1
|
Jiang Y, Rex DA, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Hegeman AD, Mayta M, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:338-417. [PMID: 39193565 PMCID: PMC11348894 DOI: 10.1021/acsmeasuresciau.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 08/29/2024]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Devasahayam Arokia
Balaya Rex
- Center for
Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
- Department
of Biology, Institute of Molecular Biology
and Biophysics, ETH Zurich, Zurich 8093, Switzerland
- Laboratory
of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical
Sciences Division, National Institute of
Standards and Technology, NIST, Charleston, South Carolina 29412, United States
| | - Germán L. Rosano
- Mass
Spectrometry
Unit, Institute of Molecular and Cellular
Biology of Rosario, Rosario, 2000 Argentina
| | - Norbert Volkmar
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Trenton M. Peters-Clarke
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California, 94158, United States
| | - Susan B. Egbert
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Simion Kreimer
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Emma H. Doud
- Center
for Proteome Analysis, Indiana University
School of Medicine, Indianapolis, Indiana, 46202-3082, United States
| | - Oliver M. Crook
- Oxford
Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United
Kingdom
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | | | - Adrian D. Hegeman
- Departments
of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota 55108, United States
| | - Martín
L. Mayta
- School
of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martin 3103, Argentina
- Molecular
Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas M. Riley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems biology, Seattle, Washington 98109, United States
| | - Jesse G. Meyer
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| |
Collapse
|
2
|
Pade LR, Lombard-Banek C, Li J, Nemes P. Dilute to Enrich for Deeper Proteomics: A Yolk-Depleted Carrier for Limited Populations of Embryonic (Frog) Cells. J Proteome Res 2024; 23:692-703. [PMID: 37994825 PMCID: PMC10872351 DOI: 10.1021/acs.jproteome.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Abundant proteins challenge deep mass spectrometry (MS) analysis of the proteome. Yolk, the source of food in many developing vertebrate embryos, complicates chemical separation and interferes with detection. We report here a strategy that enhances bottom-up proteomics in yolk-laden specimens by diluting the interferences using a yolk-depleted carrier (YODEC) proteome via isobaric multiplexing quantification. This method was tested on embryos of the South African Clawed Frog (Xenopus laevis), where a >90% yolk proteome content challenges deep proteomics. As a proof of concept, we isolated neural and epidermal fated cell clones from the embryo by dissection or fluorescence-activated cell sorting. Compared with the standard multiplexing carrier approach, YODEC more than doubled the detectable X. laevis proteome, identifying 5,218 proteins from D11 cell clones dissected from the embryo. Ca. ∼80% of the proteins were quantified without dropouts in any of the analytical channels. YODEC with high-pH fractionation quantified 3,133 proteins from ∼8,000 V11 cells that were sorted from ca. 2 embryos (1.5 μg total, or 150 ng yolk-free proteome), marking a 15-fold improvement in proteome coverage vs the standard proteomics approach. About 60% of these proteins were only quantifiable by YODEC, including molecular adaptors, transporters, translation, and transcription factors. While this study was tailored to limited populations of Xenopus cells, we anticipate the approach of "dilute to enrich" using a depleted carrier proteome to be adaptable to other biological models in which abundant proteins challenge deep MS proteomics.
Collapse
Affiliation(s)
- Leena R. Pade
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742
| | - Camille Lombard-Banek
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742
| | - Jie Li
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742
| |
Collapse
|
3
|
Wu W, Fields L, DeLaney K, Buchberger AR, Li L. An Updated Guide to the Identification, Quantitation, and Imaging of the Crustacean Neuropeptidome. Methods Mol Biol 2024; 2758:255-289. [PMID: 38549019 PMCID: PMC11071638 DOI: 10.1007/978-1-0716-3646-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Crustaceans serve as a useful, simplified model for studying peptides and neuromodulation, as they contain numerous neuropeptide homologs to mammals and enable electrophysiological studies at the single-cell and neural circuit levels. Crustaceans contain well-defined neural networks, including the stomatogastric ganglion, oesophageal ganglion, commissural ganglia, and several neuropeptide-rich organs such as the brain, pericardial organs, and sinus glands. As existing mass spectrometry (MS) methods are not readily amenable to neuropeptide studies, there is a great need for optimized sample preparation, data acquisition, and data analysis methods. Herein, we present a general workflow and detailed methods for MS-based neuropeptidomic analysis of crustacean tissue samples and circulating fluids. In conjunction with profiling, quantitation can also be performed with isotopic or isobaric labeling. Information regarding the localization patterns and changes of peptides can be studied via mass spectrometry imaging. Combining these sample preparation strategies and MS analytical techniques allows for a multi-faceted approach to obtaining deep knowledge of crustacean peptidergic signaling pathways.
Collapse
Affiliation(s)
- Wenxin Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Wang Z, Tan J, Li M, Gao C, Li W, Xu J, Guo C, Chen Z, Cai R. Clickable Photoreactive ATP-Affinity Probe for Global Profiling of ATP-Binding Proteins. Anal Chem 2023; 95:17533-17540. [PMID: 37993803 DOI: 10.1021/acs.analchem.3c02694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Adenosine triphosphate (ATP) is the major energy carrier in organisms, and there are many cellular proteins that can bind to ATP. Among these proteins, kinases are key regulators in several cell signaling processes, and aberrant kinase signaling contributes to the development of many human diseases, including cancer. Hence, small-molecule kinase inhibitors have been successfully used for the treatment of various diseases. Since the ATP-binding pockets are similar for many kinases, it is very important to evaluate the selectivity of different kinase inhibitors. We report here a clickable ATP photoaffinity probe for the global profiling of ATP-binding proteins. After incubating the protein lysate with the ATP probe followed by ultraviolet (UV) irradiation, ATP-binding proteins were labeled with an alkyne handle for subsequent biotin conjugation through click chemistry. Labeled proteins were enriched with streptavidin beads, digested with trypsin, and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). More than 400 ATP-binding proteins, including approximately 200 kinases, could be identified in a single LC-MS/MS run in the data-dependent acquisition mode. We then applied this method to the analysis of targets of three selected ATP-competitive kinase inhibitors. We were able to successfully identify some of their reported target proteins from label-free quantification results and validated the results using Western blot analyses. Together, we developed a clickable ATP photoaffinity probe for proteome-wide profiling of ATP-binding proteins and demonstrated that this chemoproteomic method is amenable to high-throughput target identification of kinase inhibitors.
Collapse
Affiliation(s)
- Zhiming Wang
- Institute of Pharmaceutical Analysis, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
- Shenzhen Research Institute, Shandong University, Shenzhen 518057, Guangdong, China
| | - Jing Tan
- Institute of Pharmaceutical Analysis, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
- Shenzhen Research Institute, Shandong University, Shenzhen 518057, Guangdong, China
| | - Mengxuan Li
- Institute of Pharmaceutical Analysis, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, Jiangsu, China
| | - Can Gao
- Institute of Pharmaceutical Analysis, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Wenwen Li
- Institute of Pharmaceutical Analysis, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, Jiangsu, China
| | - Jing Xu
- Institute of Pharmaceutical Analysis, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, Jiangsu, China
| | - Changchuan Guo
- Shandong Institute for Food and Drug Control, Jinan 250101, Shandong, China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Rong Cai
- Institute of Pharmaceutical Analysis, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
- Shenzhen Research Institute, Shandong University, Shenzhen 518057, Guangdong, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
5
|
Thoben C, Schlottmann F, Kobelt T, Nitschke A, Gloeden GL, Naylor CN, Kirk AT, Zimmermann S. Ultra-Fast Ion Mobility Spectrometer for High-Throughput Chromatography. Anal Chem 2023; 95:17073-17081. [PMID: 37953497 PMCID: PMC10666085 DOI: 10.1021/acs.analchem.3c03935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Fast chromatography systems especially developed for high sample throughput applications require sensitive detectors with a high repetition rate. These high throughput techniques, including various chip-based microfluidic designs, often benefit from detectors providing subsequent separation in another dimension, such as mass spectrometry or ion mobility spectrometry (IMS), giving additional information about the analytes or monitoring reaction kinetics. However, subsequent separation is required at a high repetition rate. Here, we therefore present an ultra-fast drift tube IMS operating at ambient pressure. Short drift times while maintaining high resolving power are reached by several key instrumental design features: short length of the drift tube, resistor network of the drift tube, tristate ion shutter, and improved data acquisition electronics. With these design improvements, even slow ions with a reduced mobility of just 0.94 cm2/(V s) have a drift time below 1.6 ms. Such short drift times allow for a significantly increased repetition rate of 600 Hz compared with previously reported values. To further reduce drift times and thus increase the repetition rate, helium can be used as the drift gas, which allows repetition rates of up to 2 kHz. Finally, these significant improvements enable IMS to be used as a detector following ultra-fast separation including chip-based chromatographic systems or droplet microfluidic applications requiring high repetition rates.
