1
|
Adhikari J, Heffernan J, Edeling M, Fernandez E, Jethva PN, Diamond MS, Fremont DH, Gross ML. Epitope Mapping of Japanese Encephalitis Virus Neutralizing Antibodies by Native Mass Spectrometry and Hydrogen/Deuterium Exchange. Biomolecules 2024; 14:374. [PMID: 38540792 PMCID: PMC10967844 DOI: 10.3390/biom14030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 06/27/2024] Open
Abstract
Japanese encephalitis virus (JEV) remains a global public health concern due to its epidemiological distribution and the existence of multiple strains. Neutralizing antibodies against this infection have shown efficacy in in vivo studies. Thus, elucidation of the epitopes of neutralizing antibodies can aid in the design and development of effective vaccines against different strains of JEV. Here, we describe a combination of native mass spectrometry (native-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) to complete screening of eight mouse monoclonal antibodies (MAbs) against JEV E-DIII to identify epitope regions. Native-MS was used as a first pass to identify the antibodies that formed a complex with the target antigen, and it revealed that seven of the eight monoclonal antibodies underwent binding. Native mass spectra of a MAb (JEV-27) known to be non-binding showed broad native-MS peaks and poor signal, suggesting the protein is a mixture or that there are impurities in the sample. We followed native-MS with HDX-MS to locate the binding sites for several of the complex-forming antibodies. This combination of two mass spectrometry-based approaches should be generally applicable and particularly suitable for screening of antigen-antibody and other protein-protein interactions when other traditional approaches give unclear results or are difficult, unavailable, or need to be validated.
Collapse
Affiliation(s)
- Jagat Adhikari
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA; (J.A.); (P.N.J.)
| | - James Heffernan
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63130, USA; (J.H.); (M.E.); (E.F.); (M.S.D.); (D.H.F.)
| | - Melissa Edeling
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63130, USA; (J.H.); (M.E.); (E.F.); (M.S.D.); (D.H.F.)
| | - Estefania Fernandez
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63130, USA; (J.H.); (M.E.); (E.F.); (M.S.D.); (D.H.F.)
| | - Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA; (J.A.); (P.N.J.)
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63130, USA; (J.H.); (M.E.); (E.F.); (M.S.D.); (D.H.F.)
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63130, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63130, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63130, USA
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63130, USA; (J.H.); (M.E.); (E.F.); (M.S.D.); (D.H.F.)
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63130, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA; (J.A.); (P.N.J.)
| |
Collapse
|
2
|
McGee JP, Melani RD, Des Soye B, Croote D, Winton V, Quake SR, Kafader JO, Kelleher NL. Immunocomplexed Antigen Capture and Identification by Native Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2093-2097. [PMID: 37683262 PMCID: PMC10557138 DOI: 10.1021/jasms.3c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Antibody-antigen interactions are central to the immune response. Variation of protein antigens such as isoforms and post-translational modifications can alter their antibody binding sites. To directly connect the recognition of protein antigens with their molecular composition, we probed antibody-antigen complexes by using native tandem mass spectrometry. Specifically, we characterized the prominent peanut allergen Ara h 2 and a convergent IgE variable region discovered in patients who are allergic to peanuts. In addition to measuring the antigen-induced dimerization of IgE antibodies, we demonstrated how immunocomplexes can be isolated in the gas phase and activated to eject, identify, and characterize proteoforms of their bound antigens. Using tandem experiments, we isolated the ejected antigens and then fragmented them to identify their chemical composition. These results establish native top-down mass spectrometry as a viable platform for precise and thorough characterization of immunocomplexes to relate structure to function and enable the discovery of antigen proteoforms and their binding sites.
