1
|
Mudge EM, Meija J, Uhlig S, Robertson A, McCarron P, Miles CO. Production and stability of Oxygen-18 labeled Caribbean ciguatoxins and gambierones. Toxicon 2022; 211:11-20. [PMID: 35300989 DOI: 10.1016/j.toxicon.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
Ciguatoxins (CTXs) and gambierones are ladder-shaped polyethers associated with ciguatera poisoning and Gambierdiscus spp. Several of these compounds contain carbonyl or hemiketal groups, which have the potential to exchange with 18O-labeled water under acidic conditions. The effects of solvent composition and acid on the rate of exchange and on the stability of the labels at various pH values were assessed to optimize the incorporation of 18O into Caribbean ciguatoxin-1 and -2 (C-CTX1/2), gambierone, and 44-methylgambierone. LC-HRMS results showed that 18O-labeling occurred at the hydroxy group of the hemiketal at C-56 in C-CTX1/2, and at the hydroxy group of the hemiketal at C-4 and the ketone at C-40 in gambierones. Labeling occurred very rapidly (complete in <30 min) for C-CTX1/2, and more slowly (complete in ca. 16 h) for both gambierones. Labeled C-CTX1/2 was reduced with sodium borohydride to produce 18O-labeled C-CTX3/4. The incorporated 18O labels in the gambierones and C-CTXs were retained in aqueous solvent mixtures under neutral conditions in a short-term stability study, demonstrating that these 18O-labeled toxins have the potential to be used in isotope dilution and metabolism studies.
Collapse
Affiliation(s)
- Elizabeth M Mudge
- Biotoxin Metrology, National Research Council, 1411 Oxford Street, Halifax, NS, B3H 2Z1, Canada.
| | - Juris Meija
- Chemical Metrology, National Research Council, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Silvio Uhlig
- Toxinology Research Group, Norwegian Veterinary Institute, P.O. Box 64, 1431, Ås, Norway
| | - Alison Robertson
- School of Marine and Environmental Sciences, University of South Alabama, 600 Clinic Drive, Mobile, AL, 36688, USA; Marine Ecotoxicology, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, Dauphin Island, AL, 36528, USA
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council, 1411 Oxford Street, Halifax, NS, B3H 2Z1, Canada
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council, 1411 Oxford Street, Halifax, NS, B3H 2Z1, Canada
| |
Collapse
|
2
|
Stiving AQ, Harvey SR, Jones BJ, Bellina B, Brown JM, Barran PE, Wysocki VH. Coupling 193 nm Ultraviolet Photodissociation and Ion Mobility for Sequence Characterization of Conformationally-Selected Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2313-2320. [PMID: 32959654 PMCID: PMC8127984 DOI: 10.1021/jasms.0c00259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ultraviolet photodissociation (UVPD) has emerged as a useful technique for characterizing peptide, protein, and protein complex primary and secondary structure. 193 nm UVPD, specifically, enables extensive covalent fragmentation of the peptide backbone without the requirement of a specific side chain chromophore and with no precursor charge state dependence. We have modified a commercial quadrupole-ion mobility-time-of-flight (Q-IM-TOF) mass spectrometer to include 193 nm UVPD following ion mobility. Ion mobility (IM) is a gas-phase separation technique that enables separation of ions by their size, shape, and charge, providing an orthogonal dimension of separation to mass analysis. Following instrument modifications, we characterized the performance of, and information that could be generated from, this new setup using the model peptides substance P, melittin, and insulin chain B. These experiments show extensive fragmentation across the peptide backbone and a variety of ion types as expected from 193 nm UVPD. Additionally, y-2 ions (along with complementary a+2 and b+2 ions) N-terminal to proline were observed. Combining the IM separation and mobility gating capabilities with UVPD, we demonstrate the ability to accomplish both mass- and mobility-selection of bradykinin des-Arg9 and des-Arg1 peptides followed by complete sequence characterization by UVPD. The new capabilities of this modified instrument demonstrate the utility of combining IM with UVPD because isobaric species cannot be independently selected with a traditional quadrupole alone.
Collapse
Affiliation(s)
- Alyssa Q Stiving
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sophie R Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Benjamin J Jones
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bruno Bellina
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, and Photon Science Institute, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | | | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, and Photon Science Institute, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Wang S, Liu AP, Li N. An 18O-Labeling Assisted LC-MS Method for Accurate Quantitation of Unprocessed C-Terminal Lysine in Therapeutic Monoclonal Antibodies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1587-1592. [PMID: 32515589 DOI: 10.1021/jasms.0c00149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Unprocessed C-terminal lysine (C-term Lys) is one of the most common causes for the formation of basic variants in therapeutic monoclonal antibodies (mAbs). Although the C-term Lys variants are routinely quantified by a LC-MS-based peptide mapping method using the relative MS responses from both C-terminal peptides (with and without Lys), this approach often leads to overestimation of Lys-containing peptide due to the intrinsic difference in ionization efficiency. Herein, we report an 18O-labeling assisted LC-MS method, which takes advantage of the carboxypeptidase B-catalyzed Lys removal and 18O-labeling to achieve improved accuracy of C-term Lys quantitation. The fidelity of this method was first demonstrated using synthetic peptide mixture standards that mimic a wide range of C-term Lys levels. Finally, the newly developed method was applied in a case study where C-term Lys variants in mAb samples manufactured from different processes were accurately quantified and compared. This new method provides a valuable solution for studies where accurate C-term Lys levels are needed to assist decision-making and root-cause investigation.
Collapse
Affiliation(s)
- Shunhai Wang
- Analytical Chemistry Group, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Anita P Liu
- Analytical Chemistry Group, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry Group, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
4
|
Reilly SW, Bennett F, Fier PS, Ren S, Strotman NA. Late‐Stage
18
O Labeling of Primary Sulfonamides via a Degradation–Reconstruction Pathway. Chemistry 2020; 26:4251-4255. [DOI: 10.1002/chem.202000484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Sean W. Reilly
- Department of Process Research & Development, MRL Merck & Co., Inc. Rahway NJ 07065 USA
| | - Frank Bennett
- Department of Process Research & Development, MRL Merck & Co., Inc. Rahway NJ 07065 USA
| | - Patrick S. Fier
- Department of Process Research & Development, MRL Merck & Co., Inc. Rahway NJ 07065 USA
| | - Sumei Ren
- Department of Process Research & Development, MRL Merck & Co., Inc. Rahway NJ 07065 USA
| | - Neil A. Strotman
- Department of Process Research & Development, MRL Merck & Co., Inc. Rahway NJ 07065 USA
| |
Collapse
|
5
|
Carboxylesterase catalyzed 18O-labeling of carboxylic acid and its potential application in LC-MS/MS based quantification of drug metabolites. Drug Metab Pharmacokinet 2019; 34:308-316. [DOI: 10.1016/j.dmpk.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/24/2019] [Accepted: 05/27/2019] [Indexed: 11/24/2022]
|
6
|
Niyonsaba E, Easton MW, Feng E, Yu Z, Zhang Z, Sheng H, Kong J, Easterling LF, Milton J, Chobanian HR, Deprez NR, Cancilla MT, Kilaz G, Kenttämaa HI. Differentiation of Deprotonated Acyl-, N-, and O-Glucuronide Drug Metabolites by Using Tandem Mass Spectrometry Based on Gas-Phase Ion-Molecule Reactions Followed by Collision-Activated Dissociation. Anal Chem 2019; 91:11388-11396. [PMID: 31381321 DOI: 10.1021/acs.analchem.9b02717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glucuronidation, a common phase II biotransformation reaction, is one of the major in vitro and in vivo metabolism pathways of xenobiotics. In this process, glucuronic acid is conjugated to a drug or a drug metabolite via a carboxylic acid, a hydroxy, or an amino group to form acyl-, O-, and/or N-glucuronide metabolites, respectively. This process is traditionally thought to be a detoxification pathway. However, some acyl-glucuronides react with biomolecules in vivo, which may result in immune-mediated idiosyncratic drug toxicity (IDT). In order to avoid this, one may attempt in early drug discovery to modify the lead compounds in such a manner that they then have a lower probability of forming reactive acyl-glucuronide metabolites. Because most drugs or drug candidates bear multiple functionalities, e.g., hydroxy, amino, and carboxylic acid groups, glucuronidation can occur at any of those. However, differentiation of isomeric acyl-, N-, and O-glucuronide derivatives of drugs is challenging. In this study, gas-phase ion-molecule reactions between deprotonated glucuronide metabolites and BF3 followed by collision-activated dissociation (CAD) in a linear quadrupole ion trap mass spectrometer were demonstrated to enable the differentiation of acyl-, N-, and O-glucuronides. Only deprotonated N-glucuronides and deprotonated, migrated acyl-glucuronides form the two diagnostic product ions: a BF3 adduct that has lost two HF molecules, [M - H + BF3 - 2HF]-, and an adduct formed with two BF3 molecules that has lost three HF molecules, [M - H + 2BF3 - 3HF]-. These product ions were not observed for deprotonated O-glucuronides and unmigrated, deprotonated acyl-glucuronides. Upon CAD of the [M - H + 2BF3 - 3HF]- product ion, a diagnostic fragment ion is formed via the loss of 2-fluoro-1,3,2-dioxaborale (MW of 88 Da) only in the case of deprotonated, migrated acyl-glucuronides. Therefore, this method can be used to unambiguously differentiate acyl-, N-, and O-glucuronides. Further, coupling this methodology with HPLC enables the differentiation of unmigrated 1-β-acyl-glucuronides from the isomeric acyl-glucuronides formed upon acyl migration. Quantum chemical calculations at the M06-2X/6-311++G(d,p) level of theory were employed to probe the mechanisms of the reactions of interest.
Collapse
Affiliation(s)
- Edouard Niyonsaba
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - McKay W Easton
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Erlu Feng
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Zaikuan Yu
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Zhoupeng Zhang
- Department of Pharmacokinetics, Pharmacodynamics, & Drug Metabolism , Merck & Co., Inc. , West Point , Pennsylvania 19486 , United States
| | - Huaming Sheng
- Analytical Research & Development , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - John Kong
- Analytical Research & Development , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Leah F Easterling
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Jacob Milton
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Harry R Chobanian
- Department of Pharmacokinetics, Pharmacodynamics, & Drug Metabolism , Merck & Co., Inc. , West Point , Pennsylvania 19486 , United States
| | - Nicholas R Deprez
- Process Chemistry , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Mark T Cancilla
- Department of Pharmacokinetics, Pharmacodynamics, & Drug Metabolism , Merck & Co., Inc. , West Point , Pennsylvania 19486 , United States
| | - Gozdem Kilaz
- Purdue University , School of Engineering Technology , West Lafayette , Indiana 47907 , United States
| | - Hilkka I Kenttämaa
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
7
|
Kaleja P, Helbig AO, Tholey A. Combination of SCX Fractionation and Charge-Reversal Derivatization Facilitates the Identification of Nontryptic Peptides in C-Terminomics. J Proteome Res 2019; 18:2954-2964. [DOI: 10.1021/acs.jproteome.9b00264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Patrick Kaleja
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Andreas O. Helbig
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| |
Collapse
|
8
|
Pitts-McCoy AM, Harrilal CP, McLuckey SA. Gas-Phase Ion/Ion Chemistry as a Probe for the Presence of Carboxylate Groups in Polypeptide Cations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:329-338. [PMID: 30341581 PMCID: PMC6347497 DOI: 10.1007/s13361-018-2079-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/04/2018] [Indexed: 05/31/2023]
Abstract
The reactivity of 1-hydroxybenzoyl triazole (HOBt) esters with the carboxylate functionality present in peptides is demonstrated in the gas phase with a doubly deprotonated dianion. The reaction forms an anhydride linkage at the carboxylate site. Upon ion trap collisional-induced dissociation (CID) of the modified peptide, the resulting spectrum shows a nominal loss of the mass of the reagent and a water molecule. Analogous phenomenology was also noted for model peptide cations that likely contain zwitterionic/salt-bridged motifs in reactions with a negatively charged HOBt ester. Control experiments indicate that a carboxylate group is the likely reactive site, rather than other possible nucleophilic sites present in the peptide. These observations suggest that HOBt ester chemistry may be used as a chemical probe for the presence and location of carboxylate groups in net positively charged polypeptide ions. As an illustration, deprotonated sulfobenzoyl HOBt was reacted with the [M+7H]7+ ion of ubiquitin. The ion was shown to react with the reagent and CID of the covalent reaction product yielded an abundant [M+6H-H2O]6+ ion. Comparison of the CID product ion spectrum of this ion with that of the water loss product generated from CID of the unmodified [M+6H]6+ ion revealed the glutamic acid at residue 64 as a reactive site, suggesting that it is present in the deprotonated form. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Anthony M Pitts-McCoy
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Christopher P Harrilal
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA.
| |
Collapse
|
9
|
Attard TJ, Carter MD, Fang M, Johnson RC, Reid GE. Structural Characterization and Absolute Quantification of Microcystin Peptides Using Collision-Induced and Ultraviolet Photo-Dissociation Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1812-1825. [PMID: 29845563 PMCID: PMC6088756 DOI: 10.1007/s13361-018-1981-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 05/23/2023]
Abstract
Microcystin (MC) peptides produced by cyanobacteria pose a hepatotoxic threat to human health upon ingestion from contaminated drinking water. While rapid MC identification and quantification in contaminated body fluids or tissue samples is important for patient treatment and outcomes, conventional immunoassay-based measurement strategies typically lack the specificity required for unambiguous determination of specific MC variants, whose toxicity can significantly vary depending on their structures. Furthermore, the unambiguous identification and accurate quantitation of MC variants using tandem mass spectrometry (MS/MS)-based methods can be limited due to a current lack of appropriate stable isotope-labeled internal standards. To address these limitations, we have systematically examined here the sequence and charge state dependence to the formation and absolute abundance of both "global" and "variant-specific" product ions from representative MC-LR, MC-YR, MC-RR, and MC-LA peptides, using higher-energy collisional dissociation (HCD)-MS/MS, ion-trap collision-induced dissociation (CID)-MS/MS and CID-MS3, and 193 nm ultraviolet photodissociation (UPVD)-MS/MS. HCD-MS/MS was found to provide the greatest detection sensitivity for both global and variant-specific product ions in each of the MC variants, except for MC-YR where a variant-specific product uniquely formed via UPVD-MS/MS was observed with the greatest absolute abundance. A simple methodology for the preparation and characterization of 18O-stable isotope-labeled MC reference materials for use as internal standards was also developed. Finally, we have demonstrated the applicability of the methods developed herein for absolute quantification of MC-LR present in human urine samples, using capillary scale liquid chromatography coupled with ultra-high resolution / accurate mass spectrometry and HCD-MS/MS. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Troy J Attard
- School of Chemistry, The University of Melbourne, Melbourne, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Melissa D Carter
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mengxuan Fang
- School of Chemistry, The University of Melbourne, Melbourne, VIC, Australia
| | - Rudolph C Johnson
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Melbourne, VIC, Australia.
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
IpdAB, a virulence factor in Mycobacterium tuberculosis, is a cholesterol ring-cleaving hydrolase. Proc Natl Acad Sci U S A 2018; 115:E3378-E3387. [PMID: 29581275 DOI: 10.1073/pnas.1717015115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) grows on host-derived cholesterol during infection. IpdAB, found in all steroid-degrading bacteria and a determinant of pathogenicity, has been implicated in the hydrolysis of the last steroid ring. Phylogenetic analyses revealed that IpdAB orthologs form a clade of CoA transferases (CoTs). In a coupled assay with a thiolase, IpdAB transformed the cholesterol catabolite (R)-2-(2-carboxyethyl)-3-methyl-6-oxocyclohex-1-ene-1-carboxyl-CoA (COCHEA-CoA) and CoASH to 4-methyl-5-oxo-octanedioyl-CoA (MOODA-CoA) and acetyl-CoA with high specificity (kcat/Km = 5.8 ± 0.8 × 104 M-1⋅s-1). The structure of MOODA-CoA was consistent with IpdAB hydrolyzing COCHEA-CoA to a β-keto-thioester, a thiolase substrate. Contrary to characterized CoTs, IpdAB exhibited no activity toward small CoA thioesters. Further, IpdAB lacks the catalytic glutamate residue that is conserved in the β-subunit of characterized CoTs and a glutamyl-CoA intermediate was not trapped during turnover. By contrast, Glu105A, conserved in the α-subunit of IpdAB, was essential for catalysis. A crystal structure of the IpdAB·COCHEA-CoA complex, solved to 1.4 Å, revealed that Glu105A is positioned to act as a catalytic base. Upon titration with COCHEA-CoA, the E105AA variant accumulated a yellow-colored species (λmax = 310 nm; Kd = 0.4 ± 0.2 μM) typical of β-keto enolates. In the presence of D2O, IpdAB catalyzed the deuteration of COCHEA-CoA adjacent to the hydroxylation site at rates consistent with kcat Based on these data and additional IpdAB variants, we propose a retro-Claisen condensation-like mechanism for the IpdAB-mediated hydrolysis of COCHEA-CoA. This study expands the range of known reactions catalyzed by the CoT superfamily and provides mechanistic insight into an important determinant of Mtb pathogenesis.
Collapse
|
11
|
von Holstein I, von Tersch M, Coutu AN, Penkman KEH, Makarewicz CA, Collins MJ. Collagen proteins exchange O with demineralisation and gelatinisation reagents and also with atmospheric moisture. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:523-534. [PMID: 29360219 DOI: 10.1002/rcm.8064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
RATIONALE The oxygen isotope composition of collagen proteins is a potential indicator of adult residential location, useful for provenancing in ecology, archaeology and forensics. In acidic solution, proteins can exchange O from carboxylic acid moieties with reagent O. This study investigated whether this exchange occurs during demineralisation and gelatinisation preparation of bone/ivory collagen. METHODS EDTA and HCl demineralisation or gelatinisation reagents were made up in waters with different δ18 O values, and were used to extract collagen from four skeletal tissue samples. Aliquots of extracted collagen were exposed to two different atmospheric waters, at 120°C and ambient temperature, and subsequently dried in a vacuum oven at 40°C or by freeze drying. Sample δ18 O values were measured by HT/EA pyrolysis-IRMS using a zero-blank autosampler. RESULTS Collagen samples exchanged O with both reagent waters and atmospheric water, which altered sample δ18 O values. Exchange with reagent waters occurred in all extraction methods, but was greater at lower pH. Damage to the collagen samples during extraction increased O exchange. The nature of exchange of O with atmospheric water depended on the temperature of exposure: kinetic fractionation of O was identified at 120°C but not at ambient temperature. Exchange was difficult to quantify due to high variability of δ18 O value between experimental replicates. CONCLUSION Studies of δ18 O values in collagen proteins should avoid extraction methods using acid solutions.
Collapse
Affiliation(s)
- Isabella von Holstein
- BioArCh, Department of Archaeology, University of York, Environment Building. Wentworth Way, York, YO10 5DD, UK
- Institut für Ur- und Frühgeschichte, Christian-Albrechts-Universität, Johanna-Mestorf-Straße 2-6, D-24118, Kiel, Germany
| | - Matthew von Tersch
- BioArCh, Department of Archaeology, University of York, Environment Building. Wentworth Way, York, YO10 5DD, UK
| | - Ashley N Coutu
- BioArCh, Department of Archaeology, University of York, Environment Building. Wentworth Way, York, YO10 5DD, UK
- Department of Archaeology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Kirsty E H Penkman
- BioArCh, Department of Archaeology, University of York, Environment Building. Wentworth Way, York, YO10 5DD, UK
- BioArCh, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Cheryl A Makarewicz
- Institut für Ur- und Frühgeschichte, Christian-Albrechts-Universität, Johanna-Mestorf-Straße 2-6, D-24118, Kiel, Germany
| | - Matthew J Collins
- BioArCh, Department of Archaeology, University of York, Environment Building. Wentworth Way, York, YO10 5DD, UK
- Natural History Museum of Denmark, University of Copenhagen, Sølvgade 83, Copenhagen, 1307, Denmark
| |
Collapse
|
12
|
Bringans SD, Ito J, Stoll T, Winfield K, Phillips M, Peters K, Davis WA, Davis TME, Lipscombe RJ. Comprehensive mass spectrometry based biomarker discovery and validation platform as applied to diabetic kidney disease. EUPA OPEN PROTEOMICS 2017; 14:1-10. [PMID: 29900119 PMCID: PMC5988498 DOI: 10.1016/j.euprot.2016.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/21/2016] [Accepted: 12/30/2016] [Indexed: 11/25/2022]
Abstract
A protein biomarker discovery workflow was applied to plasma samples from patients at different stages of diabetic kidney disease. The proteomics platform produced a panel of significant plasma biomarkers that were statistically scrutinised against the current gold standard tests on an analysis of 572 patients. Five proteins were significantly associated with diabetic kidney disease defined by albuminuria, renal impairment (eGFR) and chronic kidney disease staging (CKD Stage ≥1, ROC curve of 0.77). The results prove the suitability and efficacy of the process used, and introduce a biomarker panel with the potential to improve diagnosis of diabetic kidney disease.
Collapse
Affiliation(s)
- Scott D Bringans
- Proteomics International, PO Box 3008, Broadway, Nedlands, Perth, Western Australia, WA 6009, Australia
| | - Jun Ito
- Proteomics International, PO Box 3008, Broadway, Nedlands, Perth, Western Australia, WA 6009, Australia
| | - Thomas Stoll
- Proteomics International, PO Box 3008, Broadway, Nedlands, Perth, Western Australia, WA 6009, Australia
| | - Kaye Winfield
- Proteomics International, PO Box 3008, Broadway, Nedlands, Perth, Western Australia, WA 6009, Australia
| | - Michael Phillips
- Harry Perkins Institute of Medial Research, QQ Block, QEII Medical Centre 6 Verdun Street, Nedlands, Perth, Western Australia, WA 6009, Australia
| | - Kirsten Peters
- Proteomics International, PO Box 3008, Broadway, Nedlands, Perth, Western Australia, WA 6009, Australia.,University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia, WA 6009, Australia
| | - Wendy A Davis
- University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia, WA 6009, Australia
| | - Timothy M E Davis
- University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia, WA 6009, Australia
| | - Richard J Lipscombe
- Proteomics International, PO Box 3008, Broadway, Nedlands, Perth, Western Australia, WA 6009, Australia
| |
Collapse
|
13
|
Lehmann WD. A timeline of stable isotopes and mass spectrometry in the life sciences. MASS SPECTROMETRY REVIEWS 2017; 36:58-85. [PMID: 26919394 DOI: 10.1002/mas.21497] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
This review retraces the role of stable isotopes and mass spectrometry in the life sciences. The timeline is divided into four segments covering the years 1920-1950, 1950-1980, 1980-2000, and 2000 until today. For each period methodic progress and typical applications are discussed. Application of stable isotopes is driven by improvements of mass spectrometry, chromatography, and related fields in sensitivity, mass accuracy, structural specificity, complex sample handling ability, data output, and data evaluation. We currently experience the vision of omics-type analyses, that is, the comprehensive identification and quantification of a complete compound class within one or a few analytical runs. This development is driven by stable isotopes without competition by radioisotopes. In metabolic studies as classic field of isotopic tracer experiments, stable isotopes and radioisotopes were competing solutions, with stable isotopes as the long-term junior partner. Since the 1990s the number of metabolic studies with radioisotopes decreases, whereas stable isotope studies retain their slow but stable upward tendency. Unique fields of stable isotopes are metabolic tests in newborns, metabolic experiments in healthy controls, newborn screening for inborn errors, quantification of drugs and drug metabolites in doping control, natural isotope fractionation in geology, ecology, food authentication, or doping control, and more recently the field of quantitative omics-type analyses. There, cells or whole organisms are systematically labeled with stable isotopes to study proteomic differences or specific responses to stimuli or genetic manipulation. The duo of stable isotopes and mass spectrometry will probably continue to grow in the life sciences, since it delivers reference-quality quantitative data with molecular specificity, often combined with informative isotope effects. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:58-85, 2017.
Collapse
Affiliation(s)
- Wolf D Lehmann
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
14
|
Rudolph HL, Sekera ER, Wood TD. Stable (18) O-labeling method for stercobilin and other bilins for metabolomics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1469-1474. [PMID: 27321834 PMCID: PMC4916856 DOI: 10.1002/rcm.7580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Bilin tetrapyrroles including stercobilin are unique to mammalian waste; they have been used as markers of source water contamination and may have important diagnostic value in human health conditions. Unfortunately, commercial isotopomers for bilins are not available. Thus, there is a need for isotopomer standards of stercobilin and other bilins for quantification in environmental and clinical diagnostic applications. METHODS A procedure is described here using H2 (18) O to label the carboxylic acid groups of bilin tetrapyrroles. Reaction conditions as a function of temperature and reagent volume were found to produce a mixture of isotopomers, as assessed by electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). Stability as a function of storage time and temperature and in conjunction with solid-phase extraction (SPE) was assessed. RESULTS The highest labeling efficiency was achieved at 70 °C for 8 h, while a stable ratio of the isotopmers could be produced at 60 °C for 4 h. The stability of the isotopic distribution was maintained under storage (room temperature or frozen) for 20 days. It was also stable throughout SPE. The high mass accuracy and resolving power of FTICRMS enables clear distinction between (18) O-labeled bilins from other unlabeled bilins present, avoiding a potential interference in quantitation. CONCLUSIONS A procedure was developed to label bilins with (18) O. The final ratio of the (18) O-labeled bilin isotopomers was reproducible and highly stable for at least 20 days under storage. This ratio was not changed in any statistically significant way even after SPE. Thus a reliable method for producing stable isotopomer ratios for bilins has been achieved. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
|
15
|
Vizovišek M, Vidmar R, Fonović M, Turk B. Current trends and challenges in proteomic identification of protease substrates. Biochimie 2016; 122:77-87. [DOI: 10.1016/j.biochi.2015.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/23/2015] [Indexed: 10/22/2022]
|
16
|
Modzel M, Płóciennik H, Kielmas M, Szewczuk Z, Stefanowicz P. A synthesis of new, bi-labeled peptides for quantitative proteomics. J Proteomics 2015; 115:1-7. [DOI: 10.1016/j.jprot.2014.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/14/2014] [Accepted: 12/01/2014] [Indexed: 12/19/2022]
|
17
|
Peng Z, McGee WM, Bu J, Barefoot NZ, McLuckey SA. Gas phase reactivity of carboxylates with N-hydroxysuccinimide esters. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:174-80. [PMID: 25338221 PMCID: PMC4654944 DOI: 10.1007/s13361-014-1002-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 05/13/2023]
Abstract
N-hydroxysuccinimide (NHS) esters have been used for gas-phase conjugation reactions with peptides at nucleophilic sites, such as primary amines (N-terminus, ε-amine of lysine) or guanidines, by forming amide bonds through a nucleophilic attack on the carbonyl carbon. The carboxylate has recently been found to also be a reactive nucleophile capable of initiating a similar nucleophilic attack to form a labile anhydride bond. The fragile bond is easily cleaved, resulting in an oxygen transfer from the carboxylate-containing species to the reagent, nominally observed as a water transfer. This reactivity is shown for both peptides and non-peptidic species. Reagents isotopically labeled with O(18) were used to confirm reactivity. This constitutes an example of distinct differences in reactivity of carboxylates between the gas phase, where they are shown to be reactive, and the solution phase, where they are not regarded as reactive with NHS esters.
Collapse
Affiliation(s)
- Zhou Peng
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana USA 47907-2084
| | - William M. McGee
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana USA 47907-2084
| | - Jiexun Bu
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana USA 47907-2084
| | - Nathan Z. Barefoot
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana USA 47907-2084
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana USA 47907-2084
| |
Collapse
|
18
|
Peng Z, McGee WM, Bu J, Barefoot NZ, McLuckey SA. Gas phase reactivity of carboxylates with N-hydroxysuccinimide esters. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015. [PMID: 25338221 DOI: 10.1007/sl3361-014-1002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
N-hydroxysuccinimide (NHS) esters have been used for gas-phase conjugation reactions with peptides at nucleophilic sites, such as primary amines (N-terminus, ε-amine of lysine) or guanidines, by forming amide bonds through a nucleophilic attack on the carbonyl carbon. The carboxylate has recently been found to also be a reactive nucleophile capable of initiating a similar nucleophilic attack to form a labile anhydride bond. The fragile bond is easily cleaved, resulting in an oxygen transfer from the carboxylate-containing species to the reagent, nominally observed as a water transfer. This reactivity is shown for both peptides and non-peptidic species. Reagents isotopically labeled with O(18) were used to confirm reactivity. This constitutes an example of distinct differences in reactivity of carboxylates between the gas phase, where they are shown to be reactive, and the solution phase, where they are not regarded as reactive with NHS esters.
Collapse
Affiliation(s)
- Zhou Peng
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | | | | | | | | |
Collapse
|
19
|
High-sensitivity quantitation of a Nanobody® in plasma by single-cartridge multidimensional SPE and ultra-performance LC–MS/MS. Bioanalysis 2015; 7:53-64. [DOI: 10.4155/bio.14.234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: A major challenge in protein quantitation based on enzymatic digestion of complex biological samples and subsequent LC–MS/MS analysis of a signature peptide is dealing with the high complexity of the matrix after digestion, which can reduce sensitivity considerably. Results: Using single cartridge multidimensional SPE, sufficient selectivity was introduced to allow quantitation in 50 µl of plasma down to 10.0 ng/ml (˜0.3 nM). An inhouse prepared 18O-labeled signature peptide was used as the internal standard. The procedure was validated for human and rabbit plasma. Conclusion: The developed SPE procedure allowed the sensitive and selective LC–MS/MS quantitation of the Nanobody® without the use of antibodies. When appropriate precautions are taken, the 18O-labeled peptide is a practical and economical alternative to custom synthesis.
Collapse
|
20
|
Liu H, Yang Z, Pan Z. Synthesis of Highly Substituted Imidazolidine-2,4-dione (Hydantoin) through Tf2O-Mediated Dual Activation of Boc-Protected Dipeptidyl Compounds. Org Lett 2014; 16:5902-5. [DOI: 10.1021/ol502900j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hui Liu
- Laboratory of Chemical Genomics,
Laboratory of Structural Biology, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Zhimin Yang
- Laboratory of Chemical Genomics,
Laboratory of Structural Biology, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Zhengying Pan
- Laboratory of Chemical Genomics,
Laboratory of Structural Biology, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|
21
|
Recent advances in stable isotope labeling based techniques for proteome relative quantification. J Chromatogr A 2014; 1365:1-11. [PMID: 25246102 DOI: 10.1016/j.chroma.2014.08.098] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/24/2014] [Accepted: 08/27/2014] [Indexed: 12/27/2022]
Abstract
The large scale relative quantification of all proteins expressed in biological samples under different states is of great importance for discovering proteins with important biological functions, as well as screening disease related biomarkers and drug targets. Therefore, the accurate quantification of proteins at proteome level has become one of the key issues in protein science. Herein, the recent advances in stable isotope labeling based techniques for proteome relative quantification were reviewed, from the aspects of metabolic labeling, chemical labeling and enzyme-catalyzed labeling. Furthermore, the future research direction in this field was prospected.
Collapse
|
22
|
Modzel M, Płóciennik H, Kluczyk A, Stefanowicz P, Szewczuk Z. Microwave-assisted18O labeling of Fmoc-protected amino acids. J Pept Sci 2014; 20:896-900. [DOI: 10.1002/psc.2682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/08/2014] [Accepted: 07/11/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Maciej Modzel
- Faculty of Chemistry; University of Wrocław; F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Halina Płóciennik
- Faculty of Chemistry; University of Wrocław; F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Alicja Kluczyk
- Faculty of Chemistry; University of Wrocław; F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Piotr Stefanowicz
- Faculty of Chemistry; University of Wrocław; F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Zbigniew Szewczuk
- Faculty of Chemistry; University of Wrocław; F. Joliot-Curie 14 50-383 Wrocław Poland
| |
Collapse
|
23
|
Farrokhi V, McShane AJ, Nemati R, Yao X. Stable isotope dilution mass spectrometry for membrane transporter quantitation. AAPS JOURNAL 2014; 15:1222-31. [PMID: 24022320 DOI: 10.1208/s12248-013-9529-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/16/2013] [Indexed: 11/30/2022]
Abstract
This review provides an introduction to stable isotope dilution mass spectrometry (MS) and its emerging applications in the analysis of membrane transporter proteins. Various approaches and application examples, for the generation and use of quantitation reference standards—either stable isotope-labeled peptides or proteins—are discussed as they apply to the MS quantitation of membrane proteins. Technological considerations for the sample preparation of membrane transporter proteins are also presented.
Collapse
|
24
|
Ongay S, Hendriks G, Hermans J, van den Berge M, ten Hacken NH, van de Merbel NC, Bischoff R. Quantification of free and total desmosine and isodesmosine in human urine by liquid chromatography tandem mass spectrometry: A comparison of the surrogate-analyte and the surrogate-matrix approach for quantitation. J Chromatogr A 2014; 1326:13-9. [DOI: 10.1016/j.chroma.2013.12.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
|
25
|
von Holstein ICC, Hamilton J, Craig OE, Newton J, Collins MJ. Comparison of isotopic variability in proteinaceous tissues of a domesticated herbivore: a baseline for zooarchaeological investigation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2601-15. [PMID: 24591021 DOI: 10.1002/rcm.6725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 05/23/2023]
Abstract
RATIONALE A variety of metabolic, dietary and climatic influences on isotopic variation have been established in mammalian hair. The relevance of these factors to collagen isotopic composition is unknown, but would be of great interest to zooarchaeological analyses of faunal skeletal tissue. METHODS The relationships between carbon (δ(13)C), nitrogen (δ(15)N), non-exchangeable hydrogen (δ(2)H) and oxygen (δ(18)O) values of defatted, demineralised and gelatinised bone collagen and defatted wool keratin from two sheep flocks (n = 20, 5) in the UK were investigated, including testing for the effects of nutritional plane, sex, pregnancy and season of sample collection. The sulfur composition (δ(34)S values) was also investigated for tissues from the smaller flock. RESULTS Bulk collagen was enriched in (13)C over bulk keratin by 2.0 - 2.7‰ and in (2)H by 29 - 40‰ but depleted in (18)O relative to keratin by 1.8‰. Differences in δ(15)N values were within experimental error. The collagen samples were generally more enriched in (34)S than keratin, but this was very variable. Pregnancy, sex and season, but not nutritional plane, significantly affected isotope values but did not change overall keratin-collagen relationships. CONCLUSIONS This dataset provides a baseline measure of variability and comparability for isotopic investigations into origin and husbandry conditions in archaeological sheep tissues, both collagen and keratin.
Collapse
Affiliation(s)
- I C C von Holstein
- BioArCh, Departments of Archaeology and Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | | | | | | |
Collapse
|
26
|
Wang M, Shen Y, Turko IV, Nelson DC, Li S. Determining Carbapenemase Activity with 18O Labeling and Targeted Mass Spectrometry. Anal Chem 2013; 85:11014-9. [DOI: 10.1021/ac402627k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Meiyao Wang
- Institute
for Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD 20850
- Biomolecular
Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899
| | - Yang Shen
- Institute
for Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD 20850
- Department
of Veterinary Medicine, University of Maryland, College Park, MD 20742
| | - Illarion V. Turko
- Institute
for Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD 20850
- Biomolecular
Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899
| | - Daniel C. Nelson
- Institute
for Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD 20850
- Department
of Veterinary Medicine, University of Maryland, College Park, MD 20742
| | - Shuwei Li
- Institute
for Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD 20850
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| |
Collapse
|
27
|
Deracinois B, Flahaut C, Duban-Deweer S, Karamanos Y. Comparative and Quantitative Global Proteomics Approaches: An Overview. Proteomes 2013; 1:180-218. [PMID: 28250403 PMCID: PMC5302699 DOI: 10.3390/proteomes1030180] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 01/14/2023] Open
Abstract
Proteomics became a key tool for the study of biological systems. The comparison between two different physiological states allows unravelling the cellular and molecular mechanisms involved in a biological process. Proteomics can confirm the presence of proteins suggested by their mRNA content and provides a direct measure of the quantity present in a cell. Global and targeted proteomics strategies can be applied. Targeted proteomics strategies limit the number of features that will be monitored and then optimise the methods to obtain the highest sensitivity and throughput for a huge amount of samples. The advantage of global proteomics strategies is that no hypothesis is required, other than a measurable difference in one or more protein species between the samples. Global proteomics methods attempt to separate quantify and identify all the proteins from a given sample. This review highlights only the different techniques of separation and quantification of proteins and peptides, in view of a comparative and quantitative global proteomics analysis. The in-gel and off-gel quantification of proteins will be discussed as well as the corresponding mass spectrometry technology. The overview is focused on the widespread techniques while keeping in mind that each approach is modular and often recovers the other.
Collapse
Affiliation(s)
- Barbara Deracinois
- Université Lille Nord de France, Lille F-59000, France.
- Université d'Artois, LBHE, Lens F-62307, France.
- IMPRT-IFR114, Lille F-59000, France.
| | - Christophe Flahaut
- Université Lille Nord de France, Lille F-59000, France.
- Université d'Artois, LBHE, Lens F-62307, France.
- IMPRT-IFR114, Lille F-59000, France.
| | - Sophie Duban-Deweer
- Université Lille Nord de France, Lille F-59000, France.
- Université d'Artois, LBHE, Lens F-62307, France.
- IMPRT-IFR114, Lille F-59000, France.
| | - Yannis Karamanos
- Université Lille Nord de France, Lille F-59000, France.
- Université d'Artois, LBHE, Lens F-62307, France.
- IMPRT-IFR114, Lille F-59000, France.
| |
Collapse
|
28
|
Wang S, Kaltashov IA. An 18O-labeling assisted LC/MS method for assignment of aspartyl/isoaspartyl products from Asn deamidation and Asp isomerization in proteins. Anal Chem 2013; 85:6446-52. [PMID: 23713887 DOI: 10.1021/ac400984r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An (18)O-labeling assisted LC/MS method was designed for unambiguous assignment of aspartyl/isoaspartyl products produced by Asn deamidation and Asp isomerization. By preparing the acid- and base-catalyzed deamidation standards in H2(18)O, isomer-specific mass tags were introduced to aspartyl- and isoaspartyl-containing peptides, which could be easily distinguished by mass spectrometry (MS). In contrast to the traditional ways of assigning the isomers on the basis of their elution order in reverse phase HPLC, the new method is more reliable and universal. Furthermore, the new method can be applied to the entire protein digest, and is therefore more time- and cost-effective compared with existing methods that use synthetic aspartyl- and isoaspartyl-containing peptide standards. Finally, since the identification of isomers in the new method only relies on LC/MS analysis, it can be easily implemented using the most basic and inexpensive MS instrumentation, thus providing an attractive alternative to tandem MS based approaches. The feasibility of this new method is demonstrated using a model peptide as well as the entire digest of human serum transferrin.
Collapse
Affiliation(s)
- Shunhai Wang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
29
|
Dunbar KL, Mitchell DA. Insights into the mechanism of peptide cyclodehydrations achieved through the chemoenzymatic generation of amide derivatives. J Am Chem Soc 2013; 135:8692-701. [PMID: 23721104 DOI: 10.1021/ja4029507] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Current strategies for generating peptides and proteins bearing amide carbonyl derivatives rely on solid-phase peptide synthesis for amide functionalization. Although such strategies have been successfully implemented, technical limitations restrict both the length and sequence of the synthetic fragments. Herein we report the repurposing of a thiazole/oxazole-modified microcin (TOMM) cyclodehydratase to site-specifically install amide backbone labels onto diverse peptide substrates, a method we refer to as azoline-mediated peptide backbone labeling (AMPL). This convenient chemoenzymatic strategy can generate both thioamides and amides with isotopically labeled oxygen atoms. Moreover, we demonstrate the first leader peptide-independent activity of a TOMM synthetase, circumventing the requirement that sequences of interest be fused to a leader peptide for modification. Through bioinformatics-guided site-directed mutagenesis, we also convert a strictly dehydrogenase-dependent TOMM azole synthetase into an azoline synthetase. This vastly expands the spectrum of substrates modifiable by AMPL by allowing any in vitro reconstituted TOMM synthetase to be employed. To demonstrate the utility of AMPL for mechanistic enzymology studies, an (18)O-labeled substrate was generated to provide direct evidence that cyclodehydrations in TOMMs occur through the phosphorylation of the carbonyl oxygen preceding the cyclized residue. Furthermore, we demonstrate that AMPL is a useful tool for establishing the location of azolines both on in vitro modified peptides and azoline-containing natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
30
|
Klingler D, Hardt M. Targeting proteases in cardiovascular diseases by mass spectrometry-based proteomics. ACTA ACUST UNITED AC 2012; 5:265. [PMID: 22511707 DOI: 10.1161/circgenetics.110.957811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Diana Klingler
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA
| | | |
Collapse
|
31
|
Mishto M, Goede A, Taube KT, Keller C, Janek K, Henklein P, Niewienda A, Kloss A, Gohlke S, Dahlmann B, Enenkel C, Kloetzel PM. Driving forces of proteasome-catalyzed peptide splicing in yeast and humans. Mol Cell Proteomics 2012; 11:1008-23. [PMID: 22822185 DOI: 10.1074/mcp.m112.020164] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteasome-catalyzed peptide splicing (PCPS) represents an additional activity of mammalian 20S proteasomes recently identified in connection with antigen presentation. We show here that PCPS is not restricted to mammalians but that it is also a feature of yeast 20S proteasomes catalyzed by all three active site β subunits. No major differences in splicing efficiency exist between human 20S standard- and immuno-proteasome or yeast 20S proteasome. Using H(2)(18)O to monitor the splicing reaction we also demonstrate that PCPS occurs via direct transpeptidation that slightly favors the generation of peptides spliced in cis over peptides spliced in trans. Splicing efficiency itself is shown to be controlled by proteasomal cleavage site preference as well as by the sequence characteristics of the spliced peptides. By use of kinetic data and quantitative analyses of PCPS obtained by mass spectrometry we developed a structural model with two PCPS binding sites in the neighborhood of the active Thr1.
Collapse
Affiliation(s)
- Michele Mishto
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Oudenarder Straβe 16, 13347 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang S, Kaltashov IA. A new strategy of using O18-labeled iodoacetic acid for mass spectrometry-based protein quantitation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1293-7. [PMID: 22562395 PMCID: PMC5809132 DOI: 10.1007/s13361-012-0396-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 04/13/2012] [Accepted: 04/16/2012] [Indexed: 05/25/2023]
Abstract
A new O(18) labeling protocol is designed to assist quantitation of cysteine-containing proteins using LC/MS. Unlike other O(18) labeling strategies, the labeling is carried out at the intact protein level (prior to its digestion) during reduction/alkylation of cysteine side chains using O(18)-labeled iodoacetic acid (IAA). The latter can be easily prepared by exchanging carboxylic oxygen atoms of commercially available IAA in O(18)-enriched water at low pH. Since incorporation of the O(18) label in the protein occurs at the whole protein, rather than peptide level, the quantitation results are not peptide-dependent. The excellent stability of the label in mild pH conditions provides flexibility and robustness needed of sample processing steps following the labeling. In contrast to generally costly isotope labeling reagents, this approach uses only two relatively inexpensive commercially available reagents (IAA and H(2)O(18)). The feasibility of the new method is demonstrated using an 80 kDa human serum transferrin (hTf) as a model, where linear quantitation is achieved across a dynamic range spanning three orders of magnitude. The new approach can be used in quantitative proteomics applications and is particularly suitable for a variety of tasks in the biopharmaceutical sector, ranging from pharmacokinetic studies to quality control of protein therapeutics.