Collapse
Affiliation(s)
- Christian Thoben
- Institute of Electrical Engineering
and Measurement Technology, Department of Sensors and Measurement
Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Florian Schlottmann
- Institute of Electrical Engineering
and Measurement Technology, Department of Sensors and Measurement
Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Tim Kobelt
- Institute of Electrical Engineering
and Measurement Technology, Department of Sensors and Measurement
Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Alexander Nitschke
- Institute of Electrical Engineering
and Measurement Technology, Department of Sensors and Measurement
Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Gian-Luca Gloeden
- Institute of Electrical Engineering
and Measurement Technology, Department of Sensors and Measurement
Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Cameron N. Naylor
- Institute of Electrical Engineering
and Measurement Technology, Department of Sensors and Measurement
Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Ansgar T. Kirk
- Institute of Electrical Engineering
and Measurement Technology, Department of Sensors and Measurement
Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering
and Measurement Technology, Department of Sensors and Measurement
Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| |
Collapse
|
6
|
Arruda MAZ, de Jesus JR, Blindauer CA, Stewart AJ. Speciomics as a concept involving chemical speciation and omics. J Proteomics 2022; 263:104615. [PMID: 35595056 DOI: 10.1016/j.jprot.2022.104615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
The study of chemical speciation and the refinement and expansion of omics-based methods are both consolidated and highly active research fields. Although well established, such fields are extremely dynamic and are driven by the emergence of new strategies and improvements in instrumentation. In the case of omics-based studies, subareas including lipidomics, proteomics, metallomics, metabolomics and foodomics have emerged. Here, speciomics is being proposed as an "umbrella" term, that incorporates all of these subareas, to capture studies where the evaluation of chemical species is carried out using omics approaches. This paper contextualizes both speciomics and the speciome, and reviews omics applications used for species identification through examination of proteins, metalloproteins, metabolites, and nucleic acids. In addition, some implications from such studies and a perspective for future development of this area are provided. SIGNIFICANCE: The synergic effect between chemical speciation and omics is highlighted in this work, demonstrating an emerging area of research with a multitude of possibilities in terms of applications and further developments. This work not only defines and contextualizes speciomics and individual speciomes, but also demonstrates with some examples the great potential of this new interdisciplinary area of research.
Collapse
Affiliation(s)
- Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil.
| | - Jemmyson Romário de Jesus
- Research Laboratory in bionanomaterials, LPbio, Chemistry Department, Federal University of Viçosa, UFV, Viçosa, Minas Gerais, Brazil
| | | | - Alan James Stewart
- School of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, United Kingdom
| |
Collapse
|
7
|
Li RN, Shen PT, Lin HYH, Liang SS. Shotgun proteomic analysis using human serum from type 2 diabetes mellitus patients. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-021-01038-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
8
|
VDACs Post-Translational Modifications Discovery by Mass Spectrometry: Impact on Their Hub Function. Int J Mol Sci 2021; 22:ijms222312833. [PMID: 34884639 PMCID: PMC8657666 DOI: 10.3390/ijms222312833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
VDAC (voltage-dependent anion selective channel) proteins, also known as mitochondrial porins, are the most abundant proteins of the outer mitochondrial membrane (OMM), where they play a vital role in various cellular processes, in the regulation of metabolism, and in survival pathways. There is increasing consensus about their function as a cellular hub, connecting bioenergetics functions to the rest of the cell. The structural characterization of VDACs presents challenging issues due to their very high hydrophobicity, low solubility, the difficulty to separate them from other mitochondrial proteins of similar hydrophobicity and the practical impossibility to isolate each single isoform. Consequently, it is necessary to analyze them as components of a relatively complex mixture. Due to the experimental difficulties in their structural characterization, post-translational modifications (PTMs) of VDAC proteins represent a little explored field. Only in recent years, the increasing number of tools aimed at identifying and quantifying PTMs has allowed to increase our knowledge in this field and in the mechanisms that regulate functions and interactions of mitochondrial porins. In particular, the development of nano-reversed phase ultra-high performance liquid chromatography (nanoRP-UHPLC) and ultra-sensitive high-resolution mass spectrometry (HRMS) methods has played a key role in this field. The findings obtained on VDAC PTMs using such methodologies, which permitted an in-depth characterization of these very hydrophobic trans-membrane pore proteins, are summarized in this review.
Collapse
|
9
|
Han X, Zhang Y, Qiao O, Ji H, Zhang X, Wang W, Li X, Wang J, Li D, Ju A, Liu C, Gao W. Proteomic Analysis Reveals the Protective Effects of Yiqi Fumai Lyophilized Injection on Chronic Heart Failure by Improving Myocardial Energy Metabolism. Front Pharmacol 2021; 12:719532. [PMID: 34630097 PMCID: PMC8494180 DOI: 10.3389/fphar.2021.719532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Yiqi Fumai lyophilized injection (YQFM) is the recombination of Sheng mai san (SMS).YQFM has been applied clinically to efficaciously and safely treat chronic heart failure (CHF). However, the mechanism of YQFM is still not fully elucidated. The purpose of our study was to investigate the protective mechanism of YQFM against abdominal aortic coarctation (AAC) in rats by proteomic methods. After YQFM treatment, the cardiac function were obviously meliorated. One hundred and fifty-seven important differentially expressed proteins (DEPs) were identified, including 109 in model rat compared with that in control rat (M:C) and 48 in YQFM-treated rat compared with that in model rat (T:M) by iTRAQ technology to analyze the proteomic characteristics of heart tissue. Bioinformatics analysis showed that DEPs was mainly involved in the body’s energy metabolism and was closely related to oxidative phosphorylation. YQFM had also displayed efficient mitochondrial dysfunction alleviation properties in hydrogen peroxide (H2O2)-induced cardiomyocyte damage by Transmission Electron Microscope (TEM), Metabolic assay, and Mitotracker staining. What’s more, the levels of total cardiomyocyte apoptosis were markedly reduced following YQFM treatment. Furthermore, Western blot analysis showed that the expressions of peroxisome proliferator activated receptor co-activator-1α(PGC-1α) (p < 0.01 or p < 0.001), perixisome proliferation-activated receptor alpha (PPAR-α) (p < 0.001)and retinoid X receptor alpha (RXR-α) were upregulated (p < 0.001), PGC-1α as well as its downstream effectors were also found to be upregulated in cardiomyocytes after YQFM treatment(p < 0.001).These results provided evidence that YQFM could enhance mitochondrial function of cardiomyocytes to play a role in the treatment of CHF by regulating mitochondrial biogenesis-related proteins.
Collapse
Affiliation(s)
- Xiaoying Han
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yi Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Ou Qiao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Haixia Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xinyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Wenzhe Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Dekun Li
- Tasly Pride Pharmaceutical Company Limited, Tianjin, China
| | - Aichun Ju
- Tasly Pride Pharmaceutical Company Limited, Tianjin, China
| | - Changxiao Liu
- Tianjin Pharmaceutical Research Institute, Tianjin, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Ramírez-Acosta S, Arias-Borrego A, Navarro-Roldán F, Selma-Royo M, Calatayud M, Collado MC, Huertas-Abril PV, Abril N, Barrera TG. Omic methodologies for assessing metal(-loid)s-host-microbiota interplay: A review. Anal Chim Acta 2021; 1176:338620. [PMID: 34399890 DOI: 10.1016/j.aca.2021.338620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/12/2021] [Accepted: 04/01/2021] [Indexed: 02/08/2023]
Abstract
Omic methodologies have become key analytical tools in a wide number of research topics such as systems biology, environmental analysis, biomedicine or food analysis. They are especially useful when they are combined providing a new perspective and a holistic view of the analytical problem. Methodologies for microbiota analysis have been mostly focused on genome sequencing. However, information provided by these metagenomic studies is limited to the identification of the presence of genes, taxa and their inferred functionality. To achieve a deeper knowledge of microbial functionality in health and disease, especially in dysbiosis conditions related to metal and metalloid exposure, the introduction of additional meta-omic approaches including metabolomics, metallomics, metatranscriptomics and metaproteomics results essential. The possible impact of metals and metalloids on the gut microbiota and their effects on gut-brain axis (GBA) only begin to be figured out. To this end new analytical workflows combining powerful tools are claimed such as high resolution mass spectrometry and heteroatom-tagged proteomics for the absolute quantification of metal-containing biomolecules using the metal as a "tag" in a sensitive and selective detector (e.g. ICP-MS). This review focus on current analytical methodologies related with the analytical techniques and procedures available for metallomics and microbiota analysis with a special attention on their advantages and drawbacks.
