1
|
Skaanvik SA, Stephens LI, Gateman SM, Geissler M, Mauzeroll J. Quantitative Feedback Referencing for Improved Kinetic Fitting of Scanning Electrochemical Microscopy Measurements. Anal Chem 2022; 94:13852-13859. [PMID: 36166706 DOI: 10.1021/acs.analchem.2c02498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scanning electrochemical microscopy (SECM) has matured as a technique for studying local electrochemical processes. The feedback mode is most commonly used for extracting quantitative kinetic information. However, approaching individual regions of interest, as is commonly done, does not take full advantage of the spatial resolution that SECM has to offer. Moreover, fitting of experimental approach curves remains highly subjective due to the manner of estimating the tip-to-substrate distance. We address these issues using negative or positive feedback currents as a reference to calculate the tip-to-substrate distance directly for quantitative kinetic fitting of approach curves and line profiles. The method was first evaluated by fitting simulated data and then tested experimentally by resolving negative feedback and intermediate kinetics behavior in a spatially controlled fashion using (i) a flat, binary substrate composed of Au and SiO2 segments and (ii) a dual-mediator system for live-cell measurements. The methodology developed herein, named quantitative feedback referencing (QFR), improves fitting accuracy, removes fitting subjectivity, and avoids substrate-microelectrode contact.
Collapse
Affiliation(s)
| | - Lisa Irene Stephens
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | | - Matthias Geissler
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, Quebec J4B 6Y4, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
2
|
Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning Electrochemical Microscopy: A Comprehensive Review of Experimental Parameters from 1989 to 2015. Chem Rev 2016; 116:13234-13278. [PMID: 27736057 DOI: 10.1021/acs.chemrev.6b00067] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- David Polcari
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec Canada, H3A 0B8
| | - Philippe Dauphin-Ducharme
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec Canada, H3A 0B8
| | - Janine Mauzeroll
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec Canada, H3A 0B8
| |
Collapse
|
3
|
Plettenberg I, Wittstock G. Combined detection of electrochemical reactions and topographical effects - imaging with scanning ohmic microscopy. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Dauphin-Ducharme P, Binns WJ, Snowden ME, Shoesmith DW, Mauzeroll J. Determination of the local corrosion rate of magnesium alloys using a shear force mounted scanning microcapillary method. Faraday Discuss 2015; 180:331-45. [DOI: 10.1039/c4fd00276h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The successful development of scanning probe techniques to characterize corrosion in situ using multifunctional probes is intrinsically tied to surface topography signal decoupling from the measured electrochemical fluxes. One viable strategy is the shear force controlled scanning microcapillary method. Using this method, pulled quartz micropipettes with an aperture of 500 nm diameter were used to resolve small and large variations in topography in order to quantify the local corrosion rate of microgalvanically and galvanically corroded Mg alloys. To achieve topography monitoring of corroded surfaces, shear force feedback was employed to position the micropipette at a reproducible working height above the substrate. We present proof of concept measurements over a galvanic couple of a magnesium alloy (AE44) and mild steel along with a microgalvanically corroded ZEK100 Mg alloy, which illustrates the ability of shear force to track small (1.4 μm) and large (700 μm) topographic variations from high aspect ratio features. Furthermore, we demonstrate the robustness of the technique by acquiring topographic data for 4 mm along the magnesium–steel galvanic couple sample and a 250 × 30 μm topography map over the ZEK100 Mg alloy. All topography results were benchmarked using standard optical microscopies (profilometry and confocal laser scanning microscopy).
