1
|
Trabik YA, Ayad MF, Mahmoud AM, Abdullatif HA, Michael AM. Eco-friendly electrochemical assay of oxytetracycline and flunixin in their veterinary injections and spiked milk samples. BMC Chem 2024; 18:179. [PMID: 39300585 PMCID: PMC11411790 DOI: 10.1186/s13065-024-01282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Two solid-contact electrochemical sensors were developed for detection of each of oxytetracycline HCl (OXY), and the co-formulated non-steroidal anti-inflammatory drug flunixin meglumine (FLU) in veterinary formulations and animal-derived food products. The designed sensors were based on a glassy carbon electrode as the substrate material and high molecular weight polyvinyl chloride (PVC) polymeric ion-sensing membranes doped with multiwalled carbon nanotubes (MWCNTs) to improve the potential stability and minimize signal drift. For determination of OXY, the sensing membrane was modified with potassium tetrakis (4-chlorophenyl) borate (K-TCPB), which was employed as a cation exchanger, and 2-hydroxypropyl-β-cyclodextrin (HP-ßCD), which was used as an ionophore. A linear response within a concentration range of 1 × 10- 6-1 × 10- 2 M with a slope of 59.47 mV/decade over a pH range of 1-5 was recorded. For the first time, two potentiometric electrodes were developed for determination of FLU, where the sensing membrane was modified with tetra dodecyl ammonium chloride (TDDAC) as an anion exchanger. A linear response within a concentration range of 1 × 10- 5-1 × 10- 2 M and a slope of -58.21 mV/decade over a pH range of 6-11 was observed. The suggested sensors were utilized for the selective determination of each drug in pure powder form, in veterinary formulations, and in spiked milk samples, with mean recoveries ranging from 98.50 to 102.10, and without any observed interference. The results acquired by the proposed sensors were statistically analyzed and compared with those acquired by the official methods, and the results showed no significant difference.
Collapse
Affiliation(s)
- Yossra A Trabik
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Miriam F Ayad
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hind A Abdullatif
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Adel M Michael
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| |
Collapse
|
2
|
Bene C, Laborde A, Légnani M, Flahaut E, Launay J, Temple-Boyer P. Study of Ion-to-Electron Transducing Layers for the Detection of Nitrate Ions Using FPSX(TDDAN)-Based Ion-Sensitive Electrodes. SENSORS (BASEL, SWITZERLAND) 2024; 24:5994. [PMID: 39338739 PMCID: PMC11435922 DOI: 10.3390/s24185994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
The development of ISE-based sensors for the analysis of nitrates in liquid phase is described in this work. Focusing on the tetradodecylammonium nitrate (TDDAN) ion exchanger as well as on fluoropolysiloxane (FPSX) polymer-based layers, electrodeposited matrixes containing double-walled carbon nanotubes (DWCNTs), embedded in either polyethylenedioxythiophene (PEDOT) or polypyrrole (PPy) polymers, ensured improved ion-to-electron transducing layers for NO3- detection. Thus, FPSX-based pNO3-ElecCell microsensors exhibited good detection properties (sensitivity up to 55 mV/pX for NO3 values ranging from 1 to 5) and acceptable selectivity in the presence of the main interferent anions (Cl-, HCO3-, and SO42-). Focusing on the temporal drift bottleneck, mixed results were obtained. On the one hand, relatively stable measurements and low temporal drifts (~1.5 mV/day) were evidenced on several days. On the other hand, the pNO3 sensor properties were degraded in the long term, being finally characterized by high response times, low detection sensitivities, and important measurement instabilities. These phenomena were related to the formation of some thin water-based layers at the polymer-metal interface, as well as the physicochemical properties of the TDDAN ion exchanger in the FPSX matrix. However, the improvements obtained thanks to DWCNT-based ion-to-electron transducing layers pave the way for the long-term analysis of NO3- ions in real water-based solutions.
Collapse
Affiliation(s)
- Camille Bene
- CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France; (C.B.); (A.L.); (J.L.)
- INSAT, UT3-PS, INP, University of Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France
| | - Adrian Laborde
- CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France; (C.B.); (A.L.); (J.L.)
- INSAT, UT3-PS, INP, University of Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France
| | - Morgan Légnani
- Toulouse INP, CNRS, CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (M.L.); (E.F.)
| | - Emmanuel Flahaut
- Toulouse INP, CNRS, CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (M.L.); (E.F.)
| | - Jérôme Launay
- CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France; (C.B.); (A.L.); (J.L.)
- INSAT, UT3-PS, INP, University of Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France
| | - Pierre Temple-Boyer
- CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France; (C.B.); (A.L.); (J.L.)
- INSAT, UT3-PS, INP, University of Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France
| |
Collapse
|
3
|
Gao L, Tian Y, Gao W, Xu G. Recent Developments and Challenges in Solid-Contact Ion-Selective Electrodes. SENSORS (BASEL, SWITZERLAND) 2024; 24:4289. [PMID: 39001071 PMCID: PMC11244314 DOI: 10.3390/s24134289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) have the advantages of easy miniaturization, even chip integration, easy carrying, strong stability, and more favorable detection in complex environments. They have been widely used in conjunction with portable, wearable, and intelligent detection devices, as well as in on-site analysis and timely monitoring in the fields of environment, industry, and medicine. This article provides a comprehensive review of the composition of sensors based on redox capacitive and double-layer capacitive SC-ISEs, as well as the ion-electron transduction mechanisms in the solid-contact (SC) layer, particularly focusing on strategies proposed in the past three years (since 2021) for optimizing the performance of SC-ISEs. These strategies include the construction of ion-selective membranes, SC layer, and conductive substrates. Finally, the future research direction and possibilities in this field are discussed and prospected.
Collapse
Affiliation(s)
- Lili Gao
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China;
| | - Ye Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Wenyue Gao
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China;
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Zhao J, Ding J, Luan F, Qin W. Chronopotentiometric sensors for antimicrobial peptide-based biosensing of Staphylococcus aureus. Mikrochim Acta 2024; 191:356. [PMID: 38811412 DOI: 10.1007/s00604-024-06410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/04/2024] [Indexed: 05/31/2024]
Abstract
Charged antimicrobial peptides can be used for direct potentiometric biosensing, but have never been explored. We report here a galvanostatically-controlled potentiometric sensor for antimicrobial peptide-based biosensing. Solid-state pulsed galvanostatic sensors that showed excellent stability under continuous galvanostatic polarization were prepared by utilizing reduced graphene oxide/poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate) (rGO/PEDOT: PSS) as a solid contact. More importantly, the chronopotentiometric sensor can be made sensitive to antimicrobial peptides with intrinsic charge on demand via a current pulse. In this study, a positively charged antimicrobial peptide that can bind to Staphylococcus aureus with high affinity and good selectivity was designed as a model. Two arginine residues with positive charges were linked to the C-terminal of the peptide sequence to increase its potentiometric responses on the electrode. The bacteria binding-induced charge or charge density change of the antimicrobial peptide enables the direct chronopotentiometric detection of the target. Under the optimized conditions, the concentration of Staphylococcus aureus can be determined in the linear range 10-1.0 × 105 CFU mL-1 with a detection limit of 10 CFU mL-1. It is anticipated that such a chronopotentiometric sensing platform is readily adaptable to detect other bacteria by choosing the peptides.
Collapse
Affiliation(s)
- Jiarong Zhao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264003, People's Republic of China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai, 264003, Shandong, People's Republic of China
| | - Jiawang Ding
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai, 264003, Shandong, People's Republic of China.
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264003, People's Republic of China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai, 264003, Shandong, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, People's Republic of China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, Shandong, People's Republic of China
| |
Collapse
|
5
|
Kim M, Dong XIN, Spindler BD, Bühlmann P, Stein A. Functionalizing Carbon Substrates with a Covalently Attached Cobalt Redox Buffer for Calibration-Free Solid-Contact Ion-Selective Electrodes. Anal Chem 2024; 96:7558-7565. [PMID: 38696396 DOI: 10.1021/acs.analchem.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
With a view to potentiometric sensing with minimal calibration requirements and high long-term stability, colloid-imprinted mesoporous (CIM) carbon was functionalized by the covalent attachment of a cobalt redox buffer and used as a new solid contact for ion-selective electrodes (ISEs). The CIM carbon surface was first modified by electroless grafting of a terpyridine ligand (Tpy-ph) using diazonium chemistry, followed by stepwise binding of Co(II) and an additional Tpy ligand to the grafted ligand, forming a bis(terpyridine) Co(II) complex, CIM-ph-Tpy-Co(II)-Tpy. Half a molar equivalent of ferrocenium tetrakis(3-chlorophenyl)borate was then used to partially oxidize the Co(II) complex. Electrodes prepared with this surface-attached CIM-ph-Tpy-Co(III/II)-Tpy redox buffer as a solid contact were tested as K+ sensors in combination with valinomycin as the ionophore and Dow 3140 silicone or plasticized poly(vinyl chloride) (PVC) as the matrixes for the ion-selective membrane (ISM). This solid contact is characterized by a redox capacitance of 3.26 F/g, ensuring a well-defined interfacial potential that underpins the transduction mechanism. By use of a redox couple as an internal reference element to control the phase boundary potential at the interface of the ISM and the CIM carbon solid contact, solid-contact ion-selective electrodes (SC-ISEs) with a standard deviation of E° as low as 0.3 mV for plasticized PVC ISMs and 3.5 mV for Dow 3140 silicone ISMs were obtained. Over 100 h, these SC-ISEs exhibit an emf drift of 20 μV/h for plasticized PVC ISMs and 62 μV/h for silicone ISMs. The differences in long-term stability and reproducibility between electrodes with ISMs comprising either a plasticized PVC or silicone matrix offer valuable insights into the effect of the polymeric matrix on sensor performance.