Collapse
Affiliation(s)
- Sara Ramírez-Acosta
- Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., Huelva, Spain
| | - Ana Arias-Borrego
- Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., Huelva, Spain
| | - Francisco Navarro-Roldán
- Department of Integrated Sciences, Cell Biology, Faculty of Experimental Sciences, University of Huelva, Spain
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Marta Calatayud
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Paula V Huertas-Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain.
| | - Tamara García Barrera
- Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., Huelva, Spain.
| |
Collapse
|
11
|
Ngan SFC, Sze SK. Proteomic Profiling of the Secretome of Trichoderma reesei. Methods Mol Biol 2021; 2234:237-249. [PMID: 33165791 DOI: 10.1007/978-1-0716-1048-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Trichoderma reesei (T. reesei) is the workhorse for the production of industrial cellulolytic enzyme cocktails for cellulose hydrolysis. However, the current industrial process using enzyme cocktails is not efficient enough for the cost-effective generation of cellulosic sugar. Here, we describe a protocol for the application of a state-of-the-art LC-MS/MS-based proteomics method for studying the T. reesei secretome. A protein-free minimal chemically defined cell culture medium must be used for a successful secretome analysis. A lignocellulose substrate can be added to this minimal medium to stimulate the fungal secretion of enzymes specific to that substrate. The secretory proteins in the conditioned medium can be purified for quantitative proteomics profiling. T. reesei secretes several hundred enzymes including cellulases, hemicellulases, pectinases, proteases, oxidoreductases, and many putative proteins when it is stimulated with lignocellulose. By combining an understanding of the basic biomass hydrolytic mechanisms with the discovery of novel enzymes, more effective enzyme cocktails can be designed for a sustainable biochemical-based biorefinery.
Collapse
Affiliation(s)
- So Fong Cam Ngan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
12
|
Diz AP, Sánchez-Marín P. A Primer and Guidelines for Shotgun Proteomic Analysis in Non-model Organisms. Methods Mol Biol 2021; 2259:77-102. [PMID: 33687710 DOI: 10.1007/978-1-0716-1178-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
During the last decade, we have witnessed outstanding advances in proteomics led mostly by great technological improvements in mass spectrometry field allowing high-throughput production of high-quality data used for massive protein identification and quantification. From a practical viewpoint, these advances have been mainly exploited in research projects involving model organisms with abundant genomic and proteomic information available in public databases. However, there is a growing number of organisms of high interest in different disciplines, such as ecological, biotechnological, and evolutionary research, yet poorly represented in these databases. Important advances in massive parallel sequencing technology and easy accessibility of this technology to many research laboratories have made nowadays possible to produce customized genomic and proteomic databases of any organism. Along this line, the use of proteogenomic approaches by combining in the same analysis the data obtained from different omic levels has emerged as a very useful and powerful strategy to run shotgun proteomic experiments specially focused on non-model organisms. In this chapter, we provide detailed procedures to undertake shotgun quantitative proteomic experiments following either a label-free or an isobaric labeling approach in non-model organisms, emphasizing also a few key aspects related to experimental design and data analysis.
Collapse
Affiliation(s)
- Angel P Diz
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain. .,Marine Research Center, University of Vigo (CIM-UVIGO), Vigo, Spain.
| | - Paula Sánchez-Marín
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain
| |
Collapse
|
13
|
Zheng J, Chen X, Yang Y, Tan CSH, Tian R. Mass Spectrometry-Based Protein Complex Profiling in Time and Space. Anal Chem 2020; 93:598-619. [DOI: 10.1021/acs.analchem.0c04332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiangnan Zheng
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiong Chen
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Yang
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chris Soon Heng Tan
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
14
|
Kaplitz AS, Mostafa ME, Calvez SA, Edwards JL, Grinias JP. Two‐dimensional separation techniques using supercritical fluid chromatography. J Sep Sci 2020; 44:426-437. [DOI: 10.1002/jssc.202000823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023]
Affiliation(s)
| | | | - Samantha A. Calvez
- Department of Chemistry & Biochemistry Rowan University Glassboro NJ USA
| | | | - James P. Grinias
- Department of Chemistry & Biochemistry Rowan University Glassboro NJ USA
| |
Collapse
|
15
|
Proteomic Profiling of Emiliania huxleyi Using a Three-Dimensional Separation Method Combined with Tandem Mass Spectrometry. Molecules 2020; 25:molecules25133028. [PMID: 32630776 PMCID: PMC7411631 DOI: 10.3390/molecules25133028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
Emiliania huxleyi is one of the most abundant marine planktons, and it has a crucial feature in the carbon cycle. However, proteomic analyses of Emiliania huxleyi have not been done extensively. In this study, a three-dimensional liquid chromatography (3D-LC) system consisting of strong cation exchange, high- and low-pH reversed-phase liquid chromatography was established for in-depth proteomic profiling of Emiliania huxleyi. From tryptic proteome digest, 70 fractions were generated and analyzed using liquid chromatography-tandem mass spectrometry. In total, more than 84,000 unique peptides and 10,000 proteins groups were identified with a false discovery rate of ≤0.01. The physicochemical properties of the identified peptides were evaluated. Using ClueGO, approximately 700 gene ontology terms and 15 pathways were defined from the identified protein groups with p-value ≤0.05, covering a wide range of biological processes, cellular components, and molecular functions. Many biological processes associated with CO2 fixation, photosynthesis, biosynthesis, and metabolic process were identified. Various molecular functions relating to protein binding and enzyme activities were also found. The 3D-LC strategy is a powerful approach for comparative proteomic studies on Emiliania huxleyi to reveal changes in its protein level and related mechanism.
Collapse
|
16
|
Loureiro C, Buzalaf MAR, Pessan JP, Moraes FRND, Pelá VT, Ventura TMO, Jacinto RDC. Comparative Analysis of the Proteomic Profile of the Dental Pulp in Different Conditions. A Pilot Study. Braz Dent J 2020; 31:319-336. [DOI: 10.1590/0103-6440202003167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/17/2019] [Indexed: 11/22/2022] Open
Abstract
Abstract This study aimed to quantitatively compare the difference in protein expression in the progression of pulp pathogenesis, as well as to describe the biological functions of proteins identified in pulp tissue. Samples were obtained from six patients treated at the Araçatuba School of Dentistry and were divided into three groups: normal pulp - from teeth extracted for orthodontic indication; inflamed pulp and necrotic pulp - from patients diagnosed with irreversible pulpitis and chronic apical periodontitis, respectively. After previous proteomic preparation, dental pulp samples were processed for label-free quantitative proteomic analysis in a nanoACQUITY UPLC-Xevo QTof MS system. The difference in expression between the groups was calculated using the Protein Lynx Global Service software using the Monte Carlo algorithm. A total of 465 human proteins were identified in all groups. The most expressed proteins in the inflamed pulp group in relation to the normal pulp group were hemoglobin, peroxiredoxins and immunoglobulins, whereas the less expressed were the tubulins. Expression levels of albumins, immunoglobulins and alpha-2-macroglobulin were higher in the necrotic pulp group than in the inflamed pulp group. As for the qualitative analysis, the most prevalent protein functions in the normal pulp group were metabolic and energetic pathways; in the inflamed pulp group: cellular communication and signal transduction; and regulation and repair of DNA/RNA, while in the necrotic pulp group proteins were associated with the immune response. Thus, proteomic analysis showed quantitative and qualitative differences in protein expression in different types of pulp conditions.