Collapse
Affiliation(s)
- John P. McGee
- Departments
of Chemistry and Molecular Biosciences and the Proteomics Center of
Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D. Melani
- Departments
of Chemistry and Molecular Biosciences and the Proteomics Center of
Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Ben Des Soye
- Departments
of Chemistry and Molecular Biosciences and the Proteomics Center of
Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Derek Croote
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Valerie Winton
- Departments
of Chemistry and Molecular Biosciences and the Proteomics Center of
Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen R. Quake
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Jared O. Kafader
- Departments
of Chemistry and Molecular Biosciences and the Proteomics Center of
Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L. Kelleher
- Departments
of Chemistry and Molecular Biosciences and the Proteomics Center of
Excellence, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Deslignière E, Ollivier S, Beck A, Ropartz D, Rogniaux H, Cianférani S. Benefits and Limitations of High-Resolution Cyclic IM-MS for Conformational Characterization of Native Therapeutic Monoclonal Antibodies. Anal Chem 2023; 95:4162-4171. [PMID: 36780376 DOI: 10.1021/acs.analchem.2c05265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Monoclonal antibodies (mAbs) currently represent the main class of therapeutic proteins. mAbs approved by regulatory agencies are selected from IgG1, IgG2, and IgG4 subclasses, which possess different interchain disulfide connectivities. Ion mobility coupled to native mass spectrometry (IM-MS) has emerged as a valuable approach to tackle the challenging characterization of mAbs' higher order structures. However, due to the limited resolution of first-generation IM-MS instruments, subtle conformational differences on large proteins have long been hard to capture. Recent technological developments have aimed at increasing available IM resolving powers and acquisition mode capabilities, namely, through the release of high-resolution IM-MS (HR-IM-MS) instruments, like cyclic IM-MS (cIM-MS). Here, we outline the advantages and drawbacks of cIM-MS for better conformational characterization of intact mAbs (∼150 kDa) in native conditions compared to first-generation instruments. We first assessed the extent to which multipass cIM-MS experiments could improve the separation of mAbs' conformers. These initial results evidenced some limitations of HR-IM-MS for large native biomolecules which possess rich conformational landscapes that remain challenging to decipher even with higher IM resolving powers. Conversely, for collision-induced unfolding (CIU) approaches, higher resolution proved to be particularly useful (i) to reveal new unfolding states and (ii) to enhance the separation of coexisting activated states, thus allowing one to apprehend gas-phase CIU behaviors of mAbs directly at the intact level. Altogether, this study offers a first panoramic overview of the capabilities of cIM-MS for therapeutic mAbs, paving the way for more widespread HR-IM-MS/CIU characterization of mAb-derived formats.
Collapse
Affiliation(s)
- Evolène Deslignière
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67000, France.,Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg 67087, France
| | - Simon Ollivier
- UR BIA, INRAE, Nantes F-44316, France.,PROBE Research Infrastructure, BIBS Facility, INRAE, Nantes F-44316, France
| | - Alain Beck
- IRPF Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois 74160, France
| | - David Ropartz
- UR BIA, INRAE, Nantes F-44316, France.,PROBE Research Infrastructure, BIBS Facility, INRAE, Nantes F-44316, France
| | - Hélène Rogniaux
- UR BIA, INRAE, Nantes F-44316, France.,PROBE Research Infrastructure, BIBS Facility, INRAE, Nantes F-44316, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67000, France.,Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg 67087, France
| |
Collapse
|
4
|
Yang W, Ivanov DG, Kaltashov IA. Extending the capabilities of intact-mass analyses to monoclonal immunoglobulins of the E-isotype (IgE). MAbs 2022; 14:2103906. [PMID: 35895856 PMCID: PMC9336480 DOI: 10.1080/19420862.2022.2103906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mass spectrometry (MS) has become an indispensable tool in structural characterization and quality control of monoclonal antibodies (mAbs). Intact-mass analysis is a particularly attractive option that provides a powerful and cost-effective means to not only confirm the structural integrity of the protein, but also probe its interactions with therapeutic targets. To a certain extent, this success can be attributed to relatively modest glycosylation levels exhibited by IgG molecules, which limits their structural heterogeneity and enables straightforward mass measurements at the intact molecule level. The recent surge of interest in expanding the repertoire of mAbs to include other classes of immunoglobulins places a premium on efforts to adapt the IgG-tailored experimental strategies to other classes of antibodies, but their dramatically higher levels of glycosylation may create insurmountable obstacles. The monoclonal murine IgE antibody explored in this work provides a challenging model system, as its glycosylation level exceeds that of conventional IgG mAbs by a factor of nine. The commercial sample, which included various IgE fragments, yields a poorly resolved ionic signal in intact-mass measurements, from which little useful information can be extracted. However, coupling MS measurements with the limited charge reduction of select polycationic species in the gas phase gives rise to well-defined charge ladders, from which both ionic masses and charges can be readily determined. The measurements reveal significant variation of the extent of glycosylation within intact IgE molecules, as well as the presence of low-molecular weight impurities in the commercial IgE sample. Furthermore, incubation of the monoclonal IgE with its antigen (ovalbumin) gives rise to the formation of complexes with varying stoichiometries, which can also be uniquely identified using a combination of native MS, limited charge reduction in the gas phase and data fitting procedures. This work demonstrates that following appropriate modifications, intact-mass analysis measurements can be successfully applied to mAbs beyond the IgG isotype, providing a wealth of information not only on the mass distribution of the intact IgE molecules, but also their large-scale conformational integrity, the integrity of their covalent structure, and their interactions with antigens.