Collapse
Affiliation(s)
| | - W. Jeffrey Binns
- Department of Chemistry and Surface Science Western
- Western University
- London
- Canada
| | | | - David W. Shoesmith
- Department of Chemistry and Surface Science Western
- Western University
- London
- Canada
| | | |
Collapse
|
5
|
Etienne M, Dossot M, Grausem J, Herzog G. Combined Raman Microspectrometer and Shearforce Regulated SECM for Corrosion and Self-Healing Analysis. Anal Chem 2014; 86:11203-10. [DOI: 10.1021/ac502670t] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mathieu Etienne
- CNRS and Université de Lorraine, Laboratoire de Chimie Physique et
Microbiologie pour l’Environnement, UMR 7564, 405 rue de
Vandoeuvre, F-54600 Villers-lès-Nancy, France
| | - Manuel Dossot
- CNRS and Université de Lorraine, Laboratoire de Chimie Physique et
Microbiologie pour l’Environnement, UMR 7564, 405 rue de
Vandoeuvre, F-54600 Villers-lès-Nancy, France
| | - Jérôme Grausem
- CNRS and Université de Lorraine, Laboratoire de Chimie Physique et
Microbiologie pour l’Environnement, UMR 7564, 405 rue de
Vandoeuvre, F-54600 Villers-lès-Nancy, France
| | - Grégoire Herzog
- CNRS and Université de Lorraine, Laboratoire de Chimie Physique et
Microbiologie pour l’Environnement, UMR 7564, 405 rue de
Vandoeuvre, F-54600 Villers-lès-Nancy, France
| |
Collapse
|
6
|
Local flux of hydrogen from magnesium alloy corrosion investigated by scanning electrochemical microscopy. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.03.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Kuss S, Kuss C, Trinh D, Schougaard SB, Mauzeroll J. Forced convection during scanning electrochemical microscopy imaging over living cells: Effect of topographies and kinetics on the microelectrode current. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Etienne M, Moulin JP, Gourhand S. Accurate control of the electrode shape for high resolution shearforce regulated SECM. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Thakar R, Weber AE, Morris CA, Baker LA. Multifunctional carbon nanoelectrodes fabricated by focused ion beam milling. Analyst 2013; 138:5973-82. [PMID: 23942511 DOI: 10.1039/c3an01216f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report a strategy for fabrication of sub-micron, multifunctional carbon electrodes and application of these electrodes as probes for scanning electrochemical microscopy (SECM) and scanning ion conductance microscopy (SICM). The fabrication process utilized chemical vapor deposition of parylene, followed by thermal pyrolysis to form conductive carbon and then further deposition of parylene to form an insulation layer. To achieve well-defined electrode geometries, two methods of electrode exposure were utilized. In the first method, carbon probes were masked in polydimethylsiloxane (PDMS) to obtain a cone-shaped electrode. In the second method, the electrode area was exposed via milling with a focused ion beam (FIB) to reveal a carbon ring electrode, carbon ring/platinum disk electrode, or carbon ring/nanopore electrode. Carbon electrodes were batch fabricated (~35/batch) through the vapor deposition process and were characterized with scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and cyclic voltammetry (CV) measurements. Additionally, Raman spectroscopy was utilized to examine the effects of Ga(+) ion implantation, a result of FIB milling. Constant-height, feedback mode SECM was performed with conical carbon electrodes and carbon ring electrodes. We demonstrate the utility of carbon ring/nanopore electrodes with SECM-SICM to simultaneously collect topography, ion current and electrochemical current images. In addition, carbon ring/nanopore electrodes were utilized in substrate generation/tip collection (SG/TC) SECM. In SG/TC SECM, localized delivery of redox molecules affords a higher resolution, than when the redox molecules are present in the bath solution. Multifunctional geometries of carbon electrode probes will find utility in electroanalytical applications, in general, and more specifically with electrochemical microscopy as discussed herein.
Collapse
Affiliation(s)
- Rahul Thakar
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| | | | | | | |
Collapse
|
10
|
|
11
|
Assessment of multidrug resistance on cell coculture patterns using scanning electrochemical microscopy. Proc Natl Acad Sci U S A 2013; 110:9249-54. [PMID: 23686580 DOI: 10.1073/pnas.1214809110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The emergence of resistance to multiple unrelated chemotherapeutic drugs impedes the treatment of several cancers. Although the involvement of ATP-binding cassette transporters has long been known, there is no in situ method capable of tracking this transporter-related resistance at the single-cell level without interfering with the cell's environment or metabolism. Here, we demonstrate that scanning electrochemical microscopy (SECM) can quantitatively and noninvasively track multidrug resistance-related protein 1-dependent multidrug resistance in patterned adenocarcinoma cervical cancer cells. Nonresistant human cancer cells and their multidrug resistant variants are arranged in a side-by-side format using a stencil-based patterning scheme, allowing for precise positioning of target cells underneath the SECM sensor. SECM measurements of the patterned cells, performed with ferrocenemethanol and [Ru(NH3)6](3+) serving as electrochemical indicators, are used to establish a kinetic "map" of constant-height SECM scans, free of topography contributions. The concept underlying the work described herein may help evaluate the effectiveness of treatment administration strategies targeting reduced drug efflux.
Collapse
|
12
|
Tefashe UM, Wittstock G. Quantitative characterization of shear force regulation for scanning electrochemical microscopy. CR CHIM 2013. [DOI: 10.1016/j.crci.2012.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Etienne M, Lhenry S, Cornut R, Lefrou C. Optimization of the shearforce signal for scanning electrochemical microscopy and application for kinetic analysis. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.09.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Koch JA, Baur MB, Woodall EL, Baur JE. Alternating current scanning electrochemical microscopy with simultaneous fast-scan cyclic voltammetry. Anal Chem 2012; 84:9537-43. [PMID: 23025238 DOI: 10.1021/ac302402p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fast-scan cyclic voltammetry (FSCV) is combined with alternating current scanning electrochemical microscopy (AC-SECM) for simultaneous measurements of impedance and faradaic current. Scan rates of 10-1000 V s(-1) were used for voltammetry, while a high-frequency (100 kHz), low-amplitude (10 mV rms) sine wave was added to the voltammetric waveform for the ac measurement. Both a lock-in amplifier and an analog circuit were used to measure the amplitude of the resultant ac signal. The effect of the added sine wave on the voltammetry at a carbon fiber electrode was investigated and found to have negligible effect. The combined FSCV and ac measurements were used to provide simultaneous chemical and topographical information about a substrate using a single carbon fiber probe. The technique is demonstrated in living cell culture, where cellular respiration and topography were simultaneously imaged without the addition of a redox mediator. This approach promises to be useful for the topographical and multidimensional chemical imaging of substrates.