Collapse
|
17
|
Sze SK, JebaMercy G, Ngan SC. Profiling the 'deamidome' of complex biosamples using mixed-mode chromatography-coupled tandem mass spectrometry. Methods 2020; 200:31-41. [PMID: 32418626 DOI: 10.1016/j.ymeth.2020.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/26/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Deamidation is a spontaneous degenerative protein modification (DPM) that disrupts the structure and function of both endogenous proteins and various therapeutic agents. While deamidation has long been recognized as a critical event in human aging and multiple degenerative diseases, research progress in this field has been restricted by the technical challenges associated with studying this DPM in complex biological samples. Asparagine (Asn) deamidation generates L-aspartic acid (L-Asp), D-aspartic acid (D-Asp), L-isoaspartic acid (L-isoAsp) or D-isoaspartic acid (D-isoAsp) residues at the same position of Asn in the affected protein, but each of these amino acids displays similar hydrophobicity and cannot be effectively separated by reverse phase liquid chromatography. The Asp and isoAsp isoforms are also difficult to resolve using mass spectrometry since they have the same mass and fragmentation pattern in MS/MS. Moreover, the 13C peaks of the amidated peptide are often misassigned as monoisotopic peaks of the corresponding deamidated peptides in protein database searches. Furthermore, typical protein isolation and proteomic sample preparation methods induce artificial deamidation that cannot be distinguished from the physiological forms. To better understand the role of deamidation in biological aging and degenerative pathologies, new technologies are now being developed to address these analytical challenges, including mixed mode electrostatic-interaction modified hydrophilic interaction liquid chromatography (emHILIC). When coupled to high resolution, high accuracy tandem mass spectrometry this technology enables unprecedented, proteome-wide study of the 'deamidome' of complex samples. The current article therefore reviews recent advances in sample preparation methods, emHILIC-MS/MS technology, and MS instrumentation / data processing approaches to achieving accurate and reliable characterization of protein deamidation in complex biological and clinical samples.
Collapse
Affiliation(s)
- Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Gnanasekaran JebaMercy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - SoFong Cam Ngan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
18
|
Review of Three-Dimensional Liquid Chromatography Platforms for Bottom-Up Proteomics. Int J Mol Sci 2020; 21:ijms21041524. [PMID: 32102244 PMCID: PMC7073195 DOI: 10.3390/ijms21041524] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/30/2022] Open
Abstract
Proteomics is a large-scale study of proteins, aiming at the description and characterization of all expressed proteins in biological systems. The expressed proteins are typically highly complex and large in abundance range. To fulfill high accuracy and sensitivity of proteome analysis, the hybrid platforms of multidimensional (MD) separations and mass spectrometry have provided the most powerful solution. Multidimensional separations provide enhanced peak capacity and reduce sample complexity, which enables mass spectrometry to analyze more proteins with high sensitivity. Although two-dimensional (2D) separations have been widely used since the early period of proteomics, three-dimensional (3D) separation was barely used by low reproducibility of separation, increased analysis time in mass spectrometry. With developments of novel microscale techniques such as nano-UPLC and improvements of mass spectrometry, the 3D separation becomes a reliable and practical selection. This review summarizes existing offline and online 3D-LC platforms developed for proteomics and their applications. In detail, setups and implementation of those systems as well as their advances are outlined. The performance of those platforms is also discussed and compared with the state-of-the-art 2D-LC. In addition, we provide some perspectives on the future developments and applications of 3D-LC in proteomics.
Collapse
|
19
|
Piendl SK, Geissler D, Weigelt L, Belder D. Multiple Heart-Cutting Two-Dimensional Chip-HPLC Combined with Deep-UV Fluorescence and Mass Spectrometric Detection. Anal Chem 2020; 92:3795-3803. [DOI: 10.1021/acs.analchem.9b05206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sebastian K. Piendl
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - David Geissler
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Laura Weigelt
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
20
|
Analysis of silver-associated proteins in pathogen via combination of native SDS-PAGE, fluorescent staining, and inductively coupled plasma mass spectrometry. J Chromatogr A 2019; 1607:460393. [PMID: 31376982 DOI: 10.1016/j.chroma.2019.460393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 11/19/2022]
Abstract
Characterization of silver-associated proteins is important to elucidate underlined mechanisms of silver-containing materials against microbes. Gel electrophoresis based methods are the most popular and basic strategy for the analysis of biomolecules, i.e., proteins and nucleic acids. It solely provides molecular weights of analytes. Extending the method from molecular weight to elemental composition is highly desired when investigating metal-containing molecules. Herein, a gel electrophoresis based method combining native sodium dodecyl sulfate-polyacrylamide gel electrophoresis (native SDS-PAGE), fluorescent staining, and inductively coupled plasma mass spectrometry (ICP-MS) strategy was developed for separation and detection of silver-associated proteins. Two home-made silver-labeled proteins, carbonic anhydrase and ovalbumin, were used for validation of the strategy performance. Silver-associated proteins in Pseudomonas aeruginosa and Staphylococcus aureus treated with silver nanoparticles were further characterized by this method. Some well-known and new proteins were identified to associate to silver in both P. aeruginosa and S. aureus, demonstrating the feasibility of the developed strategy. In conclusion, the current study provides a convenient method for readily identification of silver-associated proteins in biological samples.
Collapse
|
21
|
Ye X, Tang J, Mao Y, Lu X, Yang Y, Chen W, Zhang X, Xu R, Tian R. Integrated proteomics sample preparation and fractionation: Method development and applications. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Yang Z, Shen X, Chen D, Sun L. Improved Nanoflow RPLC-CZE-MS/MS System with High Peak Capacity and Sensitivity for Nanogram Bottom-up Proteomics. J Proteome Res 2019; 18:4046-4054. [PMID: 31610113 DOI: 10.1021/acs.jproteome.9b00545] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Novel mass spectrometry (MS)-based proteomic tools with extremely high sensitivity and high peak capacity are required for comprehensive characterization of protein molecules in mass-limited samples. We reported a nanoRPLC-CZE-MS/MS system for deep bottom-up proteomics of low micrograms of human cell samples in previous work. In this work, we improved the sensitivity of the nanoRPLC-CZE-MS/MS system drastically via employing bovine serum albumin (BSA)-treated sample vials, improving the nanoRPLC fraction collection procedure, and using a short capillary for fast CZE separation. The improved nanoRPLC-CZE produced a peak capacity of 8500 for peptide separation. The improved system identified 6500 proteins from a MCF7 proteome digest starting with only 500 ng of peptides using a Q-Exactive HF mass spectrometer. The system produced a comparable number of protein identifications (IDs) to our previous system and the two-dimensional (2D) nanoRPLC-MS/MS system developed by Mann's group with 10-fold and 4-fold less sample consumption, respectively. We coupled the single-spot solid phase sample preparation (SP3) method to the improved nanoRPLC-CZE-MS/MS for bottom-up proteomics of 5000 HEK293T cells, resulting in 3689 protein IDs with the consumption of a peptide amount that corresponded to only roughly 1000 cells.
Collapse
Affiliation(s)
- Zhichang Yang
- Department of Chemistry , Michigan State University , 578 S Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Xiaojing Shen
- Department of Chemistry , Michigan State University , 578 S Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Daoyang Chen
- Department of Chemistry , Michigan State University , 578 S Shaw Lane , East Lansing , Michigan 48824 , United States
| | - Liangliang Sun
- Department of Chemistry , Michigan State University , 578 S Shaw Lane , East Lansing , Michigan 48824 , United States
| |
Collapse
|
23
|
Metaproteomics of Freshwater Microbial Communities. Methods Mol Biol 2019. [PMID: 30980327 DOI: 10.1007/978-1-4939-9232-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Recent advances in metaproteomics have provided us a link between genomic expression and functional characterization of environmental microbial communities. Therefore, the large-scale identification of proteins expressed by environmental microbiomes allows an unprecedented view of their in situ metabolism and function. However, one of the main challenges in metaproteomics remains the lack of robust analytical pipelines. This is especially true for aquatic environments with low protein concentrations and the presence of compounds that are known to interfere with traditional sample preparation pipelines and downstream LC-MS/MS analyses. In this chapter, a semiquantitative method that spans from sample preparation to functional annotation is provided. This method has been shown to provide in-depth and representative results of both the eukaryotic and prokaryotic fractions of freshwater microbiomes.
Collapse
|
24
|
Mass Spectrometry-Based Biomarkers in Drug Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:435-449. [PMID: 31347063 DOI: 10.1007/978-3-030-15950-4_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Advances in mass spectrometry, proteomics, protein bioanalytical approaches, and biochemistry have led to a rapid evolution and expansion in the area of mass spectrometry-based biomarker discovery and development. The last decade has also seen significant progress in establishing accepted definitions, guidelines, and criteria for the analytical validation, acceptance and qualification of biomarkers. These advances have coincided with a decreased return on investment for pharmaceutical research and development and an increasing need for better early decision making tools. Empowering development teams with tools to measure a therapeutic interventions impact on disease state and progression, measure target engagement and to confirm predicted pharmacodynamic effects is critical to efficient data-driven decision making. Appropriate implementation of a biomarker or a combination of biomarkers can enhance understanding of a drugs mechanism, facilitate effective translation from the preclinical to clinical space, enable early proof of concept and dose selection, and increases the efficiency of drug development. Here we will provide descriptions of the different classes of biomarkers that have utility in the drug development process as well as review specific, protein-centric, mass spectrometry-based approaches for the discovery of biomarkers and development of targeted assays to measure these markers in a selective and analytically precise manner.