Collapse
Affiliation(s)
- Minog Kim
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Xin I N Dong
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Brian D Spindler
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
6
|
Hashem HM, Abdallah AB. A rational study of transduction mechanisms of different materials for all solid contact-ISEs. Sci Rep 2024; 14:5405. [PMID: 38443429 PMCID: PMC10914792 DOI: 10.1038/s41598-024-55729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
The new era of solid contact ion selective electrodes (SC-ISEs) miniaturized design has received an extensive amount of concern. Because it eliminated the requirement for ongoing internal solution composition optimization and created a two-phase system with stronger detection limitations. Herein, the determination of venlafaxine HCl is based on a comparison study between different ion- to electron transduction materials (such as; multiwalled carbon nanotubes (MWCNTs), polyaniline (PANi), and ferrocene) and illustrating their mechanisms in their applied sensors. Their different electrochemical features (such as bulk resistance (Rb**), double-layer capacitance (Cdl), geometric capacitance (Cg), and specific capacitance (Cp)) were evaluated and discussed by using the Electrochemical Impedance Spectroscopy (EIS), Chronopotentiometry (CP), and Cyclic Voltammetry (CV) experiments. The results indicated that each transducer's influence on the proposed sensor's electrochemical characteristics is determined by their unique chemical and physical properties. The electrochemical features vary for different solid contact materials used in transduction mechanisms. The results confirm that the MWCNT sensor revealed the best electrochemical behavior with the potentiometric response of a near-Nernestian slope of 56.1 ± 0.8 mV/decade with detection limits of 3.8 × 10-6 mol/L (r2 = 0.999) and a low potential drift (∆E/∆t) of 34.6 µV/s. Also, the selectivity study was performed in the presence of different interfering species either in single or complex matrices. This demonstrates excellent selectivity, stability, conductivity, and reliability as a VEN-TPB ion pair sensor for accurately measuring VEN in its various formulations. The proposed method was compared to HPLC reported technique and confirmed no significant difference between them. So, the proposed sensors fulfill their solutions' demand features for VEN appraisal.
Collapse
Affiliation(s)
- Heba M Hashem
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - A B Abdallah
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
- Chemistry Department, Faculty of Science, New Mansoura University, New Mansoura, Egypt
| |
Collapse
|
7
|
Chipangura YE, Spindler BD, Bühlmann P, Stein A. Design Criteria for Nanostructured Carbon Materials as Solid Contacts for Ion-Selective Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309778. [PMID: 38105339 DOI: 10.1002/adma.202309778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/05/2023] [Indexed: 12/19/2023]
Abstract
The ability to miniaturize ion-selective sensors that enable microsensor arrays and wearable sensor patches for ion detection in environmental or biological samples requires all-solid-state sensors with solid contacts for transduction of an ion activity into an electrical signal. Nanostructured carbon materials function as effective solid contacts for this purpose. They can also contribute to improved potential signal stability, reducing the need for frequent sensor calibration. In this Perspective, the structural features of various carbon-based solid contacts described in the literature and their respective abilities to reduce potential drift during long-term, continuous measurements are compared. These carbon materials include nanoporous carbons with various architectures, carbon nanotubes, carbon black, graphene, and graphite-based solid contacts. The effects of accessibility of ionophores, ionic sites, and other components of an ion-selective membrane to the internal or external carbon surfaces are discussed, because this impacts double-layer capacitance and potential drift. The effects of carbon composition on water-layer formation are also considered, which is another contributor to potential drift during long-term measurements. Recommendations regarding the selection of solid contacts and considerations for their characterization and testing in solid-contact ion-selective electrodes are provided.
Collapse
Affiliation(s)
- Yevedzo E Chipangura
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| | - Brian D Spindler
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| |
Collapse
|
8
|
Rousseau CR, Chipangura YE, Stein A, Bühlmann P. Effect of Ion Identity on Capacitance and Ion-to-Electron Transduction in Ion-Selective Electrodes with Nanographite and Carbon Nanotube Solid Contacts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1785-1792. [PMID: 38198594 DOI: 10.1021/acs.langmuir.3c03027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The use of large surface area carbon materials as transducers in solid-contact ion-selective electrodes (ISEs) has become widespread. Desirable qualities of ISEs, such as a small long-term drift, have been associated with a high capacitance that arises from the formation of an electrical double layer at the interface of the large surface area carbon material and the ion-selective membrane. The capacitive properties of these ISEs have been observed using a variety of techniques, but the effects of the ions present in the ion-selective membrane on the measured value of the capacitance have not been studied in detail. Here, it is shown that changes in the size and concentration of the ions in the ion-selective membrane as well as the polarity of the polymeric matrix result in capacitances that can vary by up to several hundred percent. These data illustrate that the interpretation of comparatively small differences in capacitance for different types of solid contacts is not meaningful unless the composition of the ion-selective membrane is taken into account.
Collapse
Affiliation(s)
- Celeste R Rousseau
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Yevedzo E Chipangura
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Safwat N, Mahmoud AM, Abdel-Ghany MF, Ayad MF. Eco-friendly monitoring of triclosan as an emerging antimicrobial environmental contaminant utilizing electrochemical sensors modified with CNTs nanocomposite transducer layer. BMC Chem 2023; 17:170. [PMID: 38017490 PMCID: PMC10685535 DOI: 10.1186/s13065-023-01092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023] Open
Abstract
Environmental appearance of antimicrobials due to frequent use of personal care products as recommended by WHO can cause serious flare-up of antimicrobial resistance. In this work, three eco-friendly microfabricated copper solid-state sensors were developed for measuring triclosan in water. Multi-walled carbon nanotubes were incorporated in sensor 2 and 3 as hydrophobic conductive inner layer. Meanwhile, β-cyclodextrin was incorporated in sensor 3 as an ionophore for selective binding of TCS in presence of interfering compounds. The obtained linear responses of sensors 1, 2 and 3 were (1 × 10- 8-1 × 10- 3 M), (1 × 10- 9-1 × 10- 3 M) and (1 × 10- 10- 1 × 10- 3 M), respectively. Limit of detection was 9.87 × 10- 9 M, 9.62 × 10- 10 M, and 9.94 × 10- 11 M, respectively. The miniaturized sensors were utilized for monitoring of triclosan in water samples.
Collapse
Affiliation(s)
- Nardine Safwat
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Amr M Mahmoud
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo, 11562, Egypt.
| | - Maha F Abdel-Ghany
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Miriam F Ayad
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| |
Collapse
|
10
|
Wiorek A, Cuartero M, Crespo GA. Selective Deionization of Thin-Layer Samples Using Tandem Carbon Nanotubes-Polymeric Membranes. Anal Chem 2023; 95:15681-15689. [PMID: 37815334 PMCID: PMC10603610 DOI: 10.1021/acs.analchem.3c02965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
Herein, we investigate the selective deionization (i.e., the removal of ions) in thin-layer samples (<100 μm in thickness) using carbon nanotubes (CNTs) covered with an ionophore-based ion-selective membrane (ISM), resulting in a CNT-ISM tandem actuator. The concept of selective deionization is based on a recent discovery by our group ( Anal. Chem. 2022, 94, 21, 7455-7459), where the activation of the CNT-ISM architecture is conceived on a mild potential step that charges the CNTs to ultimately generate the depletion of ions in a thin-layer sample. The role of the ISM is to selectively facilitate the transport of only one ion species to the CNT lattice. To estimate the deionization efficiency of such a process, a potentiometric sensor is placed less than 100 μm away from the CNT-ISM tandem, inside a microfluidic cell. This configuration helped to reveal that the selective uptake of ions increases with the capacitance of the CNTs and that the ISM requires a certain ion-exchanger capacity, but this does not further affect its efficiency. The versatility of the concept is demonstrated by comparing the selective uptake of five different ions (H+, Li+, Na+, K+, and Ca2+), suggesting the possibility to remove any cation from a sample by simply changing the ionophore in the ISM. Furthermore, ISMs based on two ionophores proved to achieve the simultaneous and selective deionization of two ion species using the same actuator. Importantly, the relative uptake between the two ions was found to be governed by the ion-ionophore binding constants, with the most strongly bound ion being favored over other ions. The CNT-ISM actuator concept is expected to contribute to the analytical sensing field in the sense that ionic interferents influencing the analytical signal can selectively be removed from samples to lower traditional limits of detection.
Collapse
Affiliation(s)
- Alexander Wiorek
- Department
of Chemistry, School of Engineering Science in Chemistry, Biochemistry
and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-114 28 Stockholm, Sweden
| | - Maria Cuartero
- Department
of Chemistry, School of Engineering Science in Chemistry, Biochemistry
and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-114 28 Stockholm, Sweden
- UCAM-SENS, Universidad
Católica San Antonio de Murcia,
UCAM HiTech, Avda. Andres
Hernandez Ros 1, 30107 Murcia, Spain
| | - Gastón A. Crespo
- Department
of Chemistry, School of Engineering Science in Chemistry, Biochemistry
and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-114 28 Stockholm, Sweden
- UCAM-SENS, Universidad
Católica San Antonio de Murcia,
UCAM HiTech, Avda. Andres
Hernandez Ros 1, 30107 Murcia, Spain
| |
Collapse
|
11
|
Hassan AM, Kelani KM, Hegazy MA, Tantawy MA. Molecular imprinted polymer-based potentiometric approach for the assay of the co-formulated tetracycline HCl, metronidazole and bismuth subcitrate in capsules and spiked human plasma. Anal Chim Acta 2023; 1278:341707. [PMID: 37709450 DOI: 10.1016/j.aca.2023.341707] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND An anti-H-pylori co-formulated mixture of tetracycline HCl (TET), metronidazole (MET), and bismuth subcitrate (BSC) is recently available. Only two chromatographic and spectrophotometric methods are reported for determining those drugs simultaneously where the effect of impurities that could be present as well as the biological fluids matrix influence do not be taken into consideration. There is a need to develop an easy-to-use potentiometric technique for analysis of TET, MET, and BSC in their co-formulated capsules, in presence of some official impurities and in spiked human plasma. RESULTS Three carbon paste electrodes (CPEs) were fabricated for this purpose. Being a solid contact ion-selective electrode, CPE suffers from the creation of a water layer affecting its stability and reproducibility. Besides, it has a common problem in differentiation between two drugs carrying the same charge (positively charged TET and MET). Water layer formation was prevented through inserting polyaniline nanoparticles (≈10.0 nm diameter) between solid contact and ion-sensing membrane in the three proposed sensors. TET and MET interference was overcome by synthesizing a corresponding molecular imprinted polymer (MIP) for each drug. The synthesized MIPs were inserted in equivalent sensing membranes and characterized using several techniques. The suggested MIPs have a noticeable enhanced sensitivity in potentiometric determination. The obtained LODs were 5.88 × 10-8, 5.19 × 10-7, and 1.73 × 10-6 M for TET, MET and BSC proposed CPEs, respectively, with corresponding slopes of 57.37, 56.20, and -57.40 mV decade-1. SIGNIFICANCE The proposed potentiometric method makes the detection of the three cited drugs simple, fast, and feasible. This approach is the first for determining three drugs potentiometrically in one combined formulation. The obtained results were compared favorably with previously reported potentiometric methods.
Collapse
Affiliation(s)
- Amal M Hassan
- Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, El-hadaba El-Wosta, Mokatam, 5th District, Cairo, Egypt
| | - Khadiga M Kelani
- Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, El-hadaba El-Wosta, Mokatam, 5th District, Cairo, Egypt; Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr el Aini Street, 11562, Cairo, Egypt
| | - Maha A Hegazy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr el Aini Street, 11562, Cairo, Egypt
| | - Mahmoud A Tantawy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr el Aini Street, 11562, Cairo, Egypt; Chemistry Department, Faculty of Pharmacy, October 6 University, 6 October City, Giza, Egypt.
| |
Collapse
|
12
|
Wang P, Liu H, Zhou S, Chen L, Yu S, Wei J. A Review of the Carbon-Based Solid Transducing Layer for Ion-Selective Electrodes. Molecules 2023; 28:5503. [PMID: 37513374 PMCID: PMC10384130 DOI: 10.3390/molecules28145503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
As one of the key components of solid-contact ion-selective electrodes (SC-ISEs), the SC layer plays a crucial role in electrode performance. Carbon materials, known for their efficient ion-electron signal conversion, chemical stability, and low cost, are considered ideal materials for solid-state transducing layers. In this review, the application of different types of carbon materials in SC-ISEs (from 2007 to 2023) has been comprehensively summarized and discussed. Representative carbon-based materials for the fabrication of SC-ISEs have been systematically outlined, and the influence of the structural characteristics of carbon materials on achieving excellent performance has been emphasized. Finally, the persistent challenges and potential opportunities are also highlighted and discussed, aiming to inspire the design and fabrication of next-generation SC-ISEs with multifunctional composite carbon materials in the future.
Collapse
Affiliation(s)
- Peike Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haipeng Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shiqiang Zhou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Lina Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
13
|
Zhai J, Sun H, Li M, Gao Y, Hu Y, Gao Z, Xie X, Zhang L, Zhao G. Simple and sensitive detection of miRNA-122 based on a micro-biosensor through square wave voltammetry. RSC Adv 2023; 13:21414-21420. [PMID: 37465577 PMCID: PMC10350789 DOI: 10.1039/d3ra03759b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
The simple and sensitive detection of miRNA-122 in blood is crucially important for early hepatocellular carcinoma (HCC) diagnosis. In this work, a platinum microelectrode (PtμE) was prepared and electrodeposited with molybdenum disulfide (MoS2) and gold nanoparticles (AuNP), respectively, and denoted as PtμE/MoS2/Au. The prepared PtμE/MoS2/Au was used as the microsensor for the detection of miRNA-122 combined with the probe DNA as a biorecognition element which is the complementary strand of miRNA-122. The PtμE/MoS2/Au conjugated with the probe DNA modified with sulfydryl units was used as the micro-biosensor for the detection of miRNA-122. The square wave voltammetry was performed for the quantitative detection of miRNA-122 using [Fe(CN)6]4-/3- as a mediator. Under the optimized conditions, the PtμE/MoS2/Au micro-biosensor shows a linear detection toward miRNA-122 ranging from 10-11 to 10-8 M (S = 6.9 nA dec-1, R2 = 0.9997), and the detection limit is 1.6 × 10-12 M (3σ/b). The PtμE/MoS2/Au micro-biosensor demonstrates good selectivity against other types of proteins and small molecules, and has good reproducibility. Moreover, the PtμE/MoS2/Au micro-biosensor was successfully applied for the measurement of miRNA-122 in real blood samples. Herein, the proposed detection assay could be a potential tool in HCC clinical diagnostics with high sensitivity.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Rehabilitation Medicine of Binzhou Medical University Yantai 264003 China +86 535 6913246 +86 535 6913213
| | - Huiyuan Sun
- Department of Critical Care Medicine, Yantai Yuhuangding Hospital Yantai 264003 China
| | - Mingkang Li
- The 2nd Medical College of Binzhou Medical University Yantai 264003 China
| | - Yuhao Gao
- The 2nd Medical College of Binzhou Medical University Yantai 264003 China
| | - Yixin Hu
- The 2nd Medical College of Binzhou Medical University Yantai 264003 China
| | - Zhi Gao
- Academy of Traditional Chinese and Western Medicine of Binzhou Medical University Yantai 264003 China
| | - Xiyu Xie
- Academy of Traditional Chinese and Western Medicine of Binzhou Medical University Yantai 264003 China
| | - Lixia Zhang
- School of Basic Medicine, Binzhou Medical University Yantai 264003 China
| | - Guangtao Zhao
- School of Basic Medicine, Binzhou Medical University Yantai 264003 China
| |
Collapse
|
14
|
Han T, Song T, Bao Y, Wang W, He Y, Liu Z, Gan S, Han D, Bobacka J, Niu L. Fast and sensitive coulometric signal transduction for ion-selective electrodes by utilizing a two-compartment cell. Talanta 2023; 262:124623. [PMID: 37244238 DOI: 10.1016/j.talanta.2023.124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
Here, we propose a fast and sensitive coulometric signal transduction method for ion-selective electrodes (ISEs) by utilizing a two-compartment cell. A potassium ion-selective electrode (K+-ISE) was connected as reference electrode (RE) and placed in the sample compartment. A glassy carbon (GC) electrode coated with poly(3,4-ethylenedioxythiophene) (GC/PEDOT), or reduced graphene oxide (GC/RGO), was connected as working electrode (WE) and placed in the detection compartment together with a counter electrode (CE). The two compartments were connected with an Ag/AgCl wire. The measured cumulated charge was amplified by increasing the capacitance of the WE. The observed slope of the cumulated charge with respect to the change of the logarithm of the K+ ion activity was linearly proportional to the capacitance of the GC/PEDOT and GC/RGO, estimated from impedance spectra. Furthermore, the sensitivity of the coulometric signal transduction using a commercial K+-ISE with internal filling solution as RE and GC/RGO as WE allowed to decrease the response time while still being able to detect a 0.2% change in K+ concentration. The coulometric method utilizing a two-compartment cell was found to be feasible for the determination of K+ concentrations in serum. The advantage of this two-compartment approach, compared to the coulometric transduction described earlier, was that no current passed through the K+-ISE that was connected as RE. Therefore, current-induced polarization of the K+-ISE was avoided. Furthermore, since the GCE/PEDOT and GCE/RGO (used as WE) had a low impedance, the response time of the coulometric response decreased from minutes to seconds.
Collapse
Affiliation(s)
- Tingting Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, C/o School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Tao Song
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Yu Bao
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, C/o School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Wei Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, C/o School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Ying He
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, C/o School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Zhenbang Liu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, C/o School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Shiyu Gan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, C/o School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Dongxue Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, C/o School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, PR China
| | - Johan Bobacka
- Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Laboratory of Molecular Science and Engineering, Henriksgatan 2, FI-20500, Turku/Åbo, Finland
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, C/o School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| |
Collapse
|
15
|
Deligönül N, Yildiz I, Bilgin S, Gokce I, Isildak O. Green Fluorescent Protein-Multi Walled Carbon Nanotube based Polymeric Membrane Electrode for Bismuth Ion Detection. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
16
|
Hussein OG, Ahmed DA, Abdelkawy M, Rezk MR, Mahmoud AM, Rostom Y. Novel solid-contact ion-selective electrode based on a polyaniline transducer layer for determination of alcaftadine in biological fluid. RSC Adv 2023; 13:7645-7655. [PMID: 36908536 PMCID: PMC9993128 DOI: 10.1039/d3ra00597f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Fabrication of a novel ion selective electrode for determining alcaftadine was achieved. The glassy carbon electrode (GCE) was utilized as a substrate in fabrication of an electrochemical sensor containing polyaniline (PANI) as an ion-to-electron transducer layer. A PVC polymeric matrix and nitrophenyl-octyl-ether were employed in designing the ion-sensing membrane (ISM). Potential stability was improved and minimization of electrical signal drift was achieved for inhibition of water layer formation at the electrode interface. Potential stability was achieved by inclusion of PANI between the electronic substrate and the ion-sensing membrane. The sensor's performance was evaluated following IUPAC recommendations. The sensor dynamic linear range was from 1.0 × 10-2 to 1.0 × 10-6 mol L-1 and it had a 6.3 × 10-7 mol L-1 detection limit. The selectivity and capabilities of the formed alcaftadine sensor were tested in the presence of its pharmaceutical formulation excipients as well as its degradation products. Additionally, the sensor was capable of quantifying the studied drug in a rabbit aqueous humor. Method's greenness profile was evaluated by the means of Analytical Greenness (AGREE) metric assessment tool.
Collapse
Affiliation(s)
- Ola G Hussein
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt Cairo Egypt
| | - Dina A Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt Cairo Egypt
| | - Mohamed Abdelkawy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Mamdouh R Rezk
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Yasmin Rostom
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| |
Collapse
|
17
|
Samardžić M, Peršić M, Széchenyi A, Jozanović M, Pukleš I, Budetić M. Development of the New Sensor Based on Functionalized Carbon Nanomaterials for Promethazine Hydrochloride Determination. SENSORS (BASEL, SWITZERLAND) 2023; 23:2641. [PMID: 36904844 PMCID: PMC10007115 DOI: 10.3390/s23052641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Promethazine hydrochloride (PM) is a widely used drug so its determination is important. Solid-contact potentiometric sensors could be an appropriate solution for that purpose due to their analytical properties. The aim of this research was to develop solid-contact sensor for potentiometric determination of PM. It had a liquid membrane containing hybrid sensing material based on functionalized carbon nanomaterials and PM ions. The membrane composition for the new PM sensor was optimized by varying different membrane plasticizers and the content of the sensing material. The plasticizer was selected based on calculations of Hansen solubility parameters (HSP) and experimental data. The best analytical performances were obtained using a sensor with 2-nitrophenyl phenyl ether (NPPE) as the plasticizer and 4% of the sensing material. It had a Nernstian slope (59.4 mV/decade of activity), a wide working range (6.2 × 10-7 M-5.0 × 10-3 M), a low limit of detection (1.5 × 10-7 M), fast response time (6 s), low signal drift (-1.2 mV/h), and good selectivity. The working pH range of the sensor was between 2 and 7. The new PM sensor was successfully used for accurate PM determination in a pure aqueous PM solution and pharmaceutical products. For that purpose, the Gran method and potentiometric titration were used.
Collapse
Affiliation(s)
- Mirela Samardžić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Mateja Peršić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Aleksandar Széchenyi
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Marija Jozanović
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Iva Pukleš
- Doctoral School of Chemistry, University of Pécs, Ifjúság útja, 7624 Pécs, Hungary
| | - Mateja Budetić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| |
Collapse
|
18
|
Soliman RM, Rostom Y, Mahmoud AM, Fayez YM, Mostafa NM, Monir HH. Novel Fabricated Potentiometric Sensors for Selective Determination of Carbinoxamine with Different Greenness Evaluation Perspectives. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Tatara R, Ishihara K, Hosaka T, Aoki K, Takei Y, Matsui T, Takayama T, Komaba S. Effect of Non-Stoichiometry of K Fe[Fe(CN)6] as Inner Solid-Contact Layer on the Potential Response of All-Solid-State Potassium Ion-Selective Electrodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Zhang Y, Tang Y, Liang R, Zhong L, Xu J, Lu H, Xu X, Han T, Bao Y, Ma Y, Gan S, Niu L. Carbon-Based Transducers for Solid-Contact Calcium Ion-Selective Electrodes: Mesopore and Nitrogen-Doping Effects. MEMBRANES 2022; 12:903. [PMID: 36135922 PMCID: PMC9505166 DOI: 10.3390/membranes12090903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) exhibit great potential in the detection of routine and portable ions which rely on solid-contact (SC) materials for the transduction of ions to electron signals. Carbon-based materials are state-of-the-art SC transducers due to their high electrical double-layer (EDL) capacitance and hydrophobicity. However, researchers have long searched for ways to enhance the interfacial capacitance in order to improve the potential stability. Herein, three representative carbon-based SC materials including nitrogen-doped mesoporous carbon (NMC), reduced graphene oxide (RGO), and carbon nanotubes (CNT) were compared. The results disclose that the NMC has the highest EDL capacitance owing to its mesopore structure and N-doping while maintaining high hydrophobicity so that no obvious water-layer effect was observed. The Ca2+-SC-ISEs based on the SC of NMC exhibited high potential stability compared with RGO and CNT. This work offers a guideline for the development of carbon-material-based SC-ISEs through mesoporous and N-doping engineering to improve the interfacial capacitance. The developed NMC-based solid-contact Ca2+-SC-ISE exhibited a Nernstian slope of 26.3 ± 3.1 mV dec-1 ranging from 10 μM to 0.1 M with a detection limit of 3.2 μM. Finally, a practical application using NMC-based SC-ISEs was demonstrated through Ca2+ ion analysis in mineral water and soil leaching solutions.
Collapse
Affiliation(s)
| | | | | | - Lijie Zhong
- Correspondence: Correspondence: (L.Z.); (L.N.)
| | | | | | | | | | | | | | | | - Li Niu
- Correspondence: Correspondence: (L.Z.); (L.N.)
| |
Collapse
|
21
|
Magdy N, sobaih A, Hussein L, Mahmoud A. Graphene‐based Disposable Electrochemical Sensor for Chlorhexidine Determination. ELECTROANAL 2022. [DOI: 10.1002/elan.202200119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nancy Magdy
- Faculty of Pharmacy, Ain Shams University EGYPT
| | | | | | | |
Collapse
|
22
|
Zhai J, Ji P, Xin Y, Liu Y, Qu Q, Han W, Zhao G. Development of Carcinoembryonic Antigen Rapid Detection System Based on Platinum Microelectrode. Front Chem 2022; 10:899276. [PMID: 35795222 PMCID: PMC9252266 DOI: 10.3389/fchem.2022.899276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Rapid and highly sensitive detection of carcinoembryonic antigen (CEA) in blood could effectively improve the diagnostic sensitivity of colorectal cancer. In this work, a platinum microelectrode (PtμE) modified with gold nanoparticles was developed as a microsensor for the detection of CEA. As the recognition element, a CEA aptamer modified with sulfhydryl could be conjugated onto the surface of the PtμEs/Au. The quantitative analysis of the concentration of CEA [CEA] by the prepared PtμEs/Au aptasensor was carried out through square wave voltammetry. Under the optimized conditions, the PtμEs/Au aptasensor exhibits a linear response toward [CEA] in the range of 1.0 × 10–11—1.0 × 10–7 g/ml (S = 5.5 nA/dec, R2 = 0.999), and the detection limit is 7.7 × 10–12 g/ml. The PtμEs/Au aptasensor also has good selectivity against other types of proteins existing in blood. The availability of the developed assay toward [CEA] in blood samples was investigated, and the results agreed well with those obtained through electrochemiluminescence provided by the hospital, and the volume of the blood sample for detection is only 20 μl. Herein, the proposed detection system could be used for the quantitative analysis of CEA in blood, with the advantages of high sensitivity, short time, and low cost. Moreover, the PtμEs/Au aptasensor has a potential application in clinical diagnosis.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Rehabilitation Medicine of Binzhou Medical University, Yantai, China
| | - Piyou Ji
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yu Xin
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Yifan Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Qianwen Qu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Wentong Han
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Guangtao Zhao
- School of Basic Medicine, Binzhou Medical University, Yantai, China
- *Correspondence: Guangtao Zhao,
| |
Collapse
|
23
|
Zeng X, Liu Y, Waterhouse GI, Jiang X, Zhang Z, Yu L. Porous three-dimensional poly(3,4-ethylenedioxythiophene)/K3Fe(CN)6 network as the solid contact layer in high stability Pb2+ ion-selective electrodes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Kozma J, Papp S, Gyurcsányi RE. TEMPO-Functionalized Carbon Nanotubes for Solid-Contact Ion-Selective Electrodes with Largely Improved Potential Reproducibility and Stability. Anal Chem 2022; 94:8249-8257. [PMID: 35622612 PMCID: PMC9201804 DOI: 10.1021/acs.analchem.2c00395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solid-contact ion-selective electrodes (SCISEs) can overcome essential limitations of their counterparts based on liquid contacts. However, attaining a highly reproducible and predictable E0, especially between different fabrication batches, turned out to be difficult even with the most established solid-contact materials, i.e., conducting polymers and large-surface-area conducting materials (e.g., carbon nanotubes), that otherwise possess excellent potential stability. An appropriate batch-to-batch E0 reproducibility of SCISEs besides aiding the rapid quality control of the electrode manufacturing process is at the core of their "calibration-free" application, which is perhaps the last major challenge for their routine use as single-use "disposable" or wearable potentiometric sensors. Therefore, here, we propose a new class of solid-contact material based on the covalent functionalization of multiwalled carbon nanotubes (MWCNTs) with a chemically stable redox molecule, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). This material combines the advantages of (i) the large double-layer capacitance of MWCNT layers, (ii) the adjustable redox couple ratio provided by the TEMPO moiety, (iii) the covalent confinement of the redox couple, and (iv) the hydrophobicity of the components to achieve the potential reproducibility and stability for demanding applications. The TEMPO-MWCNT-based SC potassium ion-selective electrodes (K+-SCISEs) showed excellent analytical performance and potential stability with no sign of an aqueous layer formation beneath the ion-selective membrane nor sensitivity toward O2, CO2, and light. A major convenience of the fabrication procedure is the E0 adjustment of the K+-SCISEs by the polarization of the TEMPO-MWCNT suspension prior to its use as solid contact. While most E0 reproducibility studies are limited to a single fabrication batch of SCISEs, the use of prepolarized TEMPO-MWCNT resulted also in an outstanding batch-to-batch potential reproducibility. We were also able to overcome the hydration-related potential drifts for the use of SCISEs without prior conditioning and to feature application for accurate K+ measurements in undiluted blood serum.
Collapse
Affiliation(s)
- József Kozma
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Soma Papp
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Róbert E Gyurcsányi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,MTA-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
25
|
Kelani K, Hegazy M, Hassan A, Tantawy M. A new comparative potentiometric method for analysis of omarigliptin using three different sensors. ELECTROANAL 2022. [DOI: 10.1002/elan.202100653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Amal Hassan
- Modern University For Technology and Information EGYPT
| | | |
Collapse
|
26
|
A New, MWCNT-Based, Solid-State Thiabendazole-Selective Sensor. SENSORS 2022; 22:s22103785. [PMID: 35632191 PMCID: PMC9147095 DOI: 10.3390/s22103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
Direct potentiometric measurements using solid-state sensors have a great potential for thiabendazole (TBZ) determination, considering simplicity, accuracy, and low cost. Modifying the sensing material of the sensor with multi-walled carbon nanotubes (MWCNTs) leads to improved analytical properties of the sensor. In this study, a new potentiometric solid-state sensor for TBZ determination, based on MWCNTs modified with a sulfate group, and TBZ ion as sensing material was developed. The sensor exhibited a Nernstian response for TBZ (60.4 mV/decade of activity) in a working range between 8.6 × 10−7 and 1.0 × 10−3 M. The detection limit for TBZ was 6.2 × 10−7 M. The response time of the sensor for TBZ was 8 s, and its signal drift was only 1.7 mV/h. The new sensor is applicable for direct potentiometric determination of TBZ in complex real samples, such as fruit peel. The accuracy of TBZ determination is confirmed using the standard addition method.
Collapse
|
27
|
Mahmoud A, Moaaz E, Rezk M, Abdel-Moety E, Fayed A. Microfabricated Solid‐Contact Potentiometric Sensor for Determination of Tedizolid Phosphate, Application to Content Uniformity Testing. ELECTROANAL 2022. [DOI: 10.1002/elan.202200115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Highly efficient potentiometric sensing device for gadolinium based on Tetraazacyclododecane-1, 4, 7, 10 -tetraaceticacid crown ether and multiwalled carbon nanotube composite. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Xu L, Gan S, Zhong L, Sun Z, Tang Y, Han T, Lin K, Liao C, He D, Ma Y, Wang W, Niu L. Conductive metal organic framework for ion-selective membrane-free solid-contact potentiometric Cu2+ sensing. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Glasco DL, Ho NHB, Mamaril AM, Bell JG. 3D Printed Ion-Selective Membranes and Their Translation into Point-of-Care Sensors. Anal Chem 2021; 93:15826-15831. [PMID: 34812620 DOI: 10.1021/acs.analchem.1c03762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This technical note describes a method for fabricating ion-selective membranes (ISMs) for use in potentiometric sensing by using 3D printing technology. Here, we demonstrate the versatility of this approach by fabricating ISMs and investigating their performance in both liquid-contact and solid-contact ion-selective electrode (ISE) configurations. Using 3D printed ISMs resulted in highly stable (drift of ∼17 μV/h) and highly reproducible (<1 mV deviation) measurements. Furthermore, we show the seamless translation of these membranes into reliable, carbon fiber- and paper-based potentiometric sensors for applications at the point-of-care. To highlight the modifiability of this approach, we fabricated sensors for bilirubin, an important biomarker of liver health; benzalkonium, a common preservative used in the pharmaceutical industry; and potassium, an important blood electrolyte. The ability to mass produce sensors using 3D printing is an attractive advantage over conventional methods, while also decreasing the time and cost associated with sensor fabrication.
Collapse
Affiliation(s)
- Dalton L Glasco
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Nguyen H B Ho
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Art Matthew Mamaril
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Jeffrey G Bell
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
31
|
Kałuża D, Michalska A, Maksymiuk K. Solid‐Contact Ion‐Selective Electrodes Paving the Way for Improved Non‐Zero Current Sensors: A Minireview. ChemElectroChem 2021. [DOI: 10.1002/celc.202100892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dawid Kałuża
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Agata Michalska
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | | |
Collapse
|
32
|
Vilchis-León P, Hérnandez-Varela J, Chanona-Pérez JJ, Urby RB, Estrada Guerrero R. Electrospun Mats Based on PVA/NaDDBS/CNx Nanocomposite for Electrochemical Sensing. MATERIALS 2021; 14:ma14216664. [PMID: 34772190 PMCID: PMC8587562 DOI: 10.3390/ma14216664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 11/20/2022]
Abstract
This study presents a nanocomposite developed with PVA, multiwall carbon nanotubes (CNTs) doped with nitrogen, and NaDDBS, which change the electrical properties of the polymer and its viscosity to be used in electrospinning process for obtaining mats of nano/macro fibers. The proposed nanocomposite was characterized using Fourier transform-infrared and Raman spectroscopy techniques, confirming the presence of the CNxs immersed in the polymer. High-resolution transmission electron microscopy was used to obtain the micrographs that showed the characteristic interplanar distances of the multiwall CNT in the polymeric matrix, with values of 3.63 Å. Finally, the CNx mats were exposed to various aqueous solutions in a potentiostat to demonstrate the effectiveness of the nanofibers for electrochemical analysis. The CNx-induced changes in the electrical properties of the polymer were identified using cyclic voltammograms, while the electrochemical analysis revealed supercapacitor behavior.
Collapse
Affiliation(s)
- Paloma Vilchis-León
- Laboratorio de Nanociencia y Nanotecnología, Departamento de Física y Matemáticas, Universidad Iberoamericana, Ciudad de México 01219, Mexico;
- Correspondence:
| | - Josué Hérnandez-Varela
- Laboratorio de Micro y Nano-Biotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (J.H.-V.); (J.J.C.-P.)
| | - José Jorge Chanona-Pérez
- Laboratorio de Micro y Nano-Biotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (J.H.-V.); (J.J.C.-P.)
| | - Raul Borja Urby
- Center of Micro and Nanotechnology of IPN, Ciudad de México 07738, Mexico;
| | - Rodolfo Estrada Guerrero
- Laboratorio de Nanociencia y Nanotecnología, Departamento de Física y Matemáticas, Universidad Iberoamericana, Ciudad de México 01219, Mexico;
| |
Collapse
|
33
|
Liang T, Jiang N, Zhou S, Wang X, Xu Y, Wu C, Kirsanov D, Legin A, Wan H, Wang P. Multiplexed all-solid-state ion-sensitive light-addressable potentiometric sensor (ISLAPS) system based on silicone-rubber for physiological ions detection. Anal Chim Acta 2021; 1179:338603. [PMID: 34535249 DOI: 10.1016/j.aca.2021.338603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
Light-addressable potentiometric sensor (LAPS) has been widely used in biomedical applications since its advent. As a member of the potentiometric sensors, ion-sensitive LAPS (ISLAPS) can be obtained by modifying ion selective sensing membrane on the sensor surface. Compared with the conventional ion-selective electrodes (ISEs) with liquid contact, the all-solid-state ISEs have more advantages such as easy maintenance, more convenient for miniaturization and practical applications. However, the commonly used ion-sensitive membrane (ISM) matrix like PVC has many limitations such as poor adhesion to silicone-based sensor and easy overflow of the plasticizer from the membrane. In this work, LAPS was combined with a variety of ionophore-doped all-solid-state silicone-rubber ISMs for the first time, to establish a program-controlled multiplexed ISLAPS system for physiological ions (Na+, K+, Ca2+ and H+) detection. The silicone-rubber ISMs have better adhesion to silicon-based sensors without containing plasticizers, which can avoid the plasticizer pollution and improve the long-term stability. A layer of poly(3-octylthiophene-2,5-diyl) (P3OT) was pre-modified on the sensor surface to inhibit the formation of an aqueous layer and improve the sensor lifetime. With the aid of a translation stage, the light spot automatically illuminated the detection sites in sequence, and the response of the four ions could be obtained in one measurement within 1 min. The proposed multiplexed ISLAPS has good sensitivity with micromolar limit of detection (LOD), good selectivity and long-term stability (more than 3 months). The results of the real Dulbecco's Modified Eagle Medium (DMEM) sample detection proved that the ISLAPS system can be used for the physiological ions detection, and is promising to realize a multi-parameter microphysiometer.
Collapse
Affiliation(s)
- Tao Liang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Nan Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shuqi Zhou
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinyi Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingke Xu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chunsheng Wu
- Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dmitry Kirsanov
- Institute of Chemistry, Mendeleev Center, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Andrey Legin
- Institute of Chemistry, Mendeleev Center, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
34
|
Aničić M, Budetić M, Dekanić T, Grgić K, Pušić T, Samardžić M. Optimization of a Fabric Softener Formulation with an Electrochemical Sensor and Streaming Potential Measurements. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maja Aničić
- Saponia Chemical, Pharmaceutical and Foodstuff Industry Osijek M. Gupca 2, 31000 Croatia
| | - Mateja Budetić
- Department of Chemistry Josip Juraj Strossmayer University of Osijek Osijek Cara Hadrijana 8/A, 31000 Croatia
| | - Tihana Dekanić
- Faculty of Textile Technology, Department of Textile Chemistry and Ecology University of Zagreb Zagreb Prilaz baruna Filipovića 28a, 10000 Croatia
| | - Katia Grgić
- Faculty of Textile Technology, Department of Textile Chemistry and Ecology University of Zagreb Zagreb Prilaz baruna Filipovića 28a, 10000 Croatia
| | - Tanja Pušić
- Faculty of Textile Technology, Department of Textile Chemistry and Ecology University of Zagreb Zagreb Prilaz baruna Filipovića 28a, 10000 Croatia
| | - Mirela Samardžić
- Department of Chemistry Josip Juraj Strossmayer University of Osijek Osijek Cara Hadrijana 8/A, 31000 Croatia
| |
Collapse
|
35
|
Improving the stability of Pb2+ ion-selective electrodes by using 3D polyaniline nanowire arrays as the inner solid-contact transducer. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Moaaz EM, Mahmoud AM, Fayed AS, Rezk MR, Abdel‐Moety EM. Determination of Tedizolid Phosphate Using Graphene Nanocomposite Based Solid Contact Ion Selective Electrode; Green Profile Assessment by Eco‐scale and GAPI Approach. ELECTROANAL 2021. [DOI: 10.1002/elan.202100067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Eman M. Moaaz
- Analytical Chemistry Department Faculty of Pharmacy Cairo University El-Kasr El-Aini Street 11562 Cairo Egypt
| | - Amr M. Mahmoud
- Analytical Chemistry Department Faculty of Pharmacy Cairo University El-Kasr El-Aini Street 11562 Cairo Egypt
| | - Ahmed S. Fayed
- Analytical Chemistry Department Faculty of Pharmacy Cairo University El-Kasr El-Aini Street 11562 Cairo Egypt
| | - Mamdouh R. Rezk
- Analytical Chemistry Department Faculty of Pharmacy Cairo University El-Kasr El-Aini Street 11562 Cairo Egypt
| | - Ezzat M. Abdel‐Moety
- Analytical Chemistry Department Faculty of Pharmacy Cairo University El-Kasr El-Aini Street 11562 Cairo Egypt
| |
Collapse
|
37
|
Dębosz M, Kozma J, Porada R, Wieczorek M, Paluch J, Gyurcsányi RE, Migdalski J, Kościelniak P. 3D-printed manifold integrating solid contact ion-selective electrodes for multiplexed ion concentration measurements in urine. Talanta 2021; 232:122491. [PMID: 34074448 DOI: 10.1016/j.talanta.2021.122491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/26/2023]
Abstract
Urinalysis is a simple and non-invasive approach for the diagnosis and monitoring of various health disorders. While urinalysis is predominantly confined to clinical laboratories the non-invasive sample collection makes it applicable in wide range of settings outside of central laboratory confinements. In this respect, 3D printed devices integrating sensors for measuring multiple parameters may be one of the most viable approaches to ensure cost-effectiveness for widespread use. Here we evaluated such a system for the multiplexed determination of sodium, potassium and calcium ions in urine samples with ion-selective electrodes based on state of the art octadecylamine-functionalized multi-walled carbon nanotube (OD-MWCNT) solid contacts. The electrodes were tested in the clinically relevant concentration range, i.e. ca. 10-4 - 10-1 mol L-1 and were proven to have Nernstian responses under flow injection conditions. The applicability of the 3D printed flow manifold was investigated through the analysis of synthetic samples and two certified reference materials. The obtained results confirm the suitability of the proposed system for multiplexed ion analysis in urine.
Collapse
Affiliation(s)
- Marek Dębosz
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Analytical Chemistry, Ul. Gronostajowa 2, Krakow, Poland.
| | - József Kozma
- Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, BME "Lendület" Chemical Nanosensors Research Group, Szt. Gellért Tér 4, H-1111, Budapest, Hungary
| | - Radosław Porada
- AGH-University of Science and Technology in Cracow, Faculty of Materials Science and Ceramics, Department of Analytical Chemistry and Biochemistry, Al. Mickiewicza 30, Kraków, Poland
| | - Marcin Wieczorek
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Analytical Chemistry, Ul. Gronostajowa 2, Krakow, Poland
| | - Justyna Paluch
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Analytical Chemistry, Ul. Gronostajowa 2, Krakow, Poland
| | - Róbert E Gyurcsányi
- Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, BME "Lendület" Chemical Nanosensors Research Group, Szt. Gellért Tér 4, H-1111, Budapest, Hungary
| | - Jan Migdalski
- AGH-University of Science and Technology in Cracow, Faculty of Materials Science and Ceramics, Department of Analytical Chemistry and Biochemistry, Al. Mickiewicza 30, Kraków, Poland
| | - Paweł Kościelniak
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Analytical Chemistry, Ul. Gronostajowa 2, Krakow, Poland
| |
Collapse
|
38
|
Budetić M, Samardžić M, Ravnjak G, Dandić A, Živković P, Széchenyi A. A new solid-state anionic surfactant-selective sensor based on functionalized MWCNT. Talanta 2021; 226:122196. [PMID: 33676720 DOI: 10.1016/j.talanta.2021.122196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/29/2022]
Abstract
A new solid-state potentiometric sensor for anionic surfactants (AnS) determination was prepared. The sensor material in the liquid membrane was made of multi-walled carbon nanotubes (MWCNTs) chemically functionalized with a quaternary ammonium group and tetraphenylborate (TPB) anion (MWCNT-N+(CH3)3TPB-). The response of the MWCNT-N+(CH3)3TPB- sensor was Nernstian (59.3 mV/decade of activity) for both AnS investigated (sodium dodecyl sulfate (NaDDS) and sodium dodecylbenzenesulfonate (NaDBS)). The limits of detection were 2.0 ∙ 10-7 and 1.5 ∙ 10-7 for NaDDS and NaDBS, respectively, and the average response time was only 5 s. The new MWCNT-N+(CH3)3TPB- sensor was very selective for NaDDS compared to anions usually contained in commercial products and is not affected by nonionic surfactants that can also be present in these products. It was tested to determine AnS concertation by the potentiometric titration method in a pH range between 3 and 12 and successfully applied for its determination in three-component mixtures and real systems.
Collapse
Affiliation(s)
- Mateja Budetić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Mirela Samardžić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Gabriela Ravnjak
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Andrea Dandić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Pavo Živković
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Aleksandar Széchenyi
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia.
| |
Collapse
|
39
|
Zdrachek E, Bakker E. Ion-to-electron capacitance of single-walled carbon nanotube layers before and after ion-selective membrane deposition. Mikrochim Acta 2021; 188:149. [PMID: 33797650 PMCID: PMC8018922 DOI: 10.1007/s00604-021-04805-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/21/2021] [Indexed: 01/26/2023]
Abstract
The capacitance of the ion-to-electron transducer layer helps to maintain a high potential stability of solid-contact ion-selective electrodes (SC-ISEs), and its estimation is therefore an essential step of SC-ISE characterization. The established chronopotentiometric protocol used to evaluate the capacitance of the single-walled carbon nanotube transducer layer was revised in order to obtain more reliable and better reproducible values and also to allow capacitance to be measured before membrane deposition for electrode manufacturing quality control purposes. The capacitance values measured with the revised method increased linearly with the number of deposited carbon nanotube-based transducer layers and were also found to correlate linearly before and after ion-selective membrane deposition, with correlation slopes close to 1 for nitrate-selective electrodes, to 0.7 and to 0.5 for potassium- and calcium-selective electrodes.
Collapse
Affiliation(s)
- Elena Zdrachek
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211, Geneva, Switzerland.
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211, Geneva, Switzerland.
| |
Collapse
|
40
|
Goud KY, Sandhu SS, Teymourian H, Yin L, Tostado N, Raushel FM, Harvey SP, Moores LC, Wang J. Textile-based wearable solid-contact flexible fluoride sensor: Toward biodetection of G-type nerve agents. Biosens Bioelectron 2021; 182:113172. [PMID: 33812282 DOI: 10.1016/j.bios.2021.113172] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022]
Abstract
Rising global concerns posed by chemical and biological threat agents highlight the critical need to develop reliable strategies for the real-time detection of such threats. While wearable sensing technology is well suited to fulfill this task, the use of on-body devices for rapid and selective field identification of chemical agents is relatively a new area. This work describes a flexible printed textile-based solid-contact potentiometric sensor for the selective detection of fluoride anions liberated by the biocatalytic hydrolysis of fluorine-containing G-type nerve agents (such as sarin or soman). The newly developed solid-contact textile fluoride sensor relies on a fluoride-selective bis(fluorodioctylstannyl)methane ionophore to provide attractive analytical performance with near-Nernstian sensitivity and effective discrimination against common anions, along with excellent reversibility and repeatability for dynamically changing fluoride concentrations. By using stress-enduring printed inks and serpentine structures along with stretchable textile substrates, the resulting textile-based fluoride sensor exhibits robust mechanical resiliency under severe mechanical strains. Such realization of an effective textile-based fluoride-selective electrode allowed biosensing of the nerve-agent simulant diisopropyl fluorophosphate (DFP), in connection to immobilized organophosphorus acid anhydrolylase (OPAA) or organophosphorus hydrolase (OPH) enzymes. A user-friendly portable electronic module transmits data from the new textile-based potentiometric biosensor wirelessly to a nearby smartphone for alerting the wearer instantaneously about potential chemical threats. While expanding the scope of wearable solid-contact anion sensors, such a textile-based potentiometric fluoride electrode transducer offers particular promise for effective discrimination of G-type neurotoxins from organophosphate (OP) pesticides, toward specific field detection of these agents in diverse defense settings.
Collapse
Affiliation(s)
- K Yugender Goud
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Samar S Sandhu
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Hazhir Teymourian
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Lu Yin
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Nicholas Tostado
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Frank M Raushel
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| | - Steven P Harvey
- U.S. Army Combat Capabilities and Development Command-Chemical Biological Center (CCDC-CBC), Aberdeen Proving Ground, MD, 1010, United States
| | - Lee C Moores
- U.S. Army Engineer Research and Development Center, Installation and Operation Environment Program, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, 39180, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States.
| |
Collapse
|
41
|
Influence of solid electrolyte upon the repeatability and reproducibility of all-solid-state ion-selective electrodes with inorganic insertion material paste. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Mahmoud AM, Ragab MT, Ramadan NK, El‐Ragehy NA, El‐Zeany BA. Design of Solid‐contact Ion‐selective Electrode with Graphene Transducer Layer for the Determination of Flavoxate Hydrochloride in Dosage Form and in Spiked Human Plasma. ELECTROANAL 2020. [DOI: 10.1002/elan.202060377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Amr M. Mahmoud
- Analytical Chemistry Department Faculty of Pharmacy Cairo University Kasr El Aini Cairo 11562 Egypt
| | - Mona T. Ragab
- Analytical Chemistry Department Faculty of Pharmacy Cairo University Kasr El Aini Cairo 11562 Egypt
| | - Nesrin K. Ramadan
- Analytical Chemistry Department Faculty of Pharmacy Cairo University Kasr El Aini Cairo 11562 Egypt
| | - Nariman A. El‐Ragehy
- Analytical Chemistry Department Faculty of Pharmacy Cairo University Kasr El Aini Cairo 11562 Egypt
| | - Badr A. El‐Zeany
- Analytical Chemistry Department Faculty of Pharmacy Cairo University Kasr El Aini Cairo 11562 Egypt
| |
Collapse
|
43
|
Unintended Changes of Ion-Selective Membranes Composition-Origin and Effect on Analytical Performance. MEMBRANES 2020; 10:membranes10100266. [PMID: 32998393 PMCID: PMC7601616 DOI: 10.3390/membranes10100266] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/28/2023]
Abstract
Ion-selective membranes, as used in potentiometric sensors, are mixtures of a few important constituents in a carefully balanced proportion. The changes of composition of the ion-selective membrane, both qualitative and quantitative, affect the analytical performance of sensors. Different constructions and materials applied to improve sensors result in specific conditions of membrane formation, in consequence, potentially can result in uncontrolled modification of the membrane composition. Clearly, these effects need to be considered, especially if preparation of miniaturized, potentially disposable internal-solution free sensors is considered. Furthermore, membrane composition changes can occur during the normal operation of sensors—accumulation of species as well as release need to be taken into account, regardless of the construction of sensors used. Issues related to spontaneous changes of membrane composition that can occur during sensor construction, pre-treatment and their operation, seem to be underestimated in the subject literature. The aim of this work is to summarize available data related to potentiometric sensors and highlight the effects that can potentially be important also for other sensors using ion-selective membranes, e.g., optodes or voltammetric sensors.
Collapse
|
44
|
Wang H, Yuan B, Yin T, Qin W. Alternative coulometric signal readout based on a solid-contact ion-selective electrode for detection of nitrate. Anal Chim Acta 2020; 1129:136-142. [DOI: 10.1016/j.aca.2020.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 01/09/2023]
|
45
|
Lyu Y, Gan S, Bao Y, Zhong L, Xu J, Wang W, Liu Z, Ma Y, Yang G, Niu L. Solid-Contact Ion-Selective Electrodes: Response Mechanisms, Transducer Materials and Wearable Sensors. MEMBRANES 2020; 10:membranes10060128. [PMID: 32585903 PMCID: PMC7345918 DOI: 10.3390/membranes10060128] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Wearable sensors based on solid-contact ion-selective electrodes (SC-ISEs) are currently attracting intensive attention in monitoring human health conditions through real-time and non-invasive analysis of ions in biological fluids. SC-ISEs have gone through a revolution with improvements in potential stability and reproducibility. The introduction of new transducing materials, the understanding of theoretical potentiometric responses, and wearable applications greatly facilitate SC-ISEs. We review recent advances in SC-ISEs including the response mechanism (redox capacitance and electric-double-layer capacitance mechanisms) and crucial solid transducer materials (conducting polymers, carbon and other nanomaterials) and applications in wearable sensors. At the end of the review we illustrate the existing challenges and prospects for future SC-ISEs. We expect this review to provide readers with a general picture of SC-ISEs and appeal to further establishing protocols for evaluating SC-ISEs and accelerating commercial wearable sensors for clinical diagnosis and family practice.
Collapse
Affiliation(s)
- Yan Lyu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Shiyu Gan
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
- Correspondence: (S.G.); (L.N.)
| | - Yu Bao
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Lijie Zhong
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Jianan Xu
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Wang
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Zhenbang Liu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Yingming Ma
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Guifu Yang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China;
| | - Li Niu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
- MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
- Correspondence: (S.G.); (L.N.)
| |
Collapse
|
46
|
Mahmoud AM, Saad MN, Elzanfaly ES, Amer SM, Essam HM. An electrochemical sensing platform to determine tetrahydrozoline HCl in pure form, pharmaceutical formulation, and rabbit aqueous humor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2903-2913. [PMID: 32930213 DOI: 10.1039/d0ay00882f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the pharmaceutical industry, finding cost-effective and real-time analyzers that provide valid data is a good aim. The purpose of this work was to propose a link between the pharmaceutical industry and the recent innovations in solid-contact ion-selective electrodes (SC-ISEs) for the utilization of these electrodes as real-time analyzers to evaluate the concentration of tetrahydrozoline HCl in different matrices. The backbone of these new potentiometric sensors is the conjunction of calix[6]arene and (2-hydroxypropyl)-β-cyclodextrin as molecular recognition elements and a network of multi-walled carbon nanotubes as a solid transducer material between an ionophore-doped PVC membrane and microfabricated Cu electrodes. The proposed sensors were optimized to determine tetrahydrozoline, and their performances were assessed according to the IUPAC recommendations. The proposed solid-contact sensors were compared with liquid contact sensors, and the former sensors were found to be better than the latter sensors in terms of durability, handling, and easier adaptation to industry with comparable sensitivity. The measurements were implemented using phosphate buffer (pH: 6). The best obtained linearity range was 1 × 10-2 to 1 × 10-7 M, and the best LOD was 1 × 10-8 M. The sensors with the best performance were successfully applied to determine tetrahydrozoline in a pharmaceutical eye preparation and rabbit tears. The obtained results were statistically compared to those obtained by the official method of analysis, and no significant difference was obtained. The eco-score of the method was assessed using the eco-scale tool and also compared with that of the official method. The proposed approach was validated according to the International Council for Harmonisation (ICH) guidelines.
Collapse
Affiliation(s)
- Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, 11562 Cairo, Egypt.
| | - Martin N Saad
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, 11562 Cairo, Egypt.
| | - Eman S Elzanfaly
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, 11562 Cairo, Egypt.
| | - Sawsan M Amer
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, 11562 Cairo, Egypt.
| | - Hebatallah M Essam
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, 11562 Cairo, Egypt.
| |
Collapse
|
47
|
Papp S, Kozma J, Lindfors T, Gyurcsányi RE. Lipophilic Multi‐walled Carbon Nanotube‐based Solid Contact Potassium Ion‐selective Electrodes with Reproducible Standard Potentials. A Comparative Study. ELECTROANAL 2020. [DOI: 10.1002/elan.202000045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Soma Papp
- Department of Inorganic and Analytical Chemistry, BME Lendület Chemical Nanosensor Research GroupBudapest University of Technology and Economics Szt. Gellert tér 4 H-1111 Budapest Hungary
| | - József Kozma
- Department of Inorganic and Analytical Chemistry, BME Lendület Chemical Nanosensor Research GroupBudapest University of Technology and Economics Szt. Gellert tér 4 H-1111 Budapest Hungary
| | - Tom Lindfors
- Åbo Akademi University, Johan Gadolin Process Chemistry CentreLaboratory of Molecular Science and Engineering Biskopsgatan 8 FIN-20500 Åbo Finland
| | - Róbert E. Gyurcsányi
- Department of Inorganic and Analytical Chemistry, BME Lendület Chemical Nanosensor Research GroupBudapest University of Technology and Economics Szt. Gellert tér 4 H-1111 Budapest Hungary
| |
Collapse
|
48
|
Hassan SSM, Kamel AH, Amr AEGE, Abdelwahab Fathy M, Al-Omar MA. Paper Strip and Ceramic Potentiometric Platforms Modified with Nano-Sized Polyaniline (PANi) for Static and Hydrodynamic Monitoring of Chromium in Industrial Samples. Molecules 2020; 25:E629. [PMID: 32023970 PMCID: PMC7037674 DOI: 10.3390/molecules25030629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/30/2022] Open
Abstract
Screen-printed membrane sensors based on the use of paper and ceramic substrates are fabricated, characterized, and used for rapid batch and continuous monitoring of CrIII in the form of CrO42- in some industrial products and wastewater samples. Strips of paper and ceramic platforms (15 × 5 mm) were covered with conductive carbon paint and then modified with polyaniline (PANI) film, to act as an ion-to-electron transducer, followed by a drop casting of plasticized poly (vinyl chloride) (PVC) Rhodamine-B chromate membrane as a recognition sensing material. In a 5.0 mmol L-1 Trizma buffer solution of pH ~8, the fabricated paper and ceramic based membrane sensors exhibited a near Nernstian response for CrVI ion with slopes of -29.7 ± 0.5 and -28.6 ± 0.3 mV decade-1, limit of detection 2.5 × 10-5 and 2.4 × 10-6 mol L-1 (1.3-0.12 µg mL-1), and linear concentration range 7.5 × 10-3-5.0 × 10-5 and 7.5 × 10-3-1.0 × 10-5 mol L-1 (390-0.5 µg mL-1), respectively. Both sensors exhibited fast and stable potentiometric response, excellent reproducibility, and good selectivity with respect to a number of common foreign inorganic species. Impedance spectroscopy and chronopotentiometry data revealed a small resistance and a larger double layer capacitance due to the presence of the intermediate polyaniline (PAN) conductive layer. Furthermore, the formation of a water layer between the ion selective membrane (ISM) and the underlying conductor polymer and between the conducting polymer and the carbon conducting surface was greatly reduced. The developed disposable solid-contact potentiometric sensors offer the advantages of simple design, long term potential stability, flexibility, miniaturization ability, short conditioning time, and cost effectiveness that enable mass production. The sensors were successfully used for static and hydrodynamic measurements of total chromium in some leather tanning wastewater and nickel-chrome alloy samples. The results compare favorably with data obtained by atomic absorption spectrometry.
Collapse
Affiliation(s)
- Saad S. M. Hassan
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt;
| | - Ayman H. Kamel
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt;
| | - Abd El-Galil E. Amr
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Applied Organic Chemistry Department, National Research Center, Dokki, Giza 12622, Egypt
| | - M. Abdelwahab Fathy
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt;
| | - Mohamed A. Al-Omar
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
49
|
Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020; 49:4405-4465. [DOI: 10.1039/c9cs00587k] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of recent progress in the design and applications of solid-contact ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
50
|
Stable Pb2+ ion-selective electrodes based on polyaniline-TiO2 solid contacts. Anal Chim Acta 2020; 1094:26-33. [DOI: 10.1016/j.aca.2019.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/14/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022]
|