Collapse
Affiliation(s)
- Wenhua Yang
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.,College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Daniil G Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
5
|
den Boer MA, Lai SH, Xue X, van Kampen MD, Bleijlevens B, Heck AJR. Comparative Analysis of Antibodies and Heavily Glycosylated Macromolecular Immune Complexes by Size-Exclusion Chromatography Multi-Angle Light Scattering, Native Charge Detection Mass Spectrometry, and Mass Photometry. Anal Chem 2021; 94:892-900. [PMID: 34939405 PMCID: PMC8771642 DOI: 10.1021/acs.analchem.1c03656] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Qualitative and quantitative mass analysis of antibodies and related macromolecular immune complexes is a prerequisite for determining their identity, binding partners, stoichiometries, and affinities. A plethora of bioanalytical technologies exist to determine such characteristics, typically based on size, interaction with functionalized surfaces, light scattering, or direct mass measurements. While these methods are highly complementary, they also exhibit unique strengths and weaknesses. Here, we benchmark mass photometry (MP), a recently introduced technology for mass measurement, against native mass spectrometry (MS) and size exclusion chromatography multi-angle light scattering (SEC-MALS). We examine samples of variable complexity, namely, IgG4Δhinge dimerizing half-bodies, IgG-RGY hexamers, heterogeneously glycosylated IgG:sEGFR antibody-antigen complexes, and finally megadalton assemblies involved in complement activation. We thereby assess the ability to determine (1) binding affinities and stoichiometries, (2) accurate masses, for extensively glycosylated species, and (3) assembly pathways of large heterogeneous immune complexes. We find that MP provides a sensitive approach for characterizing antibodies and stable assemblies, with dissociation correction enabling us to expand the measurable affinity range. In terms of mass resolution and accuracy, native MS performs the best but is occasionally hampered by artifacts induced by electrospray ionization, and its resolving power diminishes when analyzing extensively glycosylated proteins. In the latter cases, MP performs well, but single-particle charge detection MS can also be useful in this respect, measuring masses of heterogeneous assemblies even more accurately. Both methods perform well compared to SEC-MALS, still being the most established method in biopharma. Together, our data highlight the complementarity of these approaches, each having its unique strengths and weaknesses.
