1
|
Lapitan LD, Felisilda BMB, Tiangco CE, Rosin Jose A. Advances in Bioreceptor Layer Engineering in Nanomaterial-based Sensing of Pseudomonas Aeruginosa and its Metabolites. Chem Asian J 2024; 19:e202400090. [PMID: 38781439 DOI: 10.1002/asia.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Pseudomonas aeruginosa is a pathogen that infects wounds and burns and causes severe infections in immunocompromised humans. The high virulence, the rise of antibiotic-resistant strains, and the easy transmissibility of P. aeruginosa necessitate its fast detection and control. The gold standard for detecting P. aeruginosa, the plate culture method, though reliable, takes several days to complete. Therefore, developing accurate, rapid, and easy-to-use diagnostic tools for P. aeruginosa is highly desirable. Nanomaterial-based biosensors are at the forefront of detecting P. aeruginosa and its secondary metabolites. This review summarises the biorecognition elements, biomarkers, immobilisation strategies, and current state-of-the-art biosensors for P. aeruginosa. The review highlights the underlying principles of bioreceptor layer engineering and the design of optical, electrochemical, mass-based, and thermal biosensors based on nanomaterials. The advantages and disadvantages of these biosensors and their future point-of-care applications are also discussed. This review outlines significant advancements in biosensors and sensors for detecting P. aeruginosa and its metabolites. Research efforts have identified biorecognition elements specific and selective towards P. aeruginosa. The stability, ease of preparation, cost-effectiveness, and integration of these biorecognition elements onto transducers are pivotal for their application in biosensors and sensors. At the same time, when developing sensors for clinically significant analytes such as P. aeruginosa, virulence factors need to be addressed, such as the sensor's sensitivity, reliability, and response time in samples obtained from patients. The point-of-care applicability of the developed sensor may be an added advantage since it enables onsite determination. In this context, optical methods developed for P. aeruginosa offer promising potential.
Collapse
Affiliation(s)
- Lorico Ds Lapitan
- Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines, Center for Advanced Materials and Technologies-CEZAMAT, Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Bren Mark B Felisilda
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland, Department of Chemistry, College of Arts & Sciences, Xavier University-Ateneo de Cagayan, Corrales Street, Cagayan de Oro, Philippines
| | - Cristina E Tiangco
- Research Center for the Natural and Applied Sciences and, Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines
| | - Ammu Rosin Jose
- Department of Chemistry, Sacred Heart College (Autonomous), Pandit Karuppan Rd, Thevara, Ernakulam, Kerala, India
| |
Collapse
|
2
|
Song Y, Feng J, Wang X, Wen Y, Xu L, Huo Y, Wang L, Tao Q, Yang Z, Liu G, Chen M, Li L, Yan J. A multi-channel electrochemical biosensor based on polyadenine tetrahedra for the detection of multiple drug resistance genes. Analyst 2024; 149:3425-3432. [PMID: 38720619 DOI: 10.1039/d4an00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Antimicrobial resistance poses a serious threat to human health due to the high morbidity and mortality caused by drug-resistant microbial infections. Therefore, the development of rapid, sensitive and selective identification methods is key to improving the survival rate of patients. In this paper, a sandwich-type electrochemical DNA biosensor based on a polyadenine-DNA tetrahedron probe was constructed. The key experimental conditions were optimized, including the length of polyadenine, the concentration of the polyadenine DNA tetrahedron, the concentration of the signal probe and the hybridization time. At the same time, poly-avidin-HRP80 was used to enhance the electrochemical detection signal. Finally, excellent biosensor performance was achieved, and the detection limit for the synthetic DNA target was as low as 1 fM. In addition, we verified the practicability of the system by analyzing E. coli with the MCR-1 plasmid and realized multi-channel detection of the drug resistance genes MCR-1, blaNDM, blaKPC and blaOXA. With the ideal electrochemical interface, the polyA-based biosensor exhibits excellent stability, which provides powerful technical support for the rapid detection of antibiotic-resistant strains in the field.
Collapse
Affiliation(s)
- Yanan Song
- International Research Center for Food and Health; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203, P.R. China.
| | - Jun Feng
- Municipal Centre For Disease Control & Prevention, Shanghai 200336, China.
| | - Xueming Wang
- International Research Center for Food and Health; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Yanli Wen
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203, P.R. China.
| | - Li Xu
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203, P.R. China.
| | - Yinbo Huo
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203, P.R. China.
| | - Lele Wang
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203, P.R. China.
| | - Qing Tao
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203, P.R. China.
| | - Zhenzhou Yang
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203, P.R. China.
| | - Gang Liu
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203, P.R. China.
| | - Min Chen
- Municipal Centre For Disease Control & Prevention, Shanghai 200336, China.
| | - Lanying Li
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203, P.R. China.
| | - Juan Yan
- International Research Center for Food and Health; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Tanaka H, Taniguchi M. Self-Assembled Monolayers of Gemini-Type Amphiphilic Hexabenzocoronenes on Gold: Contribution of Their Triethylene Glycol Side Chains to Self-Assembly Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15078-15084. [PMID: 37824836 DOI: 10.1021/acs.langmuir.3c02130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
We report on a two-dimensional self-assembled structure of a supramolecule with hydrophilic oligoethylene glycol (EG) units, which are capable of stronger electrostatic interactions than van der Waals (vdW) interactions between alkyl chains. For this purpose, hexabenzocoronene (HBC) with two hydrophobic dodecyl chains on one side of the HBC core and two hydrophilic triethylene glycol (TEG) chains on the other side of the HBC core (HBCGemini) and HBCGemini with a trinitrofluorenone (TNF) added to the end of one TEG chain (HBCTNFGemini) were employed. Scanning tunneling microscopy (STM) revealed the presence of multiple two-dimensional self-assembled structures in each of HBCGemini and HBCTNFGemini deposited on the gold substrate in vacuum. The role of polar functional groups in these observations is discussed based on semiempirical molecular orbital simulations. Two types of 2D organized structures of HBC-TEG were observed: one with rectangular and relatively dense unit cells and the other with nearly square and relatively sparse unit cells. In both organized structures, the phenyl group TEG units and alkyl chains were considered to be the main molecular interactions with each other. On the other hand, in HBCTNFGemini, three types of organized structures were observed, which could be explained by the mechanism of interdigitation of the TEG-containing side-chain moieties to form a dimeric core. The EG units are more flexible than the alkyl chains and thus can interact flexibly with the hydrophobic HBC core, and the glycol side chains facilitate the intermolecular interactions as well as the alkyl chains.
Collapse
Affiliation(s)
- Hiroyuki Tanaka
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
4
|
Chai H, Tang Y, Guo Z, Miao P. Ratiometric Electrochemical Switch for Circulating Tumor DNA through Recycling Activation of Blocked DNAzymes. Anal Chem 2022; 94:2779-2784. [PMID: 35107269 DOI: 10.1021/acs.analchem.1c04037] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Circulating tumor DNA (ctDNA) serves as a powerful noninvasive and viable biomarker for the diagnosis of cancers. The abundance of ctDNA in patients with advanced stages is significantly higher than that in patients with early stages. Herein, a ratiometric electrochemical biosensor for the detection of ctDNA is developed by smart design of DNA probes and recycles of DNAzyme activation. The conformational variation of DNA structures leads to the changes of two types of electrochemical species. This enzyme-free sensing strategy promotes excellent amplification efficiency upon target recognition. The obtained results assure good analytical performances and a limit of detection as low as 25 aM is achieved. Additionally, this method exhibits outstanding selectivity and great application prospects in biological sample analysis.