Collapse
|
25
|
Panis C, Corrêa S, Binato R, Abdelhay E. The Role of Proteomics in Cancer Research. ONCOGENOMICS 2019:31-55. [DOI: 10.1016/b978-0-12-811785-9.00003-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Zhang C, Shi Z, Han Y, Ren Y, Hao P. Multiparameter Optimization of Two Common Proteomics Quantification Methods for Quantifying Low-Abundance Proteins. J Proteome Res 2018; 18:461-468. [PMID: 30394099 DOI: 10.1021/acs.jproteome.8b00769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Quantitative proteomics has been extensively applied in the screening of differentially regulated proteins in various research areas for decades, but its sensitivity and accuracy have been a bottleneck for many applications. Every step in the proteomics workflow can potentially affect the quantification of low-abundance proteins, but a systematic evaluation of their effects has not been done yet. In this work, to improve the sensitivity and accuracy of label-free quantification and tandem mass tags (TMT) labeling in quantifying low-abundance proteins, multiparameter optimization was carried out using a complex 2-proteome artificial sample mixture for a series of steps from sample preparation to data analysis, including the desalting of peptides, peptide injection amount for LC-MS/MS, MS1 resolution, the length of LC-MS/MS gradient, AGC targets, ion accumulation time, MS2 resolution, precursor coisolation threshold, data analysis software, statistical calculation methods, and protein fold changes, and the best settings for each parameter were defined. The suitable cutoffs for detecting low-abundance proteins with at least 1.5-fold and 2-fold changes were identified for label-free and TMT methods, respectively. The use of optimized parameters will significantly improve the overall performance of quantitative proteomics in quantifying low-abundance proteins and thus promote its application in other research areas.
Collapse
Affiliation(s)
- Chengqian Zhang
- School of Life Science and Technology , ShanghaiTech University , 393 Middle Huaxia Road , Shanghai 201210 , China
| | - Zhaomei Shi
- School of Life Science and Technology , ShanghaiTech University , 393 Middle Huaxia Road , Shanghai 201210 , China
| | - Ying Han
- School of Life Science and Technology , ShanghaiTech University , 393 Middle Huaxia Road , Shanghai 201210 , China
| | - Yan Ren
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,China National GeneBank , BGI-Shenzhen , Jinsha Road , Shenzhen 518120 , China
| | - Piliang Hao
- School of Life Science and Technology , ShanghaiTech University , 393 Middle Huaxia Road , Shanghai 201210 , China
| |
Collapse
|
27
|
Kwiatkowski M, Krösser D, Wurlitzer M, Steffen P, Barcaru A, Krisp C, Horvatovich P, Bischoff R, Schlüter H. Application of Displacement Chromatography to Online Two-Dimensional Liquid Chromatography Coupled to Tandem Mass Spectrometry Improves Peptide Separation Efficiency and Detectability for the Analysis of Complex Proteomes. Anal Chem 2018; 90:9951-9958. [PMID: 30014690 PMCID: PMC6106052 DOI: 10.1021/acs.analchem.8b02189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
The complexity of
mammalian proteomes is a challenge in bottom-up
proteomics. For a comprehensive proteome analysis, multidimensional
separation strategies are necessary. Online two-dimensional liquid
chromatography–tandem mass spectrometry (2D-LC-MS/MS) combining
strong cation exchange (SCX) in the first dimension with reversed-phase
(RP) chromatography in the second dimension provides a powerful approach
to analyze complex proteomes. Although the combination of SCX with
RP chromatography provides a good orthogonality, only a moderate separation
is achieved in the first dimension for peptides with two (+2) or three
(+3) positive charges. The aim of this study was to improve the performance
of online SCX-RP-MS/MS by applying displacement chromatography to
the first separation dimension. Compared to gradient chromatography
mode (GCM), displacement chromatography mode (DCM) was expected to
improve the separation of +2-peptides and +3-peptides, thus reducing
complexity and increasing ionization and detectability. The results
show that DCM provided a separation of +2-peptides and +3-peptides
in remarkably sharp zones with a low degree of coelution, thus providing
fractions with significantly higher purities compared to GCM. In particular,
+2-peptides were separated over several fractions, which was not possible
to achieve in GCM. The better separation in DCM resulted in a higher
reproducibility and significantly higher identification rates for
both peptides and proteins including a 2.6-fold increase for +2-peptides.
The higher number of identified peptides in DCM resulted in significantly
higher protein sequence coverages and a considerably higher number
of unique peptides per protein. Compared to conventionally used salt-based
GCM, DCM increased the performance of online SCX-RP-MS/MS and enabled
comprehensive proteome profiling in the low microgram range.
Collapse
Affiliation(s)
- Marcel Kwiatkowski
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine , University Medical Center Hamburg-Eppendorf , 20246 Hamburg , Germany.,Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy , University of Groningen , 9713 AV Groningen , The Netherlands
| | - Dennis Krösser
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine , University Medical Center Hamburg-Eppendorf , 20246 Hamburg , Germany
| | - Marcus Wurlitzer
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine , University Medical Center Hamburg-Eppendorf , 20246 Hamburg , Germany
| | - Pascal Steffen
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine , University Medical Center Hamburg-Eppendorf , 20246 Hamburg , Germany
| | - Andrei Barcaru
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy , University of Groningen , 9713 AV Groningen , The Netherlands
| | - Christoph Krisp
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine , University Medical Center Hamburg-Eppendorf , 20246 Hamburg , Germany
| | - Péter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy , University of Groningen , 9713 AV Groningen , The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy , University of Groningen , 9713 AV Groningen , The Netherlands
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics, Institute of Clinical Chemistry and Laboratory Medicine , University Medical Center Hamburg-Eppendorf , 20246 Hamburg , Germany
| |
Collapse
|
28
|
Politis A, Schmidt C. Structural characterisation of medically relevant protein assemblies by integrating mass spectrometry with computational modelling. J Proteomics 2018; 175:34-41. [DOI: 10.1016/j.jprot.2017.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 01/14/2023]
|
29
|
Soria J, Acera A, Merayo-LLoves J, Durán JA, González N, Rodriguez S, Bistolas N, Schumacher S, Bier FF, Peter H, Stöcklein W, Suárez T. Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep 2017. [PMID: 29234088 PMCID: PMC5727318 DOI: 10.1038/s41598-017-17536-2 10.1038/s41598-017-17536-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We analyzed the tear film proteome of patients with dry eye (DE), meibomian gland dysfunction (MGD), and normal volunteers (CT). Tear samples were collected from 70 individuals. Of these, 37 samples were analyzed using spectral-counting-based LC-MS/MS label-free quantitation, and 33 samples were evaluated in the validation of candidate biomarkers employing customized antibody microarray assays. Comparative analysis of tear protein profiles revealed differences in the expression levels of 26 proteins, including protein S100A6, annexin A1, cystatin-S, thioredoxin, phospholipase A2, antileukoproteinase, and lactoperoxidase. Antibody microarray validation of CST4, S100A6, and MMP9 confirmed the accuracy of previously reported ELISA assays, with an area under ROC curve (AUC) of 87.5%. Clinical endpoint analysis showed a good correlation between biomarker concentrations and clinical parameters. In conclusion, different sets of proteins differentiate between the groups. Apolipoprotein D, S100A6, S100A8, and ceruloplasmin discriminate best between the DE and CT groups. The differences between antileukoproteinase, phospholipase A2, and lactoperoxidase levels allow the distinction between MGD and DE, and the changes in the levels of annexin A1, clusterin, and alpha-1-acid glycoprotein 1, between MGD and CT groups. The functional network analysis revealed the main biological processes that should be examined to identify new candidate biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Javier Soria
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Arantxa Acera
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Jesús Merayo-LLoves
- Instituto Universitario Fernández-Vega, Avda Dres Fernández-Vega num 34, Oviedo, E-33012, Principado de Asturias, Spain
| | - Juan A Durán
- Instituto Clínico Quirúrgico de Oftalmología (ICQO), Virgen de Begoña N° 34, E-48006, Bilbao, Bizkaia, Spain.,Department of Ophthalmology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Nerea González
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Sandra Rodriguez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Nikitas Bistolas
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Soeren Schumacher
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Frank F Bier
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Harald Peter
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Walter Stöcklein
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Tatiana Suárez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain.
