1
|
Maitra U, Stephen C, Ciesla LM. Drug discovery from natural products - Old problems and novel solutions for the treatment of neurodegenerative diseases. J Pharm Biomed Anal 2022; 210:114553. [PMID: 34968995 PMCID: PMC8792363 DOI: 10.1016/j.jpba.2021.114553] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
The use of natural products has been shown to be a fruitful approach in the discovery of novel pharmaceuticals. In fact, many currently approved drugs originated from compounds that were first identified in nature. Chemical diversity of natural compounds cannot be matched by man-made libraries of chemically synthesized molecules. Many natural compounds interact with and modulate regulatory protein targets and can be considered evolutionarily-optimized drug-like molecules. Despite this, many pharmaceutical companies have reduced or eliminated their natural product discovery programs in the last two decades. Screening natural products for pharmacologically active compounds is a challenging task that requires high resource commitment. Novel approaches at the early stage of the drug discovery pipeline are needed to allow for rapid screening and identification of the most promising molecules. Here, we review the possible evolutionary roots for drug-like characteristics of numerous natural compounds. Since many of these compounds target evolutionarily conserved cellular signaling pathways, we propose novel, early-stage drug discovery approaches to identify drug candidates that can be used for the potential prevention and treatment of neurodegenerative diseases. Invertebrate in vivo animal models of neurodegenerative diseases and innovative tools used within these models are proposed here as a screening funnel to identify new drug candidates and to shuttle these hits into further stages of the drug discovery pipeline.
Collapse
Affiliation(s)
- Urmila Maitra
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Cayman Stephen
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lukasz M Ciesla
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
2
|
Zhao X, Fu X, Yuan X, Shayiranbieke A, Xu R, Cao F, Ren J, Liang Q, Zhao X. Development and characterization of a selective chromatographic approach to the rapid discovery of ligands binding to muscarinic-3 acetylcholine receptor. J Chromatogr A 2021; 1653:462443. [PMID: 34365202 DOI: 10.1016/j.chroma.2021.462443] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The pursuit of new ligands binding to muscarinic-3 acetylcholine receptor (M3R) is viewed as challenging due to the lack of screening methods with high efficiency. To address such challenges, this work developed and characterized an approach to the rapid discovery of M3R ligands using the immobilized receptor as the chromatographic stationary phase. We fused haloalkane dehalogenase (Halo) as a tag at the C-terminus of M3R. The fusion M3R was immobilized on 6-chlorocaproic acid-activated ammino-microspheres by the specific covalent reaction between the Halo-tag and the linker. Comprehensive characterizations of the immobilized M3R were performed by scanning electron microscope, X-ray photoelectron spectroscopy, and the investigation on the binding of three specific ligands to the receptor. The feasibility of the immobilized M3R in complex matrices was tested by screening the bioactive compounds in Zhisou oral liquid, assessing the interaction between the screened compounds and the receptor using zonal elution, and evaluating the in vivo activity of the targeted compounds. The results evidenced that the immobilized M3R has high specificity, good stability, and the capacity to separate M3R ligands from complex matrices. These allowed us to identify naringin, hesperidin, liquiritigenin, platycodin D, and glycyrrhizic acid as the potential ligands of M3R. The association constants of the five compounds to M3R were 4.44 × 104, 1.11 × 104, 7.20 × 104, 4.15 × 104, and 3.36 × 104 M-1. The synergistic application of the five compounds exhibited an equivalent expectorant activity to the original formula. We reasoned that the current method is possible to provide a highly efficient strategy for the discovery of receptor ligands.