Collapse
Affiliation(s)
- Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Szu-Hsueh Lai
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Xiaoguang Xue
- Genmab, Uppsalalaan 15, 3584 CT Utrecht, The Netherlands
| | | | | | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
6
|
Deslignière E, Botzanowski T, Diemer H, Cooper-Shepherd DA, Wagner-Rousset E, Colas O, Béchade G, Giles K, Hernandez-Alba O, Beck A, Cianférani S. High-Resolution IMS-MS to Assign Additional Disulfide Bridge Pairing in Complementarity-Determining Regions of an IgG4 Monoclonal Antibody. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2505-2512. [PMID: 34437803 DOI: 10.1021/jasms.1c00151] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Monoclonal antibodies (mAbs) have taken on an increasing importance for the treatment of various diseases, including cancers and immunological disorders. Disulfide bonds play a pivotal role in therapeutic antibody structure and activity relationships. Disulfide connectivity and cysteine-related variants are considered as critical quality attributes that must be monitored during mAb manufacturing and storage, as non-native disulfide bridges and aggregates might be responsible for loss of biological function and immunogenicity. The presence of cysteine residues in the complementarity-determining regions (CDRs) is rare in human antibodies but may be critical for the antigen-binding or deleterious for therapeutic antibody development. Consequently, in-depth characterization of their disulfide network is a prerequisite for mAb developability assessment. Mass spectrometry (MS) techniques represent powerful tools for accurate identification of disulfide connectivity. We report here on the MS-based characterization of an IgG4 comprising two additional cysteine residues in the CDR of its light chain. Classical bottom-up approaches after trypsin digestion first allowed identification of a dipeptide containing two disulfide bridges. To further investigate the conformational heterogeneity of the disulfide-bridged dipeptide, we performed ion mobility spectrometry-mass spectrometry (IMS-MS) experiments. Our results highlight benefits of high resolution IMS-MS to tackle the conformational landscape of disulfide peptides generated after trypsin digestion of a humanized IgG4 mAb under development. By comparing arrival time distributions of the mAb-collected and synthetic peptides, cyclic IMS afforded unambiguous assessment of disulfide bonds. In addition to classical peptide mapping, qualitative high-resolution IMS-MS can be of great interest to identify disulfide bonds within therapeutic mAbs.
Collapse
Affiliation(s)
- Evolène Deslignière
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | | | - Elsa Wagner-Rousset
- IRPF - Centre d'Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Olivier Colas
- IRPF - Centre d'Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Guillaume Béchade
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, Cheshire SK9 4AX, U.K
| | - Kevin Giles
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, Cheshire SK9 4AX, U.K
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | - Alain Beck
- IRPF - Centre d'Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, Université de Strasbourg, CNRS, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| |
Collapse
|
7
|
Haberger M, Heidenreich AK, Hook M, Fichtl J, Lang R, Cymer F, Adibzadeh M, Kuhne F, Wegele H, Reusch D, Bonnington L, Bulau P. Multiattribute Monitoring of Antibody Charge Variants by Cation-Exchange Chromatography Coupled to Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2062-2071. [PMID: 33687195 DOI: 10.1021/jasms.0c00446] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aim of this study was to characterize the product variants of a therapeutic T-cell bispecific humanized monoclonal antibody (TCB Mab, ∼200 kDa, asymmetric) and to develop an online cation-exchange chromatography native electrospray mass spectrometry method (CEC-UV-MS) for direct TCB Mab charge variant monitoring during bioprocess and formulation development. For the identification and functional evaluation of the diverse and complex TCB Mab charge variants, offline fractionation combined with comprehensive analytical testing was applied. The offline fractionation of abundant product variant peaks enabled identification of coeluting acid charge variants such as asparagine deamidation, primary and secondary Fab glycosylation (with and without sialic acid), and the presence of O-glycosylation in the G4S-linker region. Consequently, a new nonconsensus N-glycosylation motif (N-338-FG) in the heavy chain CDR region was discovered. Functional evaluation by cell-based potency testing demonstrated a clear and negative impact of both asparagine deamidations, whereas the O-glycosylation did not affect the TCB Mab biological activity. We established an online native CEC-UV-MS method, with an ammonium acetate buffer and pH gradient, to directly monitor the TCB Mab charge variants. All abundant chemical degradations and post-translational amino acid modifications already identified by offline fraction experiments and liquid chromatography mass spectrometry peptide mapping could also be monitored by the online CEC-UV-MS method. The herein reported online native CEC-UV-MS methodology represents a complementary or even alternative approach for multiattribute monitoring of biologics, offering multiple benefits, including increased throughput and reduced sample handling and intact protein information in the near-native state.