| |
Collapse
|
30
|
Soria J, Acera A, Merayo-LLoves J, Durán JA, González N, Rodriguez S, Bistolas N, Schumacher S, Bier FF, Peter H, Stöcklein W, Suárez T. Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep 2017; 7:17478. [PMID: 29234088 PMCID: PMC5727318 DOI: 10.1038/s41598-017-17536-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/20/2017] [Indexed: 12/02/2022] Open
Abstract
We analyzed the tear film proteome of patients with dry eye (DE), meibomian gland dysfunction (MGD), and normal volunteers (CT). Tear samples were collected from 70 individuals. Of these, 37 samples were analyzed using spectral-counting-based LC-MS/MS label-free quantitation, and 33 samples were evaluated in the validation of candidate biomarkers employing customized antibody microarray assays. Comparative analysis of tear protein profiles revealed differences in the expression levels of 26 proteins, including protein S100A6, annexin A1, cystatin-S, thioredoxin, phospholipase A2, antileukoproteinase, and lactoperoxidase. Antibody microarray validation of CST4, S100A6, and MMP9 confirmed the accuracy of previously reported ELISA assays, with an area under ROC curve (AUC) of 87.5%. Clinical endpoint analysis showed a good correlation between biomarker concentrations and clinical parameters. In conclusion, different sets of proteins differentiate between the groups. Apolipoprotein D, S100A6, S100A8, and ceruloplasmin discriminate best between the DE and CT groups. The differences between antileukoproteinase, phospholipase A2, and lactoperoxidase levels allow the distinction between MGD and DE, and the changes in the levels of annexin A1, clusterin, and alpha-1-acid glycoprotein 1, between MGD and CT groups. The functional network analysis revealed the main biological processes that should be examined to identify new candidate biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Javier Soria
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Arantxa Acera
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Jesús Merayo-LLoves
- Instituto Universitario Fernández-Vega, Avda Dres Fernández-Vega num 34, Oviedo, E-33012, Principado de Asturias, Spain
| | - Juan A Durán
- Instituto Clínico Quirúrgico de Oftalmología (ICQO), Virgen de Begoña N° 34, E-48006, Bilbao, Bizkaia, Spain.,Department of Ophthalmology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Nerea González
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Sandra Rodriguez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Nikitas Bistolas
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Soeren Schumacher
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Frank F Bier
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Harald Peter
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Walter Stöcklein
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Tatiana Suárez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain.
| |
Collapse
|
31
|
Yi L, Piehowski PD, Shi T, Smith RD, Qian WJ. Advances in microscale separations towards nanoproteomics applications. J Chromatogr A 2017; 1523:40-48. [PMID: 28765000 PMCID: PMC6042839 DOI: 10.1016/j.chroma.2017.07.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 01/22/2023]
Abstract
Microscale separation (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. In recent decades significant advances have been achieved in MS-based proteomics. However, the current proteomics platforms still face an analytical challenge in overall sensitivity towards nanoproteomics applications for starting materials of less than 1μg total proteins (e.g., cellular heterogeneity in tissue pathologies). Herein, we review recent advances in microscale separation techniques and integrated sample processing strategies that improve the overall sensitivity and proteome coverage of the proteomics workflow, and their contributions towards nanoproteomics applications.
Collapse
Affiliation(s)
- Lian Yi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Paul D Piehowski
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States.
| |
Collapse
|
32
|
Tao Z, Meng X, Han YQ, Xue MM, Wu S, Wu P, Yuan Y, Zhu Q, Zhang TJ, Wong CCL. Therapeutic Mechanistic Studies of ShuFengJieDu Capsule in an Acute Lung Injury Animal Model Using Quantitative Proteomics Technology. J Proteome Res 2017; 16:4009-4019. [PMID: 28880561 DOI: 10.1021/acs.jproteome.7b00409] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ShuFengJieDu capsule (SFJDC), a traditional Chinese medicine (TCM) that contains eight medicinal herbs, has been extensively utilized for the treatment of acute lung injury (ALI) and respiratory infections for more than 30 years in China. SFJDC has also been listed in the official guidelines of the China Food and Drug Administration (CFDA) due to its stable clinical manifestations. However, the underlying mechanism of SFJDC during ALI repair remains unclear. In the present study, we explored the protective and therapeutic mechanisms of SFJDC in a rat model by performing qualitative and label-free quantitative proteomics studies. After establishing lipopolysaccharide (LPS)-induced ALI rat models, we profiled macrophage cells isolated from freshly resected rat lung tissues derived from ALI models and ALI rat lung tissue sections using a high performance liquid chromatography-mass spectrometry (HPLC-MS/MS) shotgun proteomics approach to identify changes in the expression levels of proteins of interest. On the basis of our proteomics results and the results of a protein dysregulation analysis of ALI rat lung tissues and rat lung macrophages, AKT1 was selected as a putative key factor that may play an important role in mediating the effects of SFJDC treatment during ALI progression. Follow-up validation studies demonstrated that AKT1 expression effectively regulates various ALI-related molecules, and Gene Ontology analysis indicated that SFJDC-treated ALI rat macrophages were influenced by AKT1-based networks. Gain- and loss-of-function analyses following lentivirus-AKT1 or lentivirus-si-AKT1 infection in macrophages also indicated that AKT1 was essential for the development of ALI due to its ability to regulate oxidative stress, apoptosis, or inflammatory responses. In summary, SFJDC effectively modulated anti-inflammatory and immunomodulation activity during ALI, potentially due to AKT1 regulation during ALI progression. New insights into SFJDC mechanisms may facilitate the development of novel pharmaceutical strategies to control the expression of inflammatory factors.
Collapse
Affiliation(s)
| | - Xia Meng
- National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 201210, China
| | - Yan-Qi Han
- Tianjin Institute of Pharmaceutical Research , Tianjin 300193, China
| | | | - Shifei Wu
- National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 201210, China
| | - Ping Wu
- National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 201210, China
| | | | - Qiang Zhu
- Anhui Jiren Pharmaceutical Co., Ltd., Bozhou 236800, China
| | - Tie-Jun Zhang
- Tianjin Institute of Pharmaceutical Research , Tianjin 300193, China
| | - Catherine C L Wong
- National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 201210, China
| |
Collapse
|
33
|
Capitanio D, Moriggi M, Gelfi C. Mapping the human skeletal muscle proteome: progress and potential. Expert Rev Proteomics 2017; 14:825-839. [PMID: 28780899 DOI: 10.1080/14789450.2017.1364996] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Human skeletal muscle represents 40% of our body mass and deciphering its proteome composition to further understand mechanisms regulating muscle function under physiological and pathological conditions has proved a challenge. The inter-individual variability, the presence of structurally and functionally different muscle types and the high protein dynamic range require carefully selected methodologies for the assessment of the muscle proteome. Furthermore, physiological studies are understandingly hampered by ethical issues related to biopsies on healthy subjects, making it difficult to recruit matched controls essential for comparative studies. Areas covered: This review critically analyses studies performed on muscle to date and identifies what still remains unknown or poorly investigated in physiological and pathological states, such as training, aging, metabolic disorders and muscular dystrophies. Expert commentary: Efforts should be made on biological fluid analyses targeting low abundant/low molecular weight fragments generated from muscle cell disruption to improve diagnosis and clinical monitoring. From a methodological point of view, particular attention should be paid to improve the characterization of intact proteins and unknown post translational modifications to better understand the molecular mechanisms of muscle disorders.