Collapse
Affiliation(s)
- Jason A Koch
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | | | | | | |
Collapse
|
15
|
SECM detection of single boron doped diamond nanodes and nanoelectrode arrays using phase-operated shear force technique. Electrochem commun 2012. [DOI: 10.1016/j.elecom.2012.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Mezour MA, Morin M, Mauzeroll J. Fabrication and characterization of laser pulled platinum microelectrodes with controlled geometry. Anal Chem 2011; 83:2378-82. [PMID: 21323390 DOI: 10.1021/ac102482f] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of a reproducible procedure for the fabrication of Pt disk-shaped microelectrodes with characteristic dimensions ranging from 50 nm to 1 μm in diameter was carried out using a laser pulling technique. The governing physical phenomena involved in their fabrication are discussed, and the importance of adding a critical quartz thinning step in the general procedure is demonstrated. The preparation of the microelectrodes involves sealing a platinum wire inside a quartz tubing using a pipet puller, thinning the composite material (platinum/quartz assembly), and laser pulling it to obtain two microelectrodes. The resulting microelectrodes display reproducible well-controlled geometry, which is important to downstream quantitative scanning electrochemical studies and imaging. Mechanical polishing of the microelectrode is required and remains the critical step in the fabrication of nanometer size electrodes. Following production, the microelectrodes are characterized by electron microscopy, scanning electrochemical microscopy, and cyclic voltammetry. Development of these microelectrodes is motivated by their subsequent application to electrocatalysis and their potential in theoretical study because of their well-defined geometry.
Collapse
Affiliation(s)
- Mohamed A Mezour
- Laboratory for Electrochemical Reactive Imaging and Detection for Biological Systems, Department of Chemistry, NanoQAM Research Centre, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC, Canada, H3C 3P8
| | | | | |
Collapse
|
17
|
Mirkin MV, Nogala W, Velmurugan J, Wang Y. Scanning electrochemical microscopy in the 21st century. Update 1: five years after. Phys Chem Chem Phys 2011; 13:21196-212. [DOI: 10.1039/c1cp22376c] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
Zhao X, Diakowski PM, Ding Z. Deconvoluting Topography and Spatial Physiological Activity of Live Macrophage Cells by Scanning Electrochemical Microscopy in Constant-Distance Mode. Anal Chem 2010; 82:8371-3. [DOI: 10.1021/ac101524v] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaocui Zhao
- Department of Chemistry, The University of Western Ontario, London, ON, Canada N6A 5B7
| | - Piotr M. Diakowski
- Department of Chemistry, The University of Western Ontario, London, ON, Canada N6A 5B7
| | - Zhifeng Ding
- Department of Chemistry, The University of Western Ontario, London, ON, Canada N6A 5B7
| |
Collapse
|
19
|
Mezour MA, Cornut R, Hussien EM, Morin M, Mauzeroll J. Detection of hydrogen peroxide produced during the oxygen reduction reaction at self-assembled thiol-porphyrin monolayers on gold using SECM and nanoelectrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:13000-13006. [PMID: 20614910 DOI: 10.1021/la100444n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Porphyrin molecules were immobilized on polycrystalline gold and glassy carbon by coordinating cobalt(II) 5,10,15,20-tetraphenyl-21H,23H-porphine to a 4-aminothiophenol self-assembled monolayer. The resulting electrocatalytic activity of the metalloporphyrin-modified substrates with regard to the oxygen reduction reaction was characterized by means of cyclic voltammetry and scanning electrochemical microscopy (SECM) using nanoelectrodes of well-defined geometry. From substrate generation tip collection (SG-TC) mode SECM measurements performed under steady-state conditions and at different applied substrate potentials, it is possible to extract kinetic information relevant to electrocatalyst substrates such as metalloporphyrin-modified gold and glassy-carbon electrodes. Such an approach allows for the isolation of the unique contribution of the electrocatalyst to the oxygen reduction reaction and peroxide formation.
Collapse
Affiliation(s)
- Mohamed A Mezour
- Laboratory for Electrochemical Reactive Imaging and Detection for Biological Systems, Department of Chemistry, NanoQAM Research Centre, Universite du Quebec a Montreal, C.P. 8888, Succ. Centre-ville, Montreal, QC, Canada H3C 3P8
| | | | | | | | | |
Collapse
|