Collapse
Affiliation(s)
- Markus Haberger
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | | | - Michaela Hook
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Jürgen Fichtl
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Rainer Lang
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Florian Cymer
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., c, 4070 Basel, Switzerland
| | - Mahdi Adibzadeh
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., c, 4070 Basel, Switzerland
| | - Felix Kuhne
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Harald Wegele
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Dietmar Reusch
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Lea Bonnington
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Patrick Bulau
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| |
Collapse
|
8
|
Chen T, Tang S, Hecht ES, Yen CW, Andersen N, Chin S, Cadang L, Roper B, Estevez A, Rohou A, Chang D, Dai L, Liu P, Al-Sayah M, Nagapudi K, Lin F, Famili A, Hu C, Kuhn R, Stella C, Crittenden CM, Gruenhagen JA, Venkatramani C, Hannoush RN, Leung D, Vandlen R, Yehl P. Discovery of a dual pathway aggregation mechanism for a therapeutic constrained peptide. J Pharm Sci 2021; 110:2362-2371. [PMID: 33652014 DOI: 10.1016/j.xphs.2020.12.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Constrained peptides (CPs) have emerged as attractive candidates for drug discovery and development. To fully unlock the therapeutic potential of CPs, it is crucial to understand their physical stability and minimize the formation of aggregates that could induce immune responses. Although amyloid like aggregates have been researched extensively, few studies have focused on aggregates from other peptide scaffolds (e.g., CPs). In this work, a streamlined approach to effectively profile the nature and formation pathway of CP aggregates was demonstrated. Aggregates of various sizes were detected and shown to be amorphous. Though no major changes were found in peptide structure upon aggregation, these aggregates appeared to have mixed natures, consisting of primarily non-covalent aggregates with a low level of covalent species. This co-existence phenomenon was also supported by two kinetic pathways observed in time- and temperature-dependent aggregation studies. Furthermore, a stability study with 8 additional peptide variants exhibited good correlation between aggregation propensity and peptide hydrophobicity. Therefore, a dual aggregation pathway was proposed, with the non-covalent aggregates driven by hydrophobic interactions, whereas the covalent ones formed through disulfide scrambling. Overall, the workflow presented here provides a powerful strategy for comprehensive characterization of peptide aggregates and understanding their mechanisms of formation.
Collapse
Affiliation(s)
- Tao Chen
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| | - Shijia Tang
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Elizabeth S Hecht
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Chun-Wan Yen
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Nisana Andersen
- Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Steven Chin
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Lance Cadang
- Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Brian Roper
- Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Alberto Estevez
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Alexis Rohou
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Debby Chang
- Department of Drug Delivery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Lu Dai
- Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Peter Liu
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Mohammad Al-Sayah
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Fiona Lin
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Amin Famili
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Chloe Hu
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Robert Kuhn
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Cinzia Stella
- Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Christopher M Crittenden
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Jason A Gruenhagen
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Cadapakam Venkatramani
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Dennis Leung
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Richard Vandlen
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Peter Yehl
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| |
Collapse
|
9
|
Mehaffey MR, Lee J, Jung J, Lanzillotti MB, Escobar EE, Morgenstern KR, Georgiou G, Brodbelt JS. Mapping a Conformational Epitope of Hemagglutinin A Using Native Mass Spectrometry and Ultraviolet Photodissociation. Anal Chem 2020; 92:11869-11878. [PMID: 32867493 PMCID: PMC7808878 DOI: 10.1021/acs.analchem.0c02237] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
As the importance of effective vaccines and the role of protein therapeutics in the drug industry continue to expand, alternative strategies to characterize protein complexes are needed. Mass spectrometry (MS) in conjunction with enzymatic digestion or chemical probes has been widely used for mapping binding epitopes at the molecular level. However, advances in instrumentation and application of activation methods capable of accessing higher energy dissociation pathways have recently allowed direct analysis of protein complexes. Here we demonstrate a workflow utilizing native MS and ultraviolet photodissociation (UVPD) to map the antigenic determinants of a model antibody-antigen complex involving hemagglutinin (HA), the primary immunogenic antigen of the influenza virus, and the D1 H1-17/H3-14 antibody which has been shown to confer potent protection to lethal infection in mice despite lacking neutralization activity. Comparison of sequence coverages upon UV photoactivation of HA and of the HA·antibody complex indicates the elimination of some sequence ions that originate from backbone cleavages exclusively along the putative epitope regions of HA in the presence of the antibody. Mapping the number of sequence ions covering the HA antigen versus the HA·antibody complex highlights regions with suppressed backbone cleavage and allows elucidation of unknown epitopes. Moreover, examining the observed fragment ion types generated by UVPD demonstrates a loss in diversity exclusively along the antigenic determinants upon MS/MS of the antibody-antigen complex. UVPD-MS shows promise as a method to rapidly map epitope regions along antibody-antigen complexes as novel antibodies are discovered or developed.