Collapse
Affiliation(s)
- Hua Chai
- University of Science and Technology of China, Hefei 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Zhenzhen Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.,Ji Hua Laboratory, Foshan 528200, China
| | - Peng Miao
- University of Science and Technology of China, Hefei 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
5
|
Thapa K, Liu W, Wang R. Nucleic acid-based electrochemical biosensor: Recent advances in probe immobilization and signal amplification strategies. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1765. [PMID: 34734485 DOI: 10.1002/wnan.1765] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
With the increasing importance of accurate and early disease diagnosis and the development of personalized medicine, DNA-based electrochemical biosensor has attracted broad scientific and clinical interests in the past decades due to its unique hybridization specificity, fast response time, and potential for miniaturization. In order to achieve high detection sensitivity, the design of DNA electrochemical biosensors depends critically on the improvement of the accessibility of target molecules and the enhancement of signal readout. Here, we summarize the recent advances in DNA probe immobilization and signal amplification strategies with a special focus on DNA nanostructure-supported DNA probe immobilization method, which provides the opportunity to rationally control the distance between probes and keep them in upright confirmation, as well as the contribution of functional nanomaterials in enhancing the signal amplification. The next challenge of biosensors will be the fabrication of point-of-care devices for clinical testing. The advancement of multidisciplinary areas, including nanofabrication, material science, and biochemistry, has exhibited profound promise in achieving such portable sensing devices. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Krishna Thapa
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Wenyan Liu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, USA.,Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Risheng Wang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, USA
| |
Collapse
|
6
|
Leung KK, Downs AM, Ortega G, Kurnik M, Plaxco KW. Elucidating the Mechanisms Underlying the Signal Drift of Electrochemical Aptamer-Based Sensors in Whole Blood. ACS Sens 2021; 6:3340-3347. [PMID: 34491055 DOI: 10.1021/acssensors.1c01183] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to monitor drugs, metabolites, hormones, and other biomarkers in situ in the body would greatly advance both clinical practice and biomedical research. To this end, we are developing electrochemical aptamer-based (EAB) sensors, a platform technology able to perform real-time, in vivo monitoring of specific molecules irrespective of their chemical or enzymatic reactivity. An important obstacle to the deployment of EAB sensors in the challenging environments found in the living body is signal drift, whereby the sensor signal decreases over time. To date, we have demonstrated a number of approaches by which this drift can be corrected sufficiently well to achieve good measurement precision over multihour in vivo deployments. To achieve a much longer in vivo measurement duration, however, will likely require that we understand and address the sources of this effect. In response, here, we have systematically examined the mechanisms underlying the drift seen when EAB sensors and simpler, EAB-like devices are challenged in vitro at 37 °C in whole blood as a proxy for in vivo conditions. Our results demonstrate that electrochemically driven desorption of a self-assembled monolayer and fouling by blood components are the two primary sources of signal loss under these conditions, suggesting targeted approaches to remediating this degradation and thus improving the stability of EAB sensors and other, similar electrochemical biosensor technologies when deployed in the body.
Collapse
Affiliation(s)
- Kaylyn K. Leung
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Alex M. Downs
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Gabriel Ortega
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Martin Kurnik
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
7
|
Coria‐Oriundo LL, Ceretti H, Roupioz Y, Battaglini F. Redox Polyelectrolyte Modified Gold Nanoparticles Enhance the Detection of Adenosine in an Electrochemical Split‐Aptamer Assay. ChemistrySelect 2020. [DOI: 10.1002/slct.202002488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lucy L. Coria‐Oriundo
- INQUIMAE (CONICET) Departamento de Química Inorgánica Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria, Pabellón 2 C1428EHA Buenos Aires Argentina
- Facultad de Ciencias Universidad Nacional de Ingeniería Av. Túpac Amaru 210 Lima 25, Perú
| | - Helena Ceretti
- Universidad Nacional de Gral. Sarmiento, J. M. Gutiérrez 1150 B1613GSX, Los Polvorines, Prov. de Buenos Aires Argentina
| | - Yoann Roupioz
- Univ. Grenoble Alpes CNRS CEA SyMMES 38000 Grenoble France
| | - Fernando Battaglini
- INQUIMAE (CONICET) Departamento de Química Inorgánica Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria, Pabellón 2 C1428EHA Buenos Aires Argentina
| |
Collapse
|
8
|
Suea-Ngam A, Bezinge L, Mateescu B, Howes PD, deMello AJ, Richards DA. Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving toward the Point-of-Care. ACS Sens 2020; 5:2701-2723. [PMID: 32838523 PMCID: PMC7485284 DOI: 10.1021/acssensors.0c01488] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
Driven by complex and interconnected factors, including population growth, climate change, and geopolitics, infectious diseases represent one of the greatest healthcare challenges of the 21st century. Diagnostic technologies are the first line of defense in the fight against infectious disease, providing critical information to inform epidemiological models, track diseases, decide treatment choices, and ultimately prevent epidemics. The diagnosis of infectious disease at the genomic level using nucleic acid disease biomarkers has proven to be the most effective approach to date. Such methods rely heavily on enzymes to specifically amplify or detect nucleic acids in complex samples, and significant effort has been exerted to harness the power of enzymes for in vitro nucleic acid diagnostics. Unfortunately, significant challenges limit the potential of enzyme-assisted nucleic acid diagnostics, particularly when translating diagnostic technologies from the lab toward the point-of-use or point-of-care. Herein, we discuss the current state of the field and highlight cross-disciplinary efforts to solve the challenges associated with the successful deployment of this important class of diagnostics at or near the point-of-care.
Collapse
Affiliation(s)
- Akkapol Suea-Ngam
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| | - Léonard Bezinge
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| | - Bogdan Mateescu
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
- Brain Research Institute,
Medical Faculty of the University of
Zürich, Winterthurerstrasse 190, 8057
Zürich, Switzerland
| | - Philip D. Howes
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| | - Andrew J. deMello
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| | - Daniel A. Richards
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| |
Collapse
|
9
|
Wang L, Wen Y, Yang X, Xu L, Liang W, Zhu Y, Wang L, Li Y, Li Y, Ding M, Ren S, Yang Z, Lv M, Zhang J, Ma K, Liu G. Ultrasensitive Electrochemical DNA Biosensor Based on a Label-Free Assembling Strategy Using a Triblock polyA DNA Probe. Anal Chem 2019; 91:16002-16009. [PMID: 31746200 DOI: 10.1021/acs.analchem.9b04757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Multiblock DNA probe attracted a large amount of scientific attention, for the development of multitarget biosensor and improved specificity/sensitivity. However, the development of multiblock DNA probes highly relied on the chemical synthesis of organic linkers or nanomaterials, which limited their practicability and biological compatibility. In this work, we developed a label-free assembling strategy using a triblock DNA capture probe, which connects two DNA probes with its intrinsic polyA fragment (probe-PolyA-probe, PAP). The middle polyA segment has a high affinity to the gold electrode surface, leading to excellent reproducibility, stability, and regeneration of our biosensor. Two flanking capture probes were tandemly co-assembled on the electrode surface with consistent spatial relationship and exactly the same amount. When combined with the target DNA, the hybridization stability was improved, because of the strong base stacking effect of two capture probes. The sensitivity of our biosensor was proved to be 10 fM, with a wide analysis range between 10 fM to 1 nM. Our PAP-based biosensor showed excellent specificity when facing mismatched DNA sequences. Even single nucleotide polymorphisms can be distinguished by each probe. The excellent practicability of our biosensor was demonstrated by analyzing genomic DNA both with and without PCR amplification.
Collapse
Affiliation(s)
- Lele Wang
- Laboratory of Biometrology, Division of Chemistry , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , People's Republic of China
| | - Yanli Wen
- Laboratory of Biometrology, Division of Chemistry , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , People's Republic of China
| | - Xue Yang
- Laboratory of Biometrology, Division of Chemistry , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , People's Republic of China
| | - Li Xu
- Laboratory of Biometrology, Division of Chemistry , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , People's Republic of China
| | - Wen Liang
- Laboratory of Biometrology, Division of Chemistry , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , People's Republic of China
| | - Ying Zhu
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , People's Republic of China.,Shanghai Advanced Research Institute , Chinese Academy of Sciences , Shanghai 201210 , People's Republic of China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , People's Republic of China.,Shanghai Advanced Research Institute , Chinese Academy of Sciences , Shanghai 201210 , People's Republic of China
| | - Yan Li
- Division of Chemical Metrology and Analytical Science , National Institute of Metrology of China , Beijing 102200 , People's Republic of China
| | - Yuan Li
- Laboratory of Biometrology, Division of Chemistry , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , People's Republic of China
| | - Min Ding
- Laboratory of Biometrology, Division of Chemistry , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , People's Republic of China
| | - Shuzhen Ren
- Laboratory of Biometrology, Division of Chemistry , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , People's Republic of China
| | - Zhenzhou Yang
- Laboratory of Biometrology, Division of Chemistry , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , People's Republic of China
| | - Min Lv
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , People's Republic of China.,Shanghai Advanced Research Institute , Chinese Academy of Sciences , Shanghai 201210 , People's Republic of China
| | - Jichao Zhang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , People's Republic of China.,Shanghai Advanced Research Institute , Chinese Academy of Sciences , Shanghai 201210 , People's Republic of China
| | - Kang Ma
- Division of Chemical Metrology and Analytical Science , National Institute of Metrology of China , Beijing 102200 , People's Republic of China
| | - Gang Liu
- Laboratory of Biometrology, Division of Chemistry , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , People's Republic of China
| |
Collapse
|
10
|
Man T, Lai W, Xiao M, Wang X, Chandrasekaran AR, Pei H, Li L. A versatile biomolecular detection platform based on photo-induced enhanced Raman spectroscopy. Biosens Bioelectron 2019; 147:111742. [PMID: 31672389 DOI: 10.1016/j.bios.2019.111742] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 09/28/2019] [Indexed: 12/25/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) as one of the effective tools for sensitive and selective detection of biomolecules has attracted tremendous attention. Here, we construct a versatile biomolecular detection platform based on photo-induced enhanced Raman spectroscopy (PIERS) effect for ultrasensitive detection of multiple analytes. In our PIERS sensor, we exploit the molecular recognition capacity of aptamers and the high affinity of aptamers with analyte to trigger TiO2@AgNP substrates binding with Raman tag-labeled gold nanoparticles probes via analyte, thus forming sandwich complexes. Additionally, combining plasmonic nanoparticles with photo-activated substrates allows PIERS sensor to achieve increased sensitivity beyond the normal SERS effect upon ultraviolet irradiation. Accordingly, the PIERS can be implemented for analysis of multiple analytes by designing different analyte aptamers, and we further demonstrate that the constructed PIERS sensor can serve as a versatile detection platform for sensitively analyzing various biomolecules including small molecules (adenosine triphosphate (ATP), limit of detection (LOD) of 0.1 nM), a biomarker (thrombin, LOD of 50 pM), and a drug (cocaine, LOD of 5 nM). Therefore, this versatile biomolecular detection platform based on PIERS effect for ultrasensitive detection of multiple analytes holds great promise to be a practical tool.
Collapse
Affiliation(s)
- Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xiwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | | | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
11
|
Wang Q, Wen Y, Li Y, Liang W, Li W, Li Y, Wu J, Zhu H, Zhao K, Zhang J, Jia N, Deng W, Liu G. Ultrasensitive Electrochemical Biosensor of Bacterial 16S rRNA Gene Based on polyA DNA Probes. Anal Chem 2019; 91:9277-9283. [PMID: 31198030 DOI: 10.1021/acs.analchem.9b02175] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traditional microbiology analysis is usually hindered by the long time-cost and lack of portability in many urgent situations. In this work, we developed a novel electrochemical DNA biosensor (E-biosensor) for sensitive analysis of the 16S rRNA gene of five bacteria, using a consecutive adenine (polyA) probe. The polyA probe consists of a polyA tail and a recognition part. The polyA tail can combine onto the gold surface with improved controllability of the surface density, by conveniently changing the length of polyA. The recognition part of the capture probe together with two biotin-labeled reporter probes hybridize with the target DNA and form a stable DNA-tetramer sandwich structure, and then avidin-HRP enzyme was added to produce a redox current signal for the following electrochemical detection. Finally, we realized sensitive quantification of artificial target DNA with a limit of detection (LOD) of 10 fM, and excellent selectivity and reusability were also demonstrated. Importantly, the detection capability was equally good when facing bacterial genomic DNA, due to the base-stacking force of our multireporter-probe system, which can help to break the second structure and stabilize the probe-target complexes. Our biosensor was constructed on a 16-channel electrode chip without any polymerase chain reaction (PCR) process needed, which took a significant step toward a portable bacteria biosensor.
Collapse
Affiliation(s)
- Qian Wang
- Laboratory of Biometrology , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , P. R. China.,Department of Chemistry, College of Chemistry and Materials Science , Shanghai Normal University , 100 Guilin Road , Shanghai 200234 , P. R. China
| | - Yanli Wen
- Laboratory of Biometrology , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , P. R. China
| | - Yan Li
- Laboratory of Biometrology , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , P. R. China
| | - Wen Liang
- Laboratory of Biometrology , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , P. R. China
| | - Wen Li
- Laboratory of Biometrology , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , P. R. China
| | - Yuan Li
- Laboratory of Biometrology , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , P. R. China
| | - Jiahuan Wu
- Laboratory of Biometrology , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , P. R. China
| | - Huichen Zhu
- Laboratory of Biometrology , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , P. R. China
| | - Keke Zhao
- Laboratory of Biometrology , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , P. R. China
| | - Jun Zhang
- Laboratory of Biometrology , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , P. R. China
| | - Nengqin Jia
- Department of Chemistry, College of Chemistry and Materials Science , Shanghai Normal University , 100 Guilin Road , Shanghai 200234 , P. R. China
| | - Wangping Deng
- Chinese Center for Disease Control and Prevention , National Institute of Parasitic Diseases , 207 Rui Jin Er Road , Shanghai 200025 , P. R. China
| | - Gang Liu
- Laboratory of Biometrology , Shanghai Institute of Measurement and Testing Technology , 1500 Zhang Heng Road , Shanghai 201203 , P. R. China
| |
Collapse
|
12
|
Pinto G, Parisse P, Solano I, Canepa P, Canepa M, Casalis L, Cavalleri O. Functionalizing gold with single strand DNA: novel insight into optical properties via combined spectroscopic ellipsometry and nanolithography measurements. SOFT MATTER 2019; 15:2463-2468. [PMID: 30810150 DOI: 10.1039/c8sm02589d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have studied the self-assembly of 22-base oligonucleotides bound by a short alkyl thiol linker (C6-ssDNA) on flat Au films. The self-assembled monolayer (SAM) was modified by addition of a spacer (mercaptohexanol, MCH). Molecular depositions were monitored in situ by spectroscopic ellipsometry (SE). SAMs were characterized in a liquid environment by coupling SE (difference spectra method) with Atomic Force Microscope (AFM) measurements. We exploited the biofilm thickness obtained by AFM nanolithography and imaging to solve the refractive index/thickness correlation in optical measurements on ultrathin molecular layers. The combined SE/AFM analysis provided reliable estimates of the thickness and the refractive index of the biofilm in the NIR region (650-1300 nm) and revealed new aspects of DNA molecular organization: exposure to MCH leads to an increase of both film thickness and refractive index, which points to a reorganization of C6-ssDNA film. We show that the contribution of the thiol/Au interface has to be included in the optical model to obtain a more reliable determination of the refractive index of the biofilm in a liquid. The careful, correlative characterization of the mixed C6-ssDNA/MCH SAM represents a key step towards the optimization of a robust detection scheme based on helix-helix hybridization.
Collapse
Affiliation(s)
- Giulia Pinto
- OPTMATLAB, Department of Physics, University of Genova, via Dodecaneso 33, 16146 Genova, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
Rapid and label-free, electrochemical DNA detection utilizing the oxidase-mimicking activity of cerium oxide nanoparticles. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2018.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Ye D, Zuo X, Fan C. DNA Nanotechnology-Enabled Interfacial Engineering for Biosensor Development. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:171-195. [PMID: 29490188 DOI: 10.1146/annurev-anchem-061417-010007] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biosensors represent biomimetic analytical tools for addressing increasing needs in medical diagnosis, environmental monitoring, security, and biodefense. Nevertheless, widespread real-world applications of biosensors remain challenging due to limitations of performance, including sensitivity, specificity, speed, and reproducibility. In this review, we present a DNA nanotechnology-enabled interfacial engineering approach for improving the performance of biosensors. We first introduce the main challenges of the biosensing interfaces, especially under the context of controlling the DNA interfacial assembly. We then summarize recent progress in DNA nanotechnology and efforts to harness DNA nanostructures to engineer various biological interfaces, with a particular focus on the use of framework nucleic acids. We also discuss the implementation of biosensors to detect physiologically relevant nucleic acids, proteins, small molecules, ions, and other biomarkers. This review highlights promising applications of DNA nanotechnology in interfacial engineering for biosensors and related areas.
Collapse
Affiliation(s)
- Dekai Ye
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolei Zuo
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
- Institute of Molecular Medicine, Renji Hospital, Schools of Medicine and Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
| |
Collapse
|
15
|
Li L, Wang L, Xu Q, Xu L, Liang W, Li Y, Ding M, Aldalbahi A, Ge Z, Wang L, Yan J, Lu N, Li J, Wen Y, Liu G. Bacterial Analysis Using an Electrochemical DNA Biosensor with Poly-Adenine-Mediated DNA Self-Assembly. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6895-6903. [PMID: 29383931 DOI: 10.1021/acsami.7b17327] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The spatial arrangement of DNA probes on the electrode surface is of critical significance for the performance of electrochemical biosensors. However, rational control of the probe surface remains challenging. In this work, we develop a capture probe carrying a poly-adenine anchoring block to construct a programmable self-assembled monolayer for a "sandwich-type" electrochemical biosensor. We show that with a co-assembling strategy using a polyA capture probe and 6-mercapto-1-hexanol, the density of the probes on the gold electrode can be simply adjusted by the length of polyA. The electron-transfer effect and thus the hybridization efficiency can as well be optimized by tuning the polyA length. As a result, we obtained an excellent biosensor performance with a limit of detection as low as 5 fM for a synthetic DNA target. We demonstrate the practicability of this system by analyzing a PCR product from Escherichia coli genomic DNA (0.2 pg/μL). On the basis of the ideal electrochemical interface, our polyA-based biosensor exhibited excellent reusability and stability, which is important for potential applications in the onsite analysis for a wide range of targets.
Collapse
Affiliation(s)
- Lanying Li
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology , Shanghai 201203, China
| | - Lele Wang
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology , Shanghai 201203, China
| | - Qin Xu
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology , Shanghai 201203, China
| | - Li Xu
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology , Shanghai 201203, China
| | - Wen Liang
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology , Shanghai 201203, China
| | - Yan Li
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology , Shanghai 201203, China
| | - Min Ding
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology , Shanghai 201203, China
| | - Ali Aldalbahi
- Chemistry Department, King Saud University , Riyadh 11451, Saudi Arabia
| | - Zhilei Ge
- Division of Physical Biology & Bioimaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Science , Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Science , Shanghai 201800, China
| | - Juan Yan
- College of Food Science & Technology Shanghai Ocean University , Shanghai 201306, China
| | - Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science , Shanghai 201620, China
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Science , Shanghai 201800, China
| | - Yanli Wen
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology , Shanghai 201203, China
| | - Gang Liu
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology , Shanghai 201203, China
| |
Collapse
|
16
|
Yang F, Zuo X, Fan C, Zhang XE. Biomacromolecular nanostructures-based interfacial engineering: from precise assembly to precision biosensing. Natl Sci Rev 2018. [DOI: 10.1093/nsr/nwx134] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Biosensors are a type of important biodevice that integrate biological recognition elements, such as enzyme, antibody and DNA, and physical or chemical transducers, which have revolutionized clinical diagnosis especially under the context of point-of-care tests. Since the performance of a biosensor depends largely on the bio–solid interface, design and engineering of the interface play a pivotal role in developing quality biosensors. Along this line, a number of strategies have been developed to improve the homogeneity of the interface or the precision in regulating the interactions between biomolecules and the interface. Especially, intense efforts have been devoted to controlling the surface chemistry, orientation of immobilization, molecular conformation and packing density of surface-confined biomolecular probes (proteins and nucleic acids). By finely tuning these surface properties, through either gene manipulation or self-assembly, one may reduce the heterogeneity of self-assembled monolayers, increase the accessibility of target molecules and decrease the binding energy barrier to realize high sensitivity and specificity. In this review, we summarize recent progress in interfacial engineering of biosensors with particular focus on the use of protein and DNA nanostructures. These biomacromolecular nanostructures with atomistic precision lead to highly regulated interfacial assemblies at the nanoscale. We further describe the potential use of the high-performance biosensors for precision diagnostics.
Collapse
Affiliation(s)
- Fan Yang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiaolei Zuo
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, CAS Excellence Center for Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
17
|
Rashid JIA, Yusof NA. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2017.09.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
18
|
Effect of water-DNA interactions on elastic properties of DNA self-assembled monolayers. Sci Rep 2017; 7:536. [PMID: 28373707 PMCID: PMC5428875 DOI: 10.1038/s41598-017-00605-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
DNA-water interactions have revealed as very important actor in DNA mechanics, from the molecular to the macroscopic scale. Given the particularly useful properties of DNA molecules to engineer novel materials through self-assembly and by bridging organic and inorganic materials, the interest in understanding DNA elasticity has crossed the boundaries of life science to reach also materials science and engineering. Here we show that thin films of DNA constructed through the self-assembly of sulfur tethered ssDNA strands demonstrate a Young's modulus tuning range of about 10 GPa by simply varying the environment relative humidity from 0% up to 70%. We observe that the highest tuning range occurs for ssDNA grafting densities of about 3.5 × 1013 molecules/cm 2, where the distance between the molecules maximizes the water mediated interactions between the strands. Upon hybridization with the complementary strand, the DNA self-assembled monolayers significantly soften by one order of magnitude and their Young's modulus dependency on the hydration state drastically decreases. The experimental observations are in agreement with molecular dynamics simulations.
Collapse
|
19
|
Li C, Wu D, Hu X, Xiang Y, Shu Y, Li G. One-Step Modification of Electrode Surface for Ultrasensitive and Highly Selective Detection of Nucleic Acids with Practical Applications. Anal Chem 2016; 88:7583-90. [DOI: 10.1021/acs.analchem.6b01250] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chao Li
- State Key Laboratory
of Pharmaceutical Biotechnology and Collaborative Innovation Center
of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Dan Wu
- State Key Laboratory
of Pharmaceutical Biotechnology and Collaborative Innovation Center
of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Xiaolu Hu
- State Key Laboratory
of Pharmaceutical Biotechnology and Collaborative Innovation Center
of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Yang Xiang
- State Key Laboratory
of Pharmaceutical Biotechnology and Collaborative Innovation Center
of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Genxi Li
- State Key Laboratory
of Pharmaceutical Biotechnology and Collaborative Innovation Center
of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, P. R. China
- Laboratory of Biosensing Technology, School
of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
20
|
Aptamer-initiated on-particle template-independent enzymatic polymerization (aptamer-OTEP) for electrochemical analysis of tumor biomarkers. Biosens Bioelectron 2016; 86:536-541. [PMID: 27448543 DOI: 10.1016/j.bios.2016.07.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/20/2016] [Accepted: 07/08/2016] [Indexed: 12/16/2022]
Abstract
Herein, an aptamer-initiated on-particle template-independent enzymatic polymerization (aptamer-OTEP) strategy for electrochemical aptasensor (E-aptasensor) is developed for analysis of cancer biomarker carcino-embryonic antigen (CEA). A pair of DNA aptamers is employed which can be specifically bond with CEA simultaneously. One of the aptamer is thiolated at 3'-terminal and immobilized onto the gold electrode as a capture probe, while the other one has a thiol group at its 5'-terminal and is modified onto the gold nanoparticles surface to form a nanoprobe. In the present of target, the two aptamers can "sandwich" the target, thus the nanoprobe is attached to the electrode. Then terminal deoxynucleotidyl transferase (TdT) is employed to catalyze the incorporation of biotin labeled dNTPs into the 3'-OH terminals of the DNA aptamer on the nanoprobe. The as-generated long DNA oligo tentacles allow specific binding of numerous avidin modified horseradish peroxidase (Av-HRP), resulting in tens of thousands of HRP catalyzed reduction of hydrogen peroxide and sharply increasing electrochemical signals. Taking advantage of the enzyme based nucleic acid amplification and nanoprobe, this strategy is demonstrated to possess the outstanding amplification efficiency.
Collapse
|
21
|
Wang P, Wan Y, Su Y, Deng S, Yang S. Ultrasensitive Electrochemical Aptasensor Based on Surface-Initiated Enzymatic Polymerization. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201500866] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Liu N, Hou R, Gao P, Lou X, Xia F. Sensitive Zn(2+) sensor based on biofunctionalized nanopores via combination of DNAzyme and DNA supersandwich structures. Analyst 2016; 141:3626-9. [PMID: 26911926 DOI: 10.1039/c6an00171h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The sensitivity of detection based on biofunctionalized nanopores is limited since the target-to-signal ratio is 1 : 1. Isothermal amplification is a promising amplification strategy at constant temperature due to its easy operation, quick results, PCR-like sensitivity, low cost and energy efficiency. In the present work, the isothermally amplified detection of Zn(2+) is achieved by using a DNA supersandwich structure and Zn(2+)-requiring DNAzymes. The DNA supersandwich structures, due to the multiple amplification of nucleic acids, heavily plug the nanopore. Simultaneously, the DNA supersandwich structures bond with the sessile probe (SP) of the substrate in the nanopore which partially hybridizes with DNAzymes. In the presence of Zn(2+), the Zn(2+)-requiring DNAzyme cleaves the SP into two fragments, while the DNA supersandwich structures are peeled off and the ionic pathway is unimpeded. A steep drop and a sequential complete recovery of the current occur in the I-V plot when the DNA supersandwich structures are decorated and peeled off. In the present system, the reliable detection limit of Zn(2+) is as low as 1 nM. Discrimination between different types of ions (Cu(2+), Hg(2+), Pb(2+)) is achieved.
Collapse
Affiliation(s)
- Nannan Liu
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| | | | | | | | | |
Collapse
|
23
|
Zheng Y, Hu T, Chen C, Yang F, Yang X. An anti-fouling aptasensor for detection of thrombin by dual polarization interferometry. Chem Commun (Camb) 2016; 51:5645-8. [PMID: 25714792 DOI: 10.1039/c4cc10337h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An anti-fouling surface was designed to effectively resist nonspecific protein adsorption using dual polarization interferometry, based on which the aptasensor for detection of thrombin was fabricated according to the specific interaction between thrombin and its 15-mer aptamer.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | | | | | | | | |
Collapse
|
24
|
Wen Y, Wang L, Xu L, Li L, Ren S, Cao C, Jia N, Aldalbahi A, Song S, Shi J, Xia J, Liu G, Zuo X. Electrochemical detection of PCR amplicons of Escherichia coli genome based on DNA nanostructural probes and polyHRP enzyme. Analyst 2016; 141:5304-10. [DOI: 10.1039/c6an01435f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fast, portable and sensitive analysis ofE. coliis becoming an important challenge in many critical fields (e.g., food safety, environmental monitoring and clinical diagnosis).
Collapse
|
25
|
Wan Y, Wang P, Su Y, Wang L, Pan D, Aldalbahi A, Yang S, Zuo X. Nanoprobe-Initiated Enzymatic Polymerization for Highly Sensitive Electrochemical DNA Detection. ACS APPLIED MATERIALS & INTERFACES 2015; 7:25618-25623. [PMID: 26524941 DOI: 10.1021/acsami.5b08817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Electrochemical DNA (E-DNA) sensors have been greatly developed and play an important role in early diagnosis of different diseases. To determine the extremely low abundance of DNA biomarkers in clinical samples, scientists are making unremitting efforts toward achieving highly sensitive and selective E-DNA sensors. Here, a novel E-DNA sensor was developed taking advantage of the signal amplification efficiency of nanoprobe-initiated enzymatic polymerization (NIEP). In the NIEP based E-DNA sensor, the capture probe DNA was thiolated at its 3'-terminal to be immobilized onto gold electrode, and the nanoprobe was fabricated by 5'-thiol-terminated signal probe DNA conjugated gold nanoparticles (AuNPs). Both of the probes could simultaneously hybridize with the target DNA to form a "sandwich" structure followed by the terminal deoxynucleotidyl transferase (TdT)-catalyzed elongation of the free 3'-terminal of DNA on the nanoprobe. During the DNA elongation, biotin labels were incorporated into the NIEP-generated long single-stranded DNA (ssDNA) tentacles, leading to specific binding of avidin modified horseradish peroxidase (Av-HRP). Since there are hundreds of DNA probes on the nanoprobe, one hybridization event would generate hundreds of long ssDNA tentacles, resulting in tens of thousands of HRP catalyzed reduction of hydrogen peroxide and sharply increasing electrochemical signals. By employing nanoprobe and TdT, it is demonstrated that the NIEP amplified E-DNA sensor has a detection limit of 10 fM and excellent differentiation ability for even single-base mismatch.
Collapse
Affiliation(s)
| | | | | | - Lihua Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Dun Pan
- Division of Physical Biology and Bioimaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Ali Aldalbahi
- Chemistry Department, King Saud University , Riyadh 11451, Saudi Arabia
| | | | - Xiaolei Zuo
- Division of Physical Biology and Bioimaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| |
Collapse
|
26
|
Roy D, Park JW. Spatially nanoscale-controlled functional surfaces toward efficient bioactive platforms. J Mater Chem B 2015; 3:5135-5149. [PMID: 32262587 DOI: 10.1039/c5tb00529a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Interest in well-defined surface architectures has shown a steady increase, particularly among those involved in biological applications where the reactivity of functional groups on the surface is desired to be close to that of the solution phase. Recent research has demonstrated that utilizing the self-assembly process is an attractive and viable choice for the fabrication of two-dimensional nanoscale-controlled architectures. This review highlights representative examples for controlling the spatial placement of reactive functional groups in the optimization of bioactive surfaces. While the selection is not comprehensive, it becomes evident that surface architecture is one of the key components in allowing efficient biomolecular interactions with surfaces and that the optimized lateral spacing between the immobilized molecules is crucial and even critical in some cases.
Collapse
Affiliation(s)
- Dhruvajyoti Roy
- Nanogea Inc., 6162 Bristol Parkway, Culver City, CA 90230, USA
| | | |
Collapse
|
27
|
Donolato M, Antunes P, Bejhed RS, Zardán Gómez de la Torre T, Østerberg FW, Strömberg M, Nilsson M, Strømme M, Svedlindh P, Hansen MF, Vavassori P. Novel Readout Method for Molecular Diagnostic Assays Based on Optical Measurements of Magnetic Nanobead Dynamics. Anal Chem 2015; 87:1622-9. [DOI: 10.1021/ac503191v] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marco Donolato
- CIC nanoGUNE Consolider, Tolosa Hiribidea 76, 20018 San Sebastian, Spain
- Department
of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby, Denmark
| | - Paula Antunes
- Department
of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby, Denmark
| | - Rebecca S. Bejhed
- The
Ångström Laboratory, Department of Engineering Sciences, Uppsala University, Box
534, SE-751 21 Uppsala, Sweden
| | | | - Frederik W. Østerberg
- Department
of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby, Denmark
| | - Mattias Strömberg
- The
Ångström Laboratory, Department of Engineering Sciences, Uppsala University, Box
534, SE-751 21 Uppsala, Sweden
| | - Mats Nilsson
- Science
for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University,
Box 1031, 17121 Solna, Sweden
| | - Maria Strømme
- The
Ångström Laboratory, Department of Engineering Sciences, Uppsala University, Box
534, SE-751 21 Uppsala, Sweden
| | - Peter Svedlindh
- The
Ångström Laboratory, Department of Engineering Sciences, Uppsala University, Box
534, SE-751 21 Uppsala, Sweden
| | - Mikkel F. Hansen
- Department
of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby, Denmark
| | - Paolo Vavassori
- CIC nanoGUNE Consolider, Tolosa Hiribidea 76, 20018 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
28
|
Zheng J, Hu L, Zhang M, Xu J, He P. An electrochemical sensing strategy for the detection of the hepatitis B virus sequence with homogenous hybridization based on host–guest recognition. RSC Adv 2015. [DOI: 10.1039/c5ra16204a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic for electrochemically sensing DNA with hybridization in homogeneous solutionviahost–guest recognition based on MNPs/β-CD.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Chemistry & Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- P. R. China
- Department of Chemistry
| | - Liping Hu
- Department of Chemistry & Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- P. R. China
| | - Min Zhang
- Department of Chemistry & Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- P. R. China
| | - Jingli Xu
- Department of Chemistry & Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- P. R. China
| | - Pingang He
- Department of Chemistry
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
29
|
Miao P, Yin J, Ning L, Li X. Peptide-based electrochemical approach for apoptosis evaluation. Biosens Bioelectron 2014; 62:97-101. [DOI: 10.1016/j.bios.2014.06.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 06/06/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
|
30
|
Sun XY, Liu B, Sun YF, Yu Y. DNA-length-dependent fluorescent sensing based on energy transfer in self-assembled multilayers. Biosens Bioelectron 2014; 61:466-70. [DOI: 10.1016/j.bios.2014.05.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 12/23/2022]
|
31
|
Amplified electrochemical detection of protein kinase activity based on gold nanoparticles/multi-walled carbon nanotubes nanohybrids. Talanta 2014; 129:328-35. [DOI: 10.1016/j.talanta.2014.05.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022]
|
32
|
Shen J, Li Y, Gu H, Xia F, Zuo X. Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev 2014; 114:7631-77. [PMID: 25115973 DOI: 10.1021/cr300248x] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Juwen Shen
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) , Wuhan 430074, China
| | | | | | | | | |
Collapse
|
33
|
Wan Y, wang P, Su Y, Zhu X, Yang S, Lu J, Gao J, Fan C, Huang Q. Ultrasensitive electrochemical DNA sensor based on the target induced structural switching and surface-initiated enzymatic polymerization. Biosens Bioelectron 2014; 55:231-6. [DOI: 10.1016/j.bios.2013.11.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/17/2013] [Accepted: 11/28/2013] [Indexed: 10/25/2022]
|
34
|
Ge Z, Lin M, Wang P, Pei H, Yan J, Shi J, Huang Q, He D, Fan C, Zuo X. Hybridization Chain Reaction Amplification of MicroRNA Detection with a Tetrahedral DNA Nanostructure-Based Electrochemical Biosensor. Anal Chem 2014; 86:2124-30. [DOI: 10.1021/ac4037262] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhilei Ge
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Meihua Lin
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Ping Wang
- National Engineering Research Center for Nanotechnology, Shanghai 200241, China
| | - Hao Pei
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Juan Yan
- National Engineering Research Center for Nanotechnology, Shanghai 200241, China
| | - Jiye Shi
- UCB Pharma, Slough SL1 3WE, United Kingdom
| | - Qing Huang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Dannong He
- National Engineering Research Center for Nanotechnology, Shanghai 200241, China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaolei Zuo
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
35
|
Wei W, Ni Q, Pu Y, Yin L, Liu S. Electrochemical biosensor for DNA damage detection based on exonuclease III digestions. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Li Z, Zhang L, Mo H, Peng Y, Zhang H, Xu Z, Zheng C, Lu Z. Size-fitting effect for hybridization of DNA/mercaptohexanol mixed monolayers on gold. Analyst 2014; 139:3137-45. [DOI: 10.1039/c4an00280f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Ge J, Huang ZM, Xi Q, Yu RQ, Jiang JH, Chu X. A novel graphene oxide based fluorescent nanosensing strategy with hybridization chain reaction signal amplification for highly sensitive biothiol detection. Chem Commun (Camb) 2014; 50:11879-82. [DOI: 10.1039/c4cc05309e] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A novel fluorescent nanosensor was developed for detecting biothiols via coupling graphene based fluorescence quenching with T–Hg(ii)–T controlled hybridization chain reaction.
Collapse
Affiliation(s)
- Jia Ge
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha, P. R. China
| | - Zhi-Mei Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha, P. R. China
| | - Qiang Xi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha, P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha, P. R. China
| |
Collapse
|
38
|
Pastré D, Joshi V, Curmi PA, Hamon L. Detection of single DNA molecule hybridization on a surface by atomic force microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3630-3638. [PMID: 23674511 DOI: 10.1002/smll.201300546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Indexed: 06/02/2023]
Abstract
Improving the detection of DNA hybridization is a critical issue for several challenging applications encountered in microarray and biosensor domains. Herein, it is demonstrated that hybridization between complementary single-stranded DNA (ssDNA) molecules loosely adsorbed on a mica surface can be achieved thanks to fine-tuning of the composition of the hybridization buffer. Single-molecule DNA hybridization occurs in only a few minutes upon encounters of freely diffusing complementary strands on the mica surface. Interestingly, the specific hybridization between complementary ssDNA is not altered in the presence of large amounts of nonrelated DNA. The detection of single-molecule DNA hybridization events is performed by measuring the contour length of DNA in atomic force microscopy images. Besides the advantage provided by facilitated diffusion, which promotes hybridization between probes and targets on mica, the present approach also allows the detection of single isolated DNA duplexes and thus requires a very low amount of both probe and target molecules.
Collapse
Affiliation(s)
- David Pastré
- Inserm U829, Laboratoire Structure-Activité des, Biomolécules Normales et Pathologiques, Université d'Evry-Val d'Essonne, Evry 91025, France
| | | | | | | |
Collapse
|
39
|
Guo Y, Su S, Wei X, Zhong Y, Su Y, Huang Q, Fan C, He Y. A silicon-based electrochemical sensor for highly sensitive, specific, label-free and real-time DNA detection. NANOTECHNOLOGY 2013; 24:444012. [PMID: 24113314 DOI: 10.1088/0957-4484/24/44/444012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We herein present a new kind of silicon-based electrochemical sensor using a gold nanoparticles-decorated silicon wafer (AuNPs@Si) as a high-performance electrode, which is facilely prepared via in situ AuNPs growth on a silicon wafer. Particularly significantly, the resultant electrochemical sensor is efficacious for label-free DNA detection with high sensitivity due to the unique merits of the prepared silicon-based electrode. Typically, DNA at remarkably low concentrations (1-10 fM) could be readily detected without requiring additional signal-amplification procedures, which is better than or comparable to the lowest DNA concentration ever detected via well-studied signal-amplification-assisted electrochemical sensors. Moreover, the silicon-based sensor features high specificity, allowing unambiguous discrimination of single-based mismatches. We further show that real-time DNA assembly is readily monitored via recording the intensity changes of current signals due to the robust thermal stability of the silicon-based electrode. The unprecedented advantages of the silicon-based electrochemical sensor would offer new opportunities for myriad sensing applications.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Soochow University, Suzhou 215123, People's Republic of China. Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Xie L, Yan X, Du Y. An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules. Biosens Bioelectron 2013; 53:58-64. [PMID: 24121209 DOI: 10.1016/j.bios.2013.09.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 12/14/2022]
Abstract
Despite recent progress in localized surface plasmon resonance (LSPR) based bio-sensing, it remains challenging to achieve sensitive and high throughput LSPR detection with facilities available in common laboratories. Here we developed a wall-less LSPR array chip for facile, label-free and high throughput detection of biomolecules using a normal microplate reader. The wall-less LSPR array chip was fabricated by immobilizing plasmonic nanoparticles (NPs) on a hydrophilic-hydrophobic patterned glass slide, enabling high throughput detection. The wall-less configuration simplifies chip fabrication and sample processing, and enables miniaturization to significantly reduce sample and reagent consumption. A double-gold NPs enhanced system comprising of 13-nm-gold NPs conjugated to aptamer modified 39-nm-gold NPs on glass substrate was adopted to constitute competitive replacement assay for signal amplification in small molecule (i.e. ATP) detection. Upon enhancement, the detection sensitivity of ATP was augmented by 5 orders of magnitude from 0.01 µM to 100 µM measured by the laboratory microplate reader. The wall-less LSPR sensor chip can be widely applied for miniaturized and high throughput detection of a variety of targets in biomedical applications and environmental monitoring using facilities available in common laboratories.
Collapse
Affiliation(s)
- Liping Xie
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|
42
|
Gold-nanoparticle based electrochemical DNA sensor for the detection of fish pathogen Aphanomyces invadans. Talanta 2013; 117:312-7. [PMID: 24209346 DOI: 10.1016/j.talanta.2013.09.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 12/22/2022]
Abstract
Epizootic ulcerative syndrome (EUS) is a devastating fish disease caused by the fungus, Aphanomyces invadans. Rapid diagnosis of EUS is needed to control and treat this highly invasive disease. The current diagnostic methods for EUS are labor intensive. We have developed a highly sensitive and specific electrochemical genosensor towards the 18S rRNA and internal transcribed spacer regions of A. invadans. Multiple layers of latex were synthesized with the help of polyelectrolytes, and labeled with gold nanoparticles to enhance sensitivity. The gold-latex spheres were functionalized with specific DNA probes. We describe here the novel application of this improved platform for detection of PCR product from real sample of A. invadans using a premix sandwich hybridization assay. The premix assay was easier, more specific and gave higher sensitivity of one log unit when compared to the conventional method of step-by-step hybridization. The limit of detection was 0.5 fM (4.99 zmol) of linear target DNA and 1 fM (10 amol) of PCR product. The binding positions of the probes to the PCR amplicons were optimized for efficient hybridization. Probes that hybridized close to the 5' or 3' terminus of the PCR amplicons gave the highest signal due to minimal steric hindrance for hybridization. The genosensor is highly suitable as a surveillance and diagnostic tool for EUS in the aquaculture industry.
Collapse
|
43
|
Hasanzadeh M, Shadjou N, Eskandani M, de la Guardia M, Omidinia E. Electrochemical nano-immunosensing of effective cardiac biomarkers for acute myocardial infarction. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Busseron E, Ruff Y, Moulin E, Giuseppone N. Supramolecular self-assemblies as functional nanomaterials. NANOSCALE 2013; 5:7098-140. [PMID: 23832165 DOI: 10.1039/c3nr02176a] [Citation(s) in RCA: 496] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this review, we survey the diversity of structures and functions which are encountered in advanced self-assembled nanomaterials. We highlight their flourishing implementations in three active domains of applications: biomedical sciences, information technologies, and environmental sciences. Our main objective is to provide the reader with a concise and straightforward entry to this broad field by selecting the most recent and important research articles, supported by some more comprehensive reviews to introduce each topic. Overall, this compilation illustrates how, based on the rules of supramolecular chemistry, the bottom-up approach to design functional objects at the nanoscale is currently producing highly sophisticated materials oriented towards a growing number of applications with high societal impact.
Collapse
Affiliation(s)
- Eric Busseron
- SAMS Research Group, University of Strasbourg, Institut Charles Sadron, CNRS, 23 rue du Loess, BP 84087, 67034 Strasbourg Cedex 2, France
| | | | | | | |
Collapse
|
45
|
Lu Q, Zhou Z, Mei Y, Wei W, Liu S. Detection of DNA damage by thiazole orange fluorescence probe assisted with exonuclease III. Talanta 2013; 116:958-63. [PMID: 24148501 DOI: 10.1016/j.talanta.2013.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/17/2022]
Abstract
This work reports a fluorescent dye insertion approach for detection of DNA damage. The capture DNA with overhanging 3'-terminus was immobilized on silicon surface to hybridize with target DNA. The intercalation of cyanine dye of thiazole orange (TO) to the double helix structure of DNA (dsDNA) allowed intense enhancement of fluorescence signal. The DNA damage with chemicals led to poor intercalation of TO into double helix structure, resulting in the decrease of the fluorescence signal. This signal decrease could be further enhanced by exonuclease III (Exo III). With this approach, the target DNA could be detected down to 47 fM. Seven chemicals were chosen as models to monitor DNA damage. The results suggested that the present strategy could be developed to detect DNA damage, to classify the damaging mechanism with chemicals and to estimate the toxic effect of chemicals.
Collapse
Affiliation(s)
- Qian Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Jiangning District 211189, Nanjing, Jiangsu Province, PR China
| | | | | | | | | |
Collapse
|
46
|
Thomson DAC, Cooper MA. A paramagnetic-reporter two-particle system for amplification-free detection of DNA in serum. Biosens Bioelectron 2013; 50:499-501. [PMID: 23954855 DOI: 10.1016/j.bios.2013.06.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/14/2013] [Accepted: 06/28/2013] [Indexed: 02/02/2023]
Abstract
Quantitative nucleic acid detection is used extensively in the management of many pathogenic infections, where viral or bacterial nucleic acid copy number relates directly to disease prognosis. Temperature-cycle or isothermal amplification formats offer excellent performance, but their requirement for purified nucleic acid and accurate temperature control increases costs and renders their migration to resource-limited environments problematic. In contrast, amplification-free nucleic acid assays could allow simplified system design, resulting in reduced costs. In this study, we report a amplification-free herpes simplex virus (HSV) assay where oligoethylene glycol methacrylate (OEGMA) grafted ssDNA capture-probes on paramagnetic nanoparticles are coupled with reporter-probe-modified fluorescent nanoparticles in a target-dependent manner. Following assay and reagent optimization, a sub-pM (25 amol) limit of detection could be achieved in buffer and also in neat, undiluted serum, representing a 160-fold improvement over that achieved using convention detection with a fluorescence plate reader. Equivalent performance in serum and buffer offers the opportunity for simplified diagnostic device design for resource-limited environments.
Collapse
Affiliation(s)
- David A C Thomson
- Institute for Molecular Bioscience, 306 Carmody Road, University of Queensland, Brisbane 4072, QLD, Australia; Australian Institute for Bioengineering and Nanotechnology, Corner College and Cooper Roads, University of Queensland, Brisbane 4072 QLD, Australia
| | | |
Collapse
|
47
|
Liu G, Lao R, Xu L, Xu Q, Li L, Zhang M, Song S, Fan C. Single-nucleotide polymorphism genotyping using a novel multiplexed electrochemical biosensor with nonfoulingsurface. Biosens Bioelectron 2013; 42:516-21. [DOI: 10.1016/j.bios.2012.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/23/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022]
|
48
|
Wan Y, Xu H, Su Y, Zhu X, Song S, Fan C. A surface-initiated enzymatic polymerization strategy for electrochemical DNA sensors. Biosens Bioelectron 2013; 41:526-31. [DOI: 10.1016/j.bios.2012.09.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 11/29/2022]
|
49
|
Design of a sensitive aptasensor based on magnetic microbeads-assisted strand displacement amplification and target recycling. Anal Chim Acta 2013; 770:147-52. [PMID: 23498697 DOI: 10.1016/j.aca.2013.01.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 01/08/2023]
Abstract
A cross-circular amplification system for sensitive detection of adenosine triphosphate (ATP) in cancer cells was developed based on aptamer-target interaction, magnetic microbeads (MBs)-assisted strand displacement amplification and target recycling. Here we described a new recognition probe possessing two parts, the ATP aptamer and the extension part. The recognition probe was firstly immobilized on the surface of MBs and hybridized with its complementary sequence to form a duplex. When combined with ATP, the probe changed its conformation, revealing the extension part in single-strand form, which further served as a toehold for subsequent target recycling. The released complementary sequence of the probe acted as the catalyst of the MB-assisted strand displacement reaction. Incorporated with target recycling, a large amount of biotin-tagged MB complexes were formed to stimulate the generation of chemiluminescence (CL) signal in the presence of luminol and H2O2 by incorporating with streptavidin-HRP, reaching a detection limit of ATP as low as 6.1×10(-10)M. Moreover, sample assays of ATP in Ramos Burkitt's lymphoma B cells were performed, which confirmed the reliability and practicality of the protocol.
Collapse
|
50
|
Ramulu T, Venu R, Sinha B, Lim B, Jeon S, Yoon S, Kim C. Nanowires array modified electrode for enhanced electrochemical detection of nucleic acid. Biosens Bioelectron 2013; 40:258-64. [DOI: 10.1016/j.bios.2012.07.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 11/28/2022]
|