Collapse
Affiliation(s)
- Xue Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaoying Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinyi Yuan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | | | - Ru Xu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Fang Cao
- Shaanxi Pharmaceutical Holding Group Shanhaidan Pharmaceutical Co., Ltd., Xi'an 710075, China
| | - Jianping Ren
- Medicine Researchinstitution of Shaanxi Pharmaceutical Holding Cooperation, Xi'an 710065, China
| | - Qi Liang
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
3
|
Terpinskaya TI, Osipov AV, Kryukova EV, Kudryavtsev DS, Kopylova NV, Yanchanka TL, Palukoshka AF, Gondarenko EA, Zhmak MN, Tsetlin VI, Utkin YN. α-Conotoxins and α-Cobratoxin Promote, while Lipoxygenase and Cyclooxygenase Inhibitors Suppress the Proliferation of Glioma C6 Cells. Mar Drugs 2021; 19:md19020118. [PMID: 33669933 PMCID: PMC7956437 DOI: 10.3390/md19020118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Among the brain tumors, glioma is the most common. In general, different biochemical mechanisms, involving nicotinic acetylcholine receptors (nAChRs) and the arachidonic acid cascade are involved in oncogenesis. Although the engagement of the latter in survival and proliferation of rat C6 glioma has been shown, there are practically no data about the presence and the role of nAChRs in C6 cells. In this work we studied the effects of nAChR antagonists, marine snail α-conotoxins and snake α-cobratoxin, on the survival and proliferation of C6 glioma cells. The effects of the lipoxygenase and cyclooxygenase inhibitors either alone or together with α-conotoxins and α-cobratoxin were studied in parallel. It was found that α-conotoxins and α-cobratoxin promoted the proliferation of C6 glioma cells, while nicotine had practically no effect at concentrations below 1 µL/mL. Nordihydroguaiaretic acid, a nonspecific lipoxygenase inhibitor, and baicalein, a 12-lipoxygenase inhibitor, exerted antiproliferative and cytotoxic effects on C6 cells. nAChR inhibitors weaken this effect after 24 h cultivation but produced no effects at longer times. Quantitative real-time polymerase chain reaction showed that mRNA for α4, α7, β2 and β4 subunits of nAChR were expressed in C6 glioma cells. This is the first indication for involvement of nAChRs in mechanisms of glioma cell proliferation.
Collapse
Affiliation(s)
- Tatiana I. Terpinskaya
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Alexey V. Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Elena V. Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Denis S. Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Nina V. Kopylova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Tatsiana L. Yanchanka
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Alena F. Palukoshka
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Elena A. Gondarenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Maxim N. Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Victor I. Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
- Correspondence: or ; Tel.: +7-495-3366522
| |
Collapse
|
4
|
Zhao X, Jin Y, Yuan X, Hou Z, Chen Z, Fu X, Li Q, Wang J, Zhang Y. Covalent Inhibitor-Based One-Step Method for Endothelin Receptor A Immobilization: from Ligand Recognition to Lead Identification. Anal Chem 2020; 92:13750-13758. [DOI: 10.1021/acs.analchem.0c01807] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yahui Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xinyi Yuan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Zhaoling Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Ziyue Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xiaoying Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yajun Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
5
|
Oliveira KA, Dal-Cim T, Lopes FG, Ludka FK, Nedel CB, Tasca CI. Atorvastatin Promotes Cytotoxicity and Reduces Migration and Proliferation of Human A172 Glioma Cells. Mol Neurobiol 2017; 55:1509-1523. [PMID: 28181188 DOI: 10.1007/s12035-017-0423-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/25/2017] [Indexed: 12/13/2022]
Abstract
Malignant gliomas have resistance mechanisms to chemotherapy that enable tumor invasiveness and aggressiveness. Alternative therapies in cancer treatment, as statins, have been suggested to decrease proliferation, inhibit cell migration, and induce cell death. The aim of this study was to evaluate the effect of atorvastatin (ATOR) on cell viability, migration, proliferation, apoptosis, and autophagy in A172 human glioma cells. Temozolomide (TMZ), a chemotherapic used to glioma treatment, was tested as a comparison to cytotoxic effects on gliomas. Cell viability was also assessed in primary culture of cortical astrocytes. ATOR treatment (0.1 to 20 μM) did not alter astrocytic viability. However, in glioma cells, ATOR showed cytotoxic effect at 10 and 20 μM concentrations. TMZ (500 μM) reduced cell viability similarly to ATOR, and drug association did not show additive effect on cell viability. ATOR, TMZ, and their association decreased cell migration. ATOR also decreased glioma cell proliferation. ATOR increased apoptosis, and TMZ association showed a potentiation effect, enhancing it. ATOR and TMZ treatment increased acidic vesicular organelle (AVO) presence in A172 cells, an indicative of autophagy. ATOR effect of reducing A172 cell viability did not alter glutamate transport and glutamine synthetase activity, but it was partially prevented through antagonism of ionotropic and metabotropic glutamate receptors. Our data shows a cytotoxic effect of ATOR on glioma cells, whereas no toxicity was observed to astrocytes. ATOR showed similar cytotoxic effect as TMZ to glioma cells, and it may be a safer drug, regarding side effect induction, than chemotherapic agents.
Collapse
Affiliation(s)
- Karen A Oliveira
- Programa de Pós-Graduação em Bioquímica, Florianópolis, Brazil
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900, Florianópolis, Brazil
| | - Tharine Dal-Cim
- Programa de Pós-Graduação em Neurociências, Florianópolis, Brazil
| | - Flávia G Lopes
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Fabiana K Ludka
- Programa de Pós-Graduação em Bioquímica, Florianópolis, Brazil
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900, Florianópolis, Brazil
- Curso de Farmácia, Universidade do Contestado, Canoinhas, Brazil
| | - Cláudia B Nedel
- Programa de Pós-Graduação em Neurociências, Florianópolis, Brazil
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Carla I Tasca
- Programa de Pós-Graduação em Bioquímica, Florianópolis, Brazil.
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900, Florianópolis, Brazil.
- Programa de Pós-Graduação em Neurociências, Florianópolis, Brazil.
| |
Collapse
|
6
|
Singh NS, Habicht KL, Dossou KSS, Shimmo R, Wainer IW, Moaddel R. Multiple protein stationary phases: a review. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 968:64-8. [PMID: 24780640 PMCID: PMC4127356 DOI: 10.1016/j.jchromb.2014.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/28/2014] [Accepted: 04/03/2014] [Indexed: 11/27/2022]
Abstract
Cellular membrane affinity chromatography stationary phases have been extensively used to characterize immobilized proteins and provide a direct measurement of multiple binding sites, including orthosteric and allosteric sites. This review will address the utilization of immobilized cellular and tissue fragments to characterize multiple transmembrane proteins co-immobilized onto a stationary phase. This approach will be illustrated by demonstrating that multiple transmembrane proteins were immobilized from cell lines and tissue fragments. In addition, the immobilization of individual compartments/organelles within a cell will be discussed and the changes in the proteins binding/kinetics based on their location.
Collapse
Affiliation(s)
- N S Singh
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - K-L Habicht
- Department of Natural Sciences, Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt. 29, 10120 Tallinn, Estonia
| | - K S S Dossou
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - R Shimmo
- Department of Natural Sciences, Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt. 29, 10120 Tallinn, Estonia
| | - I W Wainer
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - R Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
7
|
Chen X, Cao Y, Zhang H, Zhu Z, Liu M, Liu H, Ding X, Hong Z, Li W, Lv D, Wang L, Zhuo X, Zhang J, Xie XQ, Chai Y. Comparative normal/failing rat myocardium cell membrane chromatographic analysis system for screening specific components that counteract doxorubicin-induced heart failure from Acontium carmichaeli. Anal Chem 2014; 86:4748-57. [PMID: 24731167 PMCID: PMC4033634 DOI: 10.1021/ac500287e] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
Cell membrane chromatography (CMC)
derived from pathological tissues
is ideal for screening specific components acting on specific diseases
from complex medicines owing to the maximum simulation of in vivo drug-receptor interactions. However, there are no
pathological tissue-derived CMC models that have ever been developed,
as well as no visualized affinity comparison of potential active components
between normal and pathological CMC columns. In this study, a novel
comparative normal/failing rat myocardium CMC analysis system based
on online column selection and comprehensive two-dimensional (2D)
chromatography/monolithic column/time-of-flight mass spectrometry
was developed for parallel comparison of the chromatographic behaviors
on both normal and pathological CMC columns, as well as rapid screening
of the specific therapeutic agents that counteract doxorubicin (DOX)-induced
heart failure from Acontium carmichaeli (Fuzi). In
total, 16 potential active alkaloid components with similar structures
in Fuzi were retained on both normal and failing myocardium CMC models.