Collapse
Affiliation(s)
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | | | | | | | | | | | | |
Collapse
|
10
|
Nagy G, Attah IK, Conant CR, Liu W, Garimella SVB, Gunawardena HP, Shaw JB, Smith RD, Ibrahim YM. Rapid and Simultaneous Characterization of Drug Conjugation in Heavy and Light Chains of a Monoclonal Antibody Revealed by High-Resolution Ion Mobility Separations in SLIM. Anal Chem 2020; 92:5004-5012. [PMID: 32142606 PMCID: PMC8754684 DOI: 10.1021/acs.analchem.9b05209] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antibody-drug conjugates (ADCs) have recently gained traction in the biomedical community due to their promise for human therapeutics and an alternative to chemotherapy for cancer. Crucial metrics for ADC efficacy, safety, and selectivity are their drug-antibody ratios (DARs). However, DAR characterization (i.e., determining the average number of conjugated drugs on the antibody) through analytical methods remains challenging due to the heterogeneity of drug conjugation as well as the numerous post-translational modifications possible in the monoclonal antibody. Herein, we report on the use of high-resolution ion mobility spectrometry separations in structures for lossless ion manipulations coupled to mass spectrometry (SLIM IMS-MS) for the rapid and simultaneous characterization of the drug load profile (i.e., stoichiometric distribution of the number of conjugated drugs present on the mAb), determination of the weighted average DAR in both the heavy and light chains of a model antibody-drug conjugate, and calculation of the overall DAR of the ADC. After chemical reduction of the ADC and a subsequent 31.5 m SLIM IMS separation, the various drug-bound antibody species could be well resolved for both chains. We also show significantly higher resolution separations were possible for these large ions with SLIM IMS as compared to ones performed on a commercially available (1 m) drift tube IMS-MS platform. We expect high-resolution SLIM IMS separations will augment the existing toolbox for ADC characterization, particularly to enable the rapid optimization of DAR for a given ADC and thus better understand its potential toxicity and potency.
Collapse
Affiliation(s)
- Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christopher R Conant
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Weijing Liu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Harsha P Gunawardena
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Jared B Shaw
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
11
|
Kafader JO, Melani RD, Schachner LF, Ives AN, Patrie SM, Kelleher NL, Compton PD. Native vs Denatured: An in Depth Investigation of Charge State and Isotope Distributions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:574-581. [PMID: 31971796 PMCID: PMC7539638 DOI: 10.1021/jasms.9b00040] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
New tools and techniques have dramatically accelerated the field of structural biology over the past several decades. One potent and relatively new technique that is now being utilized by an increasing number of laboratories is the combination of so-called "native" electrospray ionization (ESI) with mass spectrometry (MS) for the characterization of proteins and their noncovalent complexes. However, native ESI-MS produces species at increasingly higher m/z with increasing molecular weight, leading to substantial differences when compared to traditional mass spectrometric approaches using denaturing ESI solutions. Herein, these differences are explored both theoretically and experimentally to understand the role that charge state and isotopic distributions have on signal-to-noise (S/N) as a function of complex molecular weight and how the reduced collisional cross sections of proteins electrosprayed under native solution conditions can lead to improved data quality in image current mass analyzers, such as Orbitrap and FT-ICR. Quantifying ion signal differences under native and denatured conditions revealed enhanced S/N and a more gradual decay in S/N with increasing mass under native conditions. Charge state and isotopic S/N models, supported by experimental results, indicate that analysis of proteins under native conditions at 100 kDa will be 17 times more sensitive than analysis under denatured conditions at the same mass. Higher masses produce even larger sensitivity gains. Furthermore, reduced cross sections under native conditions lead to lower levels of ion decay within an Orbitrap scan event over long transient acquisition times, enabling isotopic resolution of species with molecular weights well in excess of those typically resolved under denatured conditions.
Collapse
Affiliation(s)
- Jared O Kafader
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D Melani
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Luis F Schachner
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Ashley N Ives
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Steven M Patrie
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Philip D Compton
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
12
|
Hartmann L, Botzanowski T, Galibert M, Jullian M, Chabrol E, Zeder-Lutz G, Kugler V, Stojko J, Strub JM, Ferry G, Frankiewicz L, Puget K, Wagner R, Cianférani S, Boutin JA. VHH characterization. Comparison of recombinant with chemically synthesized anti-HER2 VHH. Protein Sci 2019; 28:1865-1879. [PMID: 31423659 DOI: 10.1002/pro.3712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
Abstract
In the continuous exploration of the VHH chemistry, biochemistry and therapeutic future use, we investigated two different production strategies of this small antibody-like protein, using an anti-HER2 VHH as a model. The total chemical synthesis of the 125 amino-acid peptide was performed with reasonable yield, even if optimization will be necessary to upgrade this kind of production. In parallel, we expressed the same sequence in two different hosts: Escherichia coli and Pichia pastoris. Both productions were successful and led to a fair amount of VHHs. The integrity and conformation of the VHH were characterized by complementary mass spectrometry approaches, while surface plasmon resonance experiments were used to assess the VHH recognition capacity and affinity toward its "antigen." Using this combination of orthogonal techniques, it was possible to show that the three VHHs-whether synthetic or recombinant ones-were properly and similarly folded and recognized the "antigen" HER2 with similar affinities, in the nanomolar range. This opens a route toward further exploration of modified VHH with unnatural amino acids and subsequently, VHH-drug conjugates.
Collapse
Affiliation(s)
- Lucie Hartmann
- Plateforme IMPReSs, Laboratoire de Biotechnologie et Signalisation Cellulaire, CNRS, Université de Strasbourg, Illkirch, France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
| | | | | | - Eric Chabrol
- PEX de Biotechnologie, Chimie et Biologie, Institut de REchercehs Servier, Croissy-sur-Seine, France
| | - Gabrielle Zeder-Lutz
- Plateforme IMPReSs, Laboratoire de Biotechnologie et Signalisation Cellulaire, CNRS, Université de Strasbourg, Illkirch, France
| | - Valérie Kugler
- Plateforme IMPReSs, Laboratoire de Biotechnologie et Signalisation Cellulaire, CNRS, Université de Strasbourg, Illkirch, France
| | - Johann Stojko
- PEX de Biotechnologie, Chimie et Biologie, Institut de REchercehs Servier, Croissy-sur-Seine, France
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
| | - Gilles Ferry
- PEX de Biotechnologie, Chimie et Biologie, Institut de REchercehs Servier, Croissy-sur-Seine, France
| | | | | | - Renaud Wagner
- Plateforme IMPReSs, Laboratoire de Biotechnologie et Signalisation Cellulaire, CNRS, Université de Strasbourg, Illkirch, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
| | - Jean A Boutin
- Institut de Recherches Internationales Servier, Suresnes, France
| |
Collapse
|
13
|
Brown KA, Rajendran S, Dowd J, Wilson DJ. Rapid characterization of structural and functional similarity for a candidate bevacizumab (Avastin) biosimilar using a multipronged mass‐spectrometry‐based approach. Drug Test Anal 2019; 11:1207-1217. [DOI: 10.1002/dta.2609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Kerene A. Brown
- Chemistry DepartmentYork University Toronto ON Canada
- The Centre for Research in Mass SpectrometryYork University Toronto ON Canada
| | | | - Jason Dowd
- Apobiologix (division of Apotex Inc.) Toronto ON Canada
| | - Derek J. Wilson
- Chemistry DepartmentYork University Toronto ON Canada
- The Centre for Research in Mass SpectrometryYork University Toronto ON Canada
| |
Collapse
|
14
|
Ehkirch A, Goyon A, Hernandez-Alba O, Rouviere F, D’Atri V, Dreyfus C, Haeuw JF, Diemer H, Beck A, Heinisch S, Guillarme D, Cianferani S. A Novel Online Four-Dimensional SEC×SEC-IM×MS Methodology for Characterization of Monoclonal Antibody Size Variants. Anal Chem 2018; 90:13929-13937. [DOI: 10.1021/acs.analchem.8b03333] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Alexandre Goyon
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Rue Michel-Servet, 1, 1211 Geneