedded in the complexes were confirmed. Based on this first work, future array devices, integrating multiple nano-assemblies, can be substantiated and utilized in environmental assessment and analysis of food quality.
Collapse
Affiliation(s)
- Taegon Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| | | | | | | | | | | | | |
Collapse
|
8
|
Wen JT, Roper JM, Tsutsui H. Polydiacetylene Supramolecules: Synthesis, Characterization, and Emerging Applications. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00848] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Jiang H, Hu XY, Schlesiger S, Li M, Zellermann E, Knauer SK, Schmuck C. Morphology-Dependent Cell Imaging by Using a Self-Assembled Diacetylene Peptide Amphiphile. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hao Jiang
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| | - Xiao-Yu Hu
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; 210023 Nanjing China
| | - Stefanie Schlesiger
- Institute for Microbiology; University of Duisburg-Essen; 45141 Essen Germany
| | - Mao Li
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| | - Eilo Zellermann
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| | - Shirley K. Knauer
- Institute for Microbiology; University of Duisburg-Essen; 45141 Essen Germany
| | - Carsten Schmuck
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| |
Collapse
|
10
|
Jiang H, Hu XY, Schlesiger S, Li M, Zellermann E, Knauer SK, Schmuck C. Morphology-Dependent Cell Imaging by Using a Self-Assembled Diacetylene Peptide Amphiphile. Angew Chem Int Ed Engl 2017; 56:14526-14530. [DOI: 10.1002/anie.201708168] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/13/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Hao Jiang
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| | - Xiao-Yu Hu
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; 210023 Nanjing China
| | - Stefanie Schlesiger
- Institute for Microbiology; University of Duisburg-Essen; 45141 Essen Germany
| | - Mao Li
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| | - Eilo Zellermann
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| | - Shirley K. Knauer
- Institute for Microbiology; University of Duisburg-Essen; 45141 Essen Germany
| | - Carsten Schmuck
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| |
Collapse
|
11
|
Dolai S, Bhunia SK, Beglaryan SS, Kolusheva S, Zeiri L, Jelinek R. Colorimetric Polydiacetylene-Aerogel Detector for Volatile Organic Compounds (VOCs). ACS APPLIED MATERIALS & INTERFACES 2017; 9:2891-2898. [PMID: 28029773 DOI: 10.1021/acsami.6b14469] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A new hybrid system comprising polydiacetylene (PDA), a chromatic conjugated polymer, embedded within aerogel pores has been constructed. The PDA-aerogel powder underwent dramatic color changes in the presence of volatile organic compounds (VOCs), facilitated through infiltration of the gas molecules into the highly porous aerogel matrix and their interactions with the aerogel-embedded PDA units. The PDA-aerogel composite exhibited rapid color/fluorescence response and enhanced signals upon exposure to low VOC concentrations. Encapsulation of PDA derivatives displaying different headgroups within the aerogel produced distinct VOC-dependent color transformations, forming a PDA-aerogel "artificial nose".
Collapse
Affiliation(s)
- Susmita Dolai
- Department of Chemistry, Ben Gurion University of the Negev , Beer Sheva 84105, Israel
| | - Susanta Kumar Bhunia
- Department of Chemistry, Ben Gurion University of the Negev , Beer Sheva 84105, Israel
| | - Stella S Beglaryan
- Chemistry Department "G. Ciamician", Green Chemistry Lab, University of Bologna , Via S. Alberto 163, 48100 Ravenna, Italy
| | - Sofiya Kolusheva
- Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev , Beer Sheva 84105, Israel
| | - Leila Zeiri
- Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev , Beer Sheva 84105, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev , Beer Sheva 84105, Israel
- Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev , Beer Sheva 84105, Israel
| |
Collapse
|
12
|
Kejík Z, Kaplánek R, Havlík M, Bříza T, Jakubek M, Králová J, Mikula I, Martásek P, Král V. Optical probes and sensors as perspective tools in epigenetics. Bioorg Med Chem 2017; 25:2295-2306. [PMID: 28285925 DOI: 10.1016/j.bmc.2017.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/13/2016] [Accepted: 01/11/2017] [Indexed: 12/23/2022]
Abstract
Modifications of DNA cytosine bases and histone posttranslational modifications play key roles in the control of gene expression and specification of cell states. Such modifications affect many important biological processes and changes to these important regulation mechanisms can initiate or significantly contribute to the development of many serious pathological states. Therefore, recognition and determination of chromatin modifications is an important goal in basic and clinical research. Two of the most promising tools for this purpose are optical probes and sensors, especially colourimetric and fluorescence devices. The use of optical probes and sensors is simple, without highly expensive instrumentation, and with excellent sensitivity and specificity for target structural motifs. Accordingly, the application of various probes and sensors in the recognition and determination of cytosine modifications and structure of histones and histone posttranslational modifications, are discussed in detail in this review.
Collapse
Affiliation(s)
- Zdeněk Kejík
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Robert Kaplánek
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Martin Havlík
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Tomáš Bříza
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Milan Jakubek
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Jarmila Králová
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Ivan Mikula
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Pavel Martásek
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Vladimír Král
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic.
| |
Collapse
|
13
|
Shim J, Kim B, Kim JM. Aminopyridine-containing supramolecular polydiacetylene: film formation, thermochromism and micropatterning. Supramol Chem 2016. [DOI: 10.1080/10610278.2016.1243792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jina Shim
- Department of Chemical Engineering, Hanyang University, Seoul, Korea
| | - Bubsung Kim
- Department of Chemical Engineering, Hanyang University, Seoul, Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, Korea
| |
Collapse
|
14
|
Ariza-Carmona L, Martín-Romero MT, Giner-Casares JJ, Camacho L. Direct observation by using Brewster angle microscopy of the diacetylene polimerization in mixed Langmuir film. J Colloid Interface Sci 2015; 459:53-62. [PMID: 26263495 DOI: 10.1016/j.jcis.2015.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/27/2015] [Accepted: 08/03/2015] [Indexed: 11/18/2022]
Abstract
Mixed Langmuir monolayers of 10,12-Pentacosadiynoic acid (DA) and amphiphilic hemicyanine (HSP) have been fabricated at the air-water interface. The mixed monolayer has been proved to be completely homogeneous. The DA molecules are arranged in a single monolayer within the mixed Langmuir monolayer, as opposed to the typical trilayer architecture for the pure DA film. Brewster angle microscopy has been used to reveal the mesoscopic structure of the mixed Langmuir monolayer. Flower shape domains with internal anisotropy due the ordered alignment of hemicyanine groups have been observed. Given the absorption features of the hemicyanine groups at the wavelength used in the BAM experiments, the enhancement of reflection provoked by the absorption process leads to the observed anisotropy. The ordering of such groups is promoted by their strong self-aggregation tendency. Under UV irradiation at the air-water interface, polydiacetylene (PDA) has been fabricated. In spite a significant increase in the domains reflectivity has been observed owing to the modification in the mentioned enhanced reflection, the texture of the domains remains equal. The PDA polymer chain therefore grows in the same direction in which the HSP molecules are aligned. This study is expected to enrich the understanding and design of fabrication of PDA at interfaces.
Collapse
Affiliation(s)
- Luisa Ariza-Carmona
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain
| | - María T Martín-Romero
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain
| | - Juan J Giner-Casares
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain; Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia - San Sebastián, Spain.
| | - Luis Camacho
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain.
| |
Collapse
|
15
|
Ariza-Carmona L, Rubia-Payá C, García-Espejo G, Martín-Romero MT, Giner-Casares JJ, Camacho L. Diacetylene mixed Langmuir monolayers for interfacial polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5333-5344. [PMID: 25897774 DOI: 10.1021/acs.langmuir.5b00175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polydiacetylene (PDA) and its derivatives are promising materials for applications in a vast number of fields, from organic electronics to biosensing. PDA is obtained through polymerization of diacetylene (DA) monomers, typically using UV irradiation. DA polymerization is a 1-4 addition reaction with both initiation and growth steps with topochemical control, leading to the "blue" polymer form as primary reaction product in bulk and at interfaces. Herein, the diacetylene monomer 10,12-pentacosadiynoic acid (DA) and the amphiphilic cationic N,N'-dioctadecylthiapentacarbocyanine (OTCC) have been used to build a mixed Langmuir monolayer. The presence of OTCC imposes a monolayer supramolecular structure instead of the typical trilayer of pure DA. Surface pressure, Brewster angle microscopy, and UV-vis reflection spectroscopy measurements, as well as computer simulations, have been used to assess in detail the supramolecular structure of the DA:OTCC Langmuir monolayer. Our experimental results indicate that the DA and OTCC molecules are sequentially arranged, with the two OTCC alkyl chains acting as spacing diacetylene units. Despite this configuration is expected to prevent photopolymerization of DA, the polymerization takes place without phase segregation, thus exclusively leading to the red polydiacetylene form. We propose a simple model for the initial formation of the "blue" or "red" PDA forms as a function of the relative orientation of the DA units. The structural insights and the proposed model concerning the supramolecular structure of the "blue" and "red" forms of the PDA are aimed at the understanding of the relation between the molecular and macroscopical features of PDAs.
Collapse
Affiliation(s)
- Luisa Ariza-Carmona
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba, Spain E-14014
| | - Carlos Rubia-Payá
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba, Spain E-14014
| | - G García-Espejo
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba, Spain E-14014
| | - María T Martín-Romero
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba, Spain E-14014
| | - Juan J Giner-Casares
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba, Spain E-14014
| | - Luis Camacho
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, Córdoba, Spain E-14014
| |
Collapse
|
16
|
Davis BW, Burris AJ, Niamnont N, Hare CD, Chen CY, Sukwattanasinitt M, Cheng Q. Dual-mode optical sensing of organic vapors and proteins with polydiacetylene (PDA)-embedded electrospun nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9616-9622. [PMID: 25025399 DOI: 10.1021/la5017388] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Optical sensors capable of colorimetric visualization and/or fluorescence detection have shown tremendous potential for field technicians and emergency responders, owing to the portability and low cost of such devices. Polydiacetylene (PDA)-enhanced nanofibers are particularly promising due to high surface area, facile functionalization, simple construction, and the versatility to empower either colorimetric or fluorescence signaling. We demonstrate here a dual-mode optical sensing with electrospun nanofibers embedded with various PDAs. The solvent-dependent fluorescent transition of nanofibers generated a pattern that successfully distinguished four common organic solvents. The colorimetric and fluorescent sensing of biotin-avidin interactions by embedding biotinylated-PCDA monomers into silica-reinforced nanofiber mats were realized for detection of biomolecules. Finally, a PDA-based nanofiber sensor array consisting of three monomers has been fabricated for the determination and identification of organic amine vapors using colorimetry and principal component analysis (PCA). The combination of PCA and the strategy of probing analytes in two different concentration ranges (ppm and ppth) led to successful analysis of all eight amines.
Collapse
Affiliation(s)
- Bryce W Davis
- Department of Chemistry, University of California, Riverside , Riverside, California 92521, United States
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The present review summarizes recently developed calixarene derivatives for protein surface recognition which are able to identify, inhibit, and separate specific proteins.
Collapse
Affiliation(s)
- Reza Zadmard
- Chemistry and Chemical Engineering
- Research Center of Iran
- , Iran
| | | |
Collapse
|
18
|
Ross EE, Mok SW, Bugni SR. Assembly of lipid bilayers on silica and modified silica colloids by reconstitution of dried lipid films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:8634-8644. [PMID: 21634797 DOI: 10.1021/la200952c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A method is presented for the assembly of lipid bilayers on silica colloids via reconstitution of dried lipid films solvent-cast from chloroform within packed beds of colloids ranging from 100 nm to 10 μm in diameter. Rapid solvent evaporation from the packed bed void volume results in uniform distribution of dried lipid throughout the colloidal bed. Fluorescence measurements indicate that significant, if not quantitative, retention of DOPC or DPPC films cast between sub-bilayer and multilayer quantities occurs when the colloids are redispersed in aqueous solution. Phospholipid bilayers assembled in this manner are shown to effectively passivate the surface of 250 nm colloids to nonspecific adsorption of bovine serum albumin. The method is shown to be capable of preparing supported bilayers on colloid surfaces that do not generally support vesicle fusion such as poly(ethylene glycol) (PEG) modified silica colloids. Bilayers of lipids that have not been reported to self-assemble by vesicle fusion, including gel-phase lipids and single-chain diacetylene amphiphiles, can also be formed by this method. The utility of the solid-core support is demonstrated by the facile assembly of supported lipid bilayers within fused silica capillaries to generate materials that are potentially suitable for the analysis of membrane interactions in a microchannel format.
Collapse
Affiliation(s)
- Eric E Ross
- Department of Chemistry & Biochemistry, Gonzaga University, Spokane, Washington 99258, United States.
| | | | | |
Collapse
|
19
|
Helttunen K, Shahgaldian P. Self-assembly of amphiphilic calixarenes and resorcinarenes in water. NEW J CHEM 2010. [DOI: 10.1039/c0nj00123f] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|