Collapse
Affiliation(s)
- Daniele Capitanio
- a Department of Biomedical Sciences for Health , University of Milan , Segrate , Milan , Italy
| | - Manuela Moriggi
- a Department of Biomedical Sciences for Health , University of Milan , Segrate , Milan , Italy
| | - Cecilia Gelfi
- a Department of Biomedical Sciences for Health , University of Milan , Segrate , Milan , Italy
| |
Collapse
|
34
|
Capriotti AL, Cavaliere C, Cavazzini A, Gasparrini F, Pierri G, Piovesana S, Laganà A. A multidimensional liquid chromatography–tandem mass spectrometry platform to improve protein identification in high-throughput shotgun proteomics. J Chromatogr A 2017; 1498:176-182. [DOI: 10.1016/j.chroma.2017.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/20/2017] [Accepted: 03/17/2017] [Indexed: 01/13/2023]
|
35
|
Padrão AI, Ferreira R, Amado F, Vitorino R, Duarte JA. Uncovering the exercise-related proteome signature in skeletal muscle. Proteomics 2016; 16:816-30. [PMID: 26632760 DOI: 10.1002/pmic.201500382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/13/2015] [Accepted: 11/30/2015] [Indexed: 01/01/2023]
Abstract
Exercise training has been recommended as a nonpharmacological strategy for the prevention and attenuation of skeletal muscle atrophy in distinct pathophysiological conditions. Despite the well-established phenotypic alterations, the molecular mechanisms underlying exercise-induced skeletal muscle remodeling are poorly characterized. Proteomics based on mass spectrometry have been successfully applied for the characterization of skeletal muscle proteome, representing a pivotal approach for the wide characterization of the molecular networks that lead to skeletal muscle remodeling. Nevertheless, few studies were performed to characterize the exercise-induced proteome remodeling of skeletal muscle, with only six research papers focused on the cross-talk between exercise and pathophysiological conditions. In order to add new insights on the impact of distinct exercise programs on skeletal muscle proteome, molecular network analysis was performed with bioinformatics tools. This analysis highlighted an exercise-related proteome signature characterized by the up-regulation of the capacity for ATP generation, oxygen delivery, antioxidant capacity and regulation of mitochondrial protein synthesis. Chronic endurance training up-regulates the tricarboxylic acid cycle and oxidative phosphorylation system, whereas the release of calcium ion into cytosol and amino acid metabolism are the biological processes up-regulated by a single bout of exercise. Other issues as exercise intensity, load, mode and regimen as well as muscle type also influence the exercise-induced proteome signature. The comprehensive analysis of the molecular networks modulated by exercise training in health and disease, taking in consideration all these variables, might not only support the therapeutic effect of exercise but also highlight novel targets for the development of enhanced pharmacological strategies.
Collapse
Affiliation(s)
- Ana Isabel Padrão
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CIAFEL, Faculty of Sports, University of Porto, Porto, Portugal
| | - Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Francisco Amado
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences and Institute for Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | | |
Collapse
|
36
|
Lee H, Mun DG, So JE, Bae J, Kim H, Masselon C, Lee SW. Efficient Exploitation of Separation Space in Two-Dimensional Liquid Chromatography System for Comprehensive and Efficient Proteomic Analyses. Anal Chem 2016; 88:11734-11741. [DOI: 10.1021/acs.analchem.6b03366] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hangyeore Lee
- Department
of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 136-701, South Korea
| | - Dong-Gi Mun
- Department
of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 136-701, South Korea
| | - Jeong Eun So
- Department
of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 136-701, South Korea
| | - Jingi Bae
- Department
of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 136-701, South Korea
| | - Hokeun Kim
- Department
of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 136-701, South Korea
| | - Christophe Masselon
- Université Grenoble Alpes, F-38402 Saint-Martin-d’Heres, France
- CEA, Institut
de
Biosciences et de Biotechnologie de Grenoble, Biologie à Grande
Echelle, F-38054 Grenoble, France
- INSERM, U1038, F-38054 Grenoble, France
| | - Sang-Won Lee
- Department
of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul 136-701, South Korea
| |
Collapse
|
37
|
Kilambi HV, Manda K, Sanivarapu H, Maurya VK, Sharma R, Sreelakshmi Y. Shotgun Proteomics of Tomato Fruits: Evaluation, Optimization and Validation of Sample Preparation Methods and Mass Spectrometric Parameters. FRONTIERS IN PLANT SCIENCE 2016; 7:969. [PMID: 27446192 PMCID: PMC4925719 DOI: 10.3389/fpls.2016.00969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/17/2016] [Indexed: 05/29/2023]
Abstract
An optimized protocol was developed for shotgun proteomics of tomato fruit, which is a recalcitrant tissue due to a high percentage of sugars and secondary metabolites. A number of protein extraction and fractionation techniques were examined for optimal protein extraction from tomato fruits followed by peptide separation on nanoLCMS. Of all evaluated extraction agents, buffer saturated phenol was the most efficient. In-gel digestion [SDS-PAGE followed by separation on LCMS (GeLCMS)] of phenol-extracted sample yielded a maximal number of proteins. For in-solution digested samples, fractionation by strong anion exchange chromatography (SAX) also gave similar high proteome coverage. For shotgun proteomic profiling, optimization of mass spectrometry parameters such as automatic gain control targets (5E+05 for MS, 1E+04 for MS/MS); ion injection times (500 ms for MS, 100 ms for MS/MS); resolution of 30,000; signal threshold of 500; top N-value of 20 and fragmentation by collision-induced dissociation yielded the highest number of proteins. Validation of the above protocol in two tomato cultivars demonstrated its reproducibility, consistency, and robustness with a CV of < 10%. The protocol facilitated the detection of five-fold higher number of proteins compared to published reports in tomato fruits. The protocol outlined would be useful for high-throughput proteome analysis from tomato fruits and can be applied to other recalcitrant tissues.
Collapse
|
38
|
Timms JF, Hale OJ, Cramer R. Advances in mass spectrometry-based cancer research and analysis: from cancer proteomics to clinical diagnostics. Expert Rev Proteomics 2016; 13:593-607. [DOI: 10.1080/14789450.2016.1182431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
LIN L, LUO SS, WANG LJ, YANG J, SHEN HN, TIAN RJ. Progress and Application of LC-MS Technologies for Characterizing Protein Post Translational Modifications. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60866-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Xiong W, Abraham PE, Li Z, Pan C, Hettich RL. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota. Proteomics 2015; 15:3424-38. [PMID: 25914197 DOI: 10.1002/pmic.201400571] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/08/2015] [Accepted: 04/21/2015] [Indexed: 01/12/2023]
Abstract
The human gastrointestinal tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome is not merely a collection of opportunistic parasites, but rather provides important functions to the host that are absolutely critical to many aspects of health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial metaproteomics provides the ability to characterize the human gut microbiota functions and metabolic activities at a remarkably deep level, revealing information about microbiome development and stability as well as their interactions with their human host. Generally, microbial and human proteins can be extracted and then measured by high performance MS-based proteomics technology. Here, we review the field of human gut microbiome metaproteomics, with a focus on the experimental and informatics considerations involved in characterizing systems ranging from low-complexity model gut microbiota in gnotobiotic mice, to the emerging gut microbiome in the GI tract of newborn human infants, and finally to an established gut microbiota in human adults.
Collapse
Affiliation(s)
- Weili Xiong
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, USA
| | - Paul E Abraham
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Zhou Li
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Chongle Pan
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert L Hettich
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
41
|
Development of Monolithic Column Materials for the Separation and Analysis of Glycans. CHROMATOGRAPHY 2015. [DOI: 10.3390/chromatography2010020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Abstract
The technique of proteolytically digesting a sample and identifying its protein components by liquid chromatography followed by mass spectrometry (LC-MS) is a widely used analytical tool. Prior fractionation by isoelectric focusing (IEF) may be performed to increase the depth of proteome coverage. Here, we describe a method for in-gel IEF separation of a proteolytic digest that utilizes commercially available immobilized pH gradient (IPG) strips and a widely used IEF instrument.
Collapse
|
43
|
Samperi R, Capriotti AL, Cavaliere C, Colapicchioni V, Chiozzi RZ, Laganà A. Food Proteins and Peptides. ADVANCED MASS SPECTROMETRY FOR FOOD SAFETY AND QUALITY 2015. [DOI: 10.1016/b978-0-444-63340-8.00006-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Kawanishi M, Hashimoto Y, Shimizu T, Sagawa I, Ishida T, Kiwada H. Comprehensive analysis of PEGylated liposome-associated proteins relating to the accelerated blood clearance phenomenon by combination with shotgun analysis and conventional methods. Biotechnol Appl Biochem 2014; 62:547-55. [PMID: 25196743 DOI: 10.1002/bab.1291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/02/2014] [Indexed: 12/17/2022]
Abstract
PEGylated liposome, sterically stabilized by polyethylene glycol (PEG), results in reduced recognition of the liposome by the mononuclear phagocyte system. Recently, we reported regarding the accelerated blood clearance (ABC) phenomenon that PEGylated liposome is cleared very rapidly from blood circulation upon repeated injection. Anti-PEG IgM production and subsequent complement activation were crucial in causing the ABC phenomenon. However, there still remains the possibility that unknown plasma factors might affect the fate of PEGylated liposome that is subjected to the ABC phenomenon. A label-free approach to shotgun analysis is a great tool for characterizing proteins in a biological system. In this study, therefore, a shotgun analysis was employed to identify plasma protein bound on PEGylated liposome after the ABC phenomenon was induced in the mouse model. The analysis revealed that immunoglobulin and complement components (C1 and C3) are the major proteins. Subsequent analysis with enzyme-linked immunosorbent assay and Western blotting showed that the immunoglobulin was IgM and that the complement system was mainly activated via an anti-PEG IgM-mediated classical pathway. These results support our earlier assumptions-anti-PEG IgM and complement activation were the major causes of the ABC phenomenon. Our proposed analytical strategy would be expected to provide useful information for the development and design of the nanocarrier drug delivery system.
Collapse
Affiliation(s)
- Munehira Kawanishi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Health Biosciences, The University of Tokushima, Sho-machi, Tokushima 770-8505, Japan
| | - Yosuke Hashimoto
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Health Biosciences, The University of Tokushima, Sho-machi, Tokushima 770-8505, Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Health Biosciences, The University of Tokushima, Sho-machi, Tokushima 770-8505, Japan
| | - Ikuko Sagawa
- Support Center for Advanced Medical Sciences, Institute of Health Biosciences, The University of Tokushima, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Health Biosciences, The University of Tokushima, Sho-machi, Tokushima 770-8505, Japan
| | - Hiroshi Kiwada
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Health Biosciences, The University of Tokushima, Sho-machi, Tokushima 770-8505, Japan
| |
Collapse
|
45
|
Camerini S, Mauri P. The role of protein and peptide separation before mass spectrometry analysis in clinical proteomics. J Chromatogr A 2014; 1381:1-12. [PMID: 25618357 DOI: 10.1016/j.chroma.2014.12.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/25/2022]
Abstract
The purpose of clinical proteomics is to characterise protein profiles of a plethora of diseases with the aim of finding specific biomarkers. These are particularly valuable for early diagnosis, and represent key molecules suitable to elucidate pathogenic mechanisms. Samples deriving from patients (i.e. blood, urine, cerebrospinal fluid, biopsies) are the sources for clinical proteomics. Due to the complexity of the extracted samples their direct analysis is unachievable. Any analytical clinical proteomics study should start with the choice of the optimal combination of strategies with respect to both sample preparations and MS approaches. Protein or peptide fractionation (off-line or on-line) is essential to reduce complexity of biological samples and to achieve the most complete and reproducible analysis. The aim of this review is to introduce the readers to a functional range of strategies to help scientists in their proteomics set up. In particular, the separation approaches of proteins or peptides (both gel-based and gel-free) are reviewed with special attention paid to their advantages and limitations, and to the different liquid chromatography techniques used to peptide fractionation after protein enzymatic digestion and before their detection. Finally, the role of mass spectrometry (MS) for protein identification and quantification is discussed including emerging MS data acquisition strategies.
Collapse
Affiliation(s)
- Serena Camerini
- Dept of Cell Biology and Neurosciences Higher Institute of Health (ISS), Rome, Italy
| | - Pierluigi Mauri
- Institute for Biomedical Technologies (ITB-CNR), Segrate, and Institute of Life Science - Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
46
|
Binai NA, Marino F, Soendergaard P, Bache N, Mohammed S, Heck AJR. Rapid analyses of proteomes and interactomes using an integrated solid-phase extraction-liquid chromatography-MS/MS system. J Proteome Res 2014; 14:977-85. [PMID: 25485597 DOI: 10.1021/pr501011z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we explore applications of a LC system using disposable solid-phase extraction (SPE) cartridges and very short LC-MS/MS gradients that allows for rapid analyses in less than 10 min analysis time. The setup consists of an autosampler harboring two sets of 96 STAGE tips that function as precolumns and a short RP analytical column running 6.5 min gradients. This system combines efficiently with several proteomics workflows such as offline prefractionation methods, including 1D gel electrophoresis and strong-cation exchange chromatography. It also enables the analysis of interactomes obtained by affinity purification with an analysis time of approximately 1 h. In a typical shotgun proteomics experiment involving 36 SCX fractions of an AspN digested cell lysate, we detected over 3600 protein groups with an analysis time of less than 5.5 h. This innovative fast LC system reduces proteome analysis time while maintaining sufficient proteomic detail. This has particular relevance for the use of proteomics within a clinical environment, where large sample numbers and fast turnover times are essential.
Collapse
Affiliation(s)
- Nadine A Binai
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, ‡Netherlands Proteomics Centre, University of Utrecht , Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Zhao Y, Szeto SSW, Kong RPW, Law CH, Li G, Quan Q, Zhang Z, Wang Y, Chu IK. Online two-dimensional porous graphitic carbon/reversed phase liquid chromatography platform applied to shotgun proteomics and glycoproteomics. Anal Chem 2014; 86:12172-9. [PMID: 25393709 DOI: 10.1021/ac503254t] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel fully automatable two-dimensional liquid chromatography (2DLC) platform has been integrated into a modified commercial off-the-shelf LC instrument, incorporating porous graphitic carbon (PGC) separation and conventional low-pH reversed-phase (RP) separation for both proteomics and N-glycomics analyses; the dual-trap column configuration of this platform offers desirable high-throughput analyses with almost no idle time, in addition to a miniaturized setup and simplified operation. The total run time per analysis was only 19 h when using eight PGC fractions for unattended large-scale qualitative and quantitative proteomic analyses; the identification of 2678 nonredundant proteins and 11,984 unique peptides provided one of the most comprehensive proteome data sets for primary cerebellar granule neurons (CGNs). The effect of pH on the PGC column was investigated for the first time to improve the hydrophobic peptide coverage; the performance of the optimized system was first benchmarked using tryptic digests of Saccharomyces cerevisiae cell lysates and then evaluated through duplicate analyses of Macaca fascicularis cerebral cortex lysates using isobaric tags for relative and absolute quantitation (iTRAQ) technology. An additional plug-and-play PGC module functioned in a complementary manner to recover unretained hydrophilic solutes from the low-pH RP column; synchronization of the fractionations between the PGC-RP system and the PGC module facilitated simultaneous analyses of hydrophobic and hydrophilic compounds from a single sample injection event. This methodology was applied to perform, for the first time, detailed glycomics analyses of Macaca fascicularis plasma, resulting in the identification of a total 130 N-glycosylated plasma proteins, 705 N-glycopeptides, and 254 N-glycosylation sites.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Marechal A, Laaniste A, El-Debs R, Dugas V, Demesmay C. Versatile ene-thiol photoclick reaction for preparation of multimodal monolithic silica capillary columns. J Chromatogr A 2014; 1365:140-7. [DOI: 10.1016/j.chroma.2014.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/01/2014] [Accepted: 09/07/2014] [Indexed: 10/24/2022]
|
49
|
Ruan G, Wei M, Chen Z, Su R, Du F, Zheng Y. Novel regenerative large-volume immobilized enzyme reactor: Preparation, characterization and application. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 967:13-20. [DOI: 10.1016/j.jchromb.2014.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/30/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
|
50
|
Yin X, Liu X, Zhang Y, Yan G, Wang F, Lu H, Shen H, Yang P. Rapid and sensitive profiling and quantification of the human cell line proteome by LC-MS/MS without prefractionation. Proteomics 2014; 14:2008-16. [PMID: 25044409 DOI: 10.1002/pmic.201300510] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 06/11/2014] [Accepted: 07/03/2014] [Indexed: 01/05/2023]
Abstract
In this paper, we demonstrate a rapid and reproducible 1D LC-MS/MS workflow for fast quantitative proteomic research. We have optimized the LC-MS/MS conditions, including digestion and gradient conditions, sample loading amount, and MS parameter settings. As a result, we were able to obtain twice as many protein identifications compared with the LC-MS/MS conditions before optimization. More than 4500 protein groups and 50 000 peptides were identified in less than 8 h without any fractionation. This 1D workflow was then applied to the analysis of the MLN4924 treated/untreated human umbilical vein endothelial cell (HUVEC) samples with label-free quantification. In these experiments, a total of 179 proteins showed a statistically significant expression change after the MLN4924 treatment. Functional analysis showed that these proteins are associated with cell death and survival; gene expression; cell cycle; and DNA replication, recombination, and repair.
Collapse
Affiliation(s)
- Xuefei Yin
- Department of Chemistry and Institutes of Biomedical Sciences Shanghai Medical School, Fudan University, Shanghai, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|