Collapse
Affiliation(s)
| | - Igor A. Kaltashov
- Address correspondence to: Igor A. Kaltashov, Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, LGRT 104, Amherst, MA 01003, Tel: (413) 545-1460, Fax: (413) 545-4490,
| |
Collapse
|
33
|
Internal standards in the quantitative determination of protein biopharmaceuticals using liquid chromatography coupled to mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 893-894:1-14. [DOI: 10.1016/j.jchromb.2012.02.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 02/05/2023]
|
34
|
Kaltashov IA, Bobst CE, Abzalimov RR, Wang G, Baykal B, Wang S. Advances and challenges in analytical characterization of biotechnology products: mass spectrometry-based approaches to study properties and behavior of protein therapeutics. Biotechnol Adv 2012; 30:210-22. [PMID: 21619926 PMCID: PMC3176981 DOI: 10.1016/j.biotechadv.2011.05.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/13/2011] [Accepted: 05/09/2011] [Indexed: 12/19/2022]
Abstract
Biopharmaceuticals are a unique class of medicines due to their extreme structural complexity. The structure of these therapeutic proteins is critically important for their efficacy and safety, and the ability to characterize it at various levels (from sequence to conformation) is critical not only at the quality control stage, but also throughout the discovery and design stages. Biological mass spectrometry (MS) offers a variety of approaches to study structure and behavior of complex protein drugs and has already become a default tool for characterizing the covalent structure of protein therapeutics, including sequence and post-translational modifications. Recently, MS-based methods have also begun enjoying a dramatic growth in popularity as a means to provide information on higher order structure and dynamics of biotechnology products. In particular, hydrogen/deuterium exchange MS and charge state distribution analysis of protein ions in electrospray ionization (ESI) MS offer a convenient way to assess the integrity of protein conformation. Native ESI MS also allows the interactions of protein drugs with their therapeutic targets and other physiological partners to be monitored using simple model systems. MS-based methods are also applied to study pharmacokinetics of biopharmaceutical products, where they begin to rival traditional immunoassays. MS already provides valuable support to all stages of development of biopharmaceuticals, from discovery to post-approval monitoring, and its impact on the field of biopharmaceutical analysis will undoubtedly continue to grow.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Haaf E, Schlosser A. Peptide and Protein Quantitation by Acid-Catalyzed 18O-Labeling of Carboxyl Groups. Anal Chem 2011; 84:304-11. [DOI: 10.1021/ac202561m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Erik Haaf
- Core Facility Proteomics, Center for Biological Systems Analysis (ZBSA), Habsburger Strasse 49, 79104 Freiburg, Germany
| | - Andreas Schlosser
- Core Facility Proteomics, Center for Biological Systems Analysis (ZBSA), Habsburger Strasse 49, 79104 Freiburg, Germany
| |
Collapse
|
36
|
Kijewska M, Stefanowicz P, Kluczyk A, Szewczuk Z. The isotopic exchange of oxygen as a tool for detection of the glycation sites in proteins. Anal Biochem 2011; 419:81-7. [DOI: 10.1016/j.ab.2011.08.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 08/07/2011] [Accepted: 08/22/2011] [Indexed: 11/17/2022]
|
37
|
Wang S, Bobst CE, Kaltashov IA. Pitfalls in protein quantitation using acid-catalyzed O18 labeling: hydrolysis-driven deamidation. Anal Chem 2011; 83:7227-32. [PMID: 21819098 PMCID: PMC3173563 DOI: 10.1021/ac201657u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteolysis combined with O(18) labeling emerged recently as a powerful tool for quantitation of proteins for which suitable internal standards cannot be produced using molecular biology methods. Several recent reports suggested that acid-catalyzed O(18) labeling may be superior to the commonly accepted enzymatic protocol, as it may allow more significant spacing between the isotopic clusters of labeled and unlabeled peptides, thereby eliminating signal interference and enhancing the quality of quantitation. However, careful examination of this procedure reveals that the results of protein quantitation assisted by acid-catalyzed O(18) labeling are highly peptide-dependent. The inconsistency was found to be caused by deamidation of Asn, Gln, and carbamidomethylated Cys residues during prolonged exposure of the proteolytic fragments to the acidic environment of the labeling reaction, which translates into a loss in signal for these peptides. Taking deamidation into account leads to a significant improvement in the consistency of quantitation across a range of different proteolytic fragments.
Collapse
Affiliation(s)
- Shunhai Wang
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA
| | - Cedric E. Bobst
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA
| | - Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA
| |
Collapse
|
38
|
Liu N, Wu H, Liu H, Chen G, Cai Z. Microwave-Assisted 18O-Labeling of Proteins Catalyzed by Formic Acid. Anal Chem 2010; 82:9122-6. [PMID: 20939519 DOI: 10.1021/ac101888f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ning Liu
- Central Laboratory, The Second Hospital of Jilin University, Changchun, China, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China, The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou 350002, Fujian, China
| | - Hanzhi Wu
- Central Laboratory, The Second Hospital of Jilin University, Changchun, China, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China, The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou 350002, Fujian, China
| | - Hongxia Liu
- Central Laboratory, The Second Hospital of Jilin University, Changchun, China, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China, The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou 350002, Fujian, China
| | - Guonan Chen
- Central Laboratory, The Second Hospital of Jilin University, Changchun, China, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China, The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou 350002, Fujian, China
| | - Zongwei Cai
- Central Laboratory, The Second Hospital of Jilin University, Changchun, China, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China, The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou 350002, Fujian, China
| |
Collapse
|
39
|
Santos HM, Glez-Peña D, Reboiro-Jato M, Fdez-Riverola F, Diniz MS, Lodeiro C, Capelo-Martínez JL. A novel 18O inverse labeling-based workflow for accurate bottom-up mass spectrometry quantification of proteins separated by gel electrophoresis. Electrophoresis 2010; 31:3407-19. [DOI: 10.1002/elps.201000251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Jiang H, Ramos AA, Yao X. Targeted Quantitation of Overexpressed and Endogenous Cystic Fibrosis Transmembrane Conductance Regulator Using Multiple Reaction Monitoring Tandem Mass Spectrometry and Oxygen Stable Isotope Dilution. Anal Chem 2009; 82:336-42. [DOI: 10.1021/ac902028f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hui Jiang
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Alexis A. Ramos
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
41
|
Fenselau C, Yao X. 18O2-Labeling in Quantitative Proteomic Strategies: A Status Report. J Proteome Res 2009; 8:2140-3. [DOI: 10.1021/pr8009879] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Catherine Fenselau
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Xudong Yao
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|