Most of them had obvious decreases of affinities on failing myocardium
CMC compared with normal CMC model except for four components, talatizamine
(TALA), 14-acetyl-TALA, hetisine, and 14-benzoylneoline. One compound
TALA with the highest affinity was isolated for further in
vitro pharmacodynamic validation and target identification
to validate the screen results. Voltage-dependent K+ channel
was confirmed as a binding target of TALA and 14-acetyl-TALA with
high affinities. The online high throughput comparative CMC analysis
method is suitable for screening specific active components from herbal
medicines by increasing the specificity of screened results and can
also be applied to other biological chromatography models.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University , No. 325 Guohe Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Takaku T, Mikata K, Nagahori H, Sogame Y. Identification of metabolites of propyrisulfuron in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 955-956:64-71. [PMID: 24631812 DOI: 10.1016/j.jchromb.2014.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/12/2014] [Accepted: 02/16/2014] [Indexed: 11/26/2022]
Abstract
The metabolites found in the urine, feces and bile of male and female rats administered with (14)C-labeled herbicide, propyrisulfuron [1-(2-chloro-6-propylimidazo[1,2-b]pyridazin-3-ylsulfonyl)-3- (4,6-dimethoxypyrimidin-2-yl)urea] were identified by high-performance liquid chromatography (HPLC) with the ultraviolet (UV) and radioisotope (RI) detectors, tandem mass spectrometry and nuclear magnetic resonance (NMR). Administered (14)C was excreted into the urine (5.7-29.8%) and feces (64.6-97.4%). Urine and bile samples were concentrated and purified using a solid-phase extraction cartridge, and fecal homogenates were extracted using acetonitrile. Conjugates were hydrolyzed with enzyme or hydrochloric acid solution for identification. The proposed major metabolic reactions of propyrisulfuron are as follows: (1) hydroxylation of the pyrimidine ring, propyl group, and imidazopyridazine ring, (2) O-demethylation, (3) cleavage of the pyrimidine ring, and (4) glucuronic acid and sulfate conjugation. The metabolic patterns found are not different among sulfonylurea herbicides.
Collapse
Affiliation(s)
- Tomoyuki Takaku
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-Ku, Osaka 554-8558, Japan.
| | - Kazuki Mikata
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-Ku, Osaka 554-8558, Japan
| | - Hirohisa Nagahori
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-Ku, Osaka 554-8558, Japan
| | - Yoshihisa Sogame
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-Ku, Osaka 554-8558, Japan
| |
Collapse
|
9
|
Fragai M, Luchinat C, Martelli T, Ravera E, Sagi I, Solomonov I, Udi Y. SSNMR of biosilica-entrapped enzymes permits an easy assessment of preservation of native conformation in atomic detail. Chem Commun (Camb) 2014; 50:421-3. [DOI: 10.1039/c3cc46896h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Nikandrov V, Balashevich T. Glycine receptors in nervous tissue and their functional role. ACTA ACUST UNITED AC 2014; 60:403-15. [DOI: 10.18097/pbmc20146004403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The literature data on glycine metabolism in neural tissue, mitochondrial Gly-cleaving system, Gly-catching system in neural and glial cells are summarized. The peculiarities of localization and distribution of specific glycine receptors and binding-sites in nervous tissue of mammals are described. Four types of glycine-binding receptors are described: own specific glycine receptor (Gly-R), ionotropic receptor, which binds N-methyl-D-aspartate selectively (NMDA-R), and ionotropic receptors of g-aminobutyrate (GABA A -R, GABA С -R). The feutures of glycine effects in neuroglial cultures are discussed
Collapse
|
11
|
Singh NS, Paul RK, Ramamoorthy A, Torjman MC, Moaddel R, Bernier M, Wainer IW. Nicotinic acetylcholine receptor antagonists alter the function and expression of serine racemase in PC-12 and 1321N1 cells. Cell Signal 2013; 25:2634-45. [PMID: 24012499 PMCID: PMC3846540 DOI: 10.1016/j.cellsig.2013.08.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 01/17/2023]
Abstract
Western blot analysis demonstrated that PC-12 cells express monomeric and dimeric forms of serine racemase (m-SR, d-SR) and that 1321N1 cells express m-SR. Quantitative RT-PCR and functional studies demonstrated that PC-12 cells express homomeric and heteromeric forms of nicotinic acetylcholine receptors (nAChR) while 1321N1 cells primarily express the α7-nAChR subtype. The effect of nAChR agonists and antagonists on SR activity and expression was examined by following concentration-dependent changes in intracellular d-Ser levels and SR protein expression. Incubation with (S)-nicotine increased d-Ser levels, which were attenuated by the α7-nAChR antagonist methyllycaconitine (MLA). Treatment of PC-12 cells with mecamylamine (MEC) produced a bimodal reduction of d-Ser reflecting MEC inhibition of homomeric and heteromeric nAChRs, while a unimodal curve was observed with 1321N1 cells, reflecting predominant expression of α7-nAChR. The nAChR subtype selectivity was probed using α7-nAChR selective inhibitors MLA and (R,S)-dehydronorketamine and α3β4-nAChR specific inhibitor AT-1001. The compounds reduced d-Ser in PC-12 cells, but only MLA and (R,S)-dehydronorketamine were effective in 1321N1 cells. Incubation of PC-12 and 1321N1 cells with (S)-nicotine, MEC and AT-1001 did not affect m-SR or d-SR expression, while MLA and (R,S)-dehydronorketamine increased m-SR expression but not SR mRNA levels. Treatment with cycloheximide indicated that increased m-SR was due to de novo protein synthesis associated with phospho-active forms of ERK1/2, MARCKS, Akt and rapamycin-sensitive mTOR. This effect was attenuated by treatment with the pharmacological inhibitors U0126, LY294002 and rapamycin, which selectively block the activation of ERK1/2, Akt and mTOR, respectively, and siRNAs directed against ERK1/2, Akt and mTOR. We propose that nAChR-associated changes in Ca(2+) flux affect SR activity, but not expression, and that MLA and (R,S)-dehydronorketamine bind to allosteric sites on the α7-nAChR and promote multiple signaling cascades that converge at mTOR to increase m-SR levels.
Collapse
Affiliation(s)
- Nagendra S. Singh
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rajib K. Paul
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Anuradha Ramamoorthy
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Marc C. Torjman
- Biostatistical Group, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michel Bernier
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Irving W. Wainer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
12
|
Moaddel R, Rosenberg A, Spelman K, Frazier J, Frazier C, Nocerino S, Brizzi A, Mugnaini C, Wainer IW. Development and characterization of immobilized cannabinoid receptor (CB1/CB2) open tubular column for on-line screening. Anal Biochem 2011; 412:85-91. [PMID: 21215722 PMCID: PMC3053438 DOI: 10.1016/j.ab.2010.12.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 12/20/2010] [Accepted: 12/28/2010] [Indexed: 01/23/2023]
Abstract
Cannabinoid receptors, CB1 and CB2, are therapeutic targets in the treatment of anxiety, obesity, movement disorders, glaucoma, and pain. We have developed an on-line screening method for CB1 and CB2 ligands, where cellular membrane fragments of a chronic myelogenous leukemia cell line, KU-812, were immobilized onto the surface of an open tubular (OT) capillary to create a CB1/CB2-OT column. The binding activities of the immobilized CB1/CB2 receptors were established using frontal affinity chromatographic techniques. This is the first report that confirms the presence of functional CB1 and CB2 receptors on KU-812 cells. The data from this study confirm that the CB1/CB2-OT column can be used to determine the binding affinities (K(i) values) for a single compound and to screen individual compounds or a mixture of multiple compounds. The CB1/CB2-OT column was also used to screen a botanical matrix, Zanthoxylum clava-herculis, where preliminary results suggest the presence of a high-affinity phytocannabinoid.
Collapse
MESH Headings
- Cannabinoids/chemistry
- Cell Line, Tumor
- Chromatography, Affinity/methods
- Humans
- Immobilized Proteins/chemistry
- Plant Roots/chemistry
- Protein Binding
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/chemistry
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/chemistry
- Zanthoxylum/chemistry
Collapse
Affiliation(s)
- R Moaddel
- Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Frontal affinity chromatography in characterizing immobilized receptors. J Pharm Biomed Anal 2011; 54:911-25. [DOI: 10.1016/j.jpba.2010.11.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/22/2010] [Accepted: 11/26/2010] [Indexed: 11/20/2022]
|
14
|
Moaddel R, Musyimi HK, Sanghvi M, Bashore C, Frazier CR, Khadeer M, Bhatia P, Wainer IW. Synthesis and characterization of a cellular membrane affinity chromatography column containing histamine 1 and P2Y(1) receptors: a multiple G-protein coupled receptor column. J Pharm Biomed Anal 2009; 52:416-9. [PMID: 19608372 DOI: 10.1016/j.jpba.2009.06.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/17/2009] [Accepted: 06/19/2009] [Indexed: 11/18/2022]
Abstract
A cellular membrane affinity chromatography (CMAC) column has been created using cellular membrane fragments from a 1321N1 cell line stably transfected with the P2Y(1) receptor. The CMAC(1321N1(P2Y1)) column contained functional P2Y(1) and histamine 1 receptors, which independently bound receptor-specific ligands. The data obtained with the CMAC(1321N1(P2Y1)) column demonstrate that multiple-G-protein coupled receptor (GPCR) columns can be developed and used to probe interactions with the immobilized receptors and that endogenously expressed GPCRs can be used to create CMAC columns. The results also establish that the histamine 1 receptor can be immobilized with retention of ligand-specific binding.
Collapse
Affiliation(s)
- Ruin Moaddel
- National Institute on Aging, National Institutes of Health, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825, United States.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Moaddel R, Wainer IW. The preparation and development of cellular membrane affinity chromatography columns. Nat Protoc 2009; 4:197-205. [PMID: 19180089 PMCID: PMC4605383 DOI: 10.1038/nprot.2008.225] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular membrane affinity chromatography is a technique that is based on the immobilization of a target trans-membrane protein onto a stationary phase. The target protein is isolated by homogenization and solubilization of a source (e.g., cell line) followed by immobilization on either the immobilized artificial membrane-phosphatidyl choline (IAM-PC) stationary phase or the surface of an open tubular capillary during a dialysis step. The procedure typically takes 3-4 d for the IAM-PC stationary phase, whereas the open-tubular method takes an extra week for the preparation of the capillary. The resulting columns can then be used to characterize binding sites on the target protein through frontal chromatographic and/or nonlinear chromatographic studies using a wide variety of ligands including small molecules and polypeptides. The columns have been used in drug discovery as well as in the screening of tobacco smoke condensates.
Collapse
Affiliation(s)
- Ruin Moaddel
- Laboratory of Clinical Investigation, Gerontology Research Center, National Institute on Aging/NIH, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA.
| | | |
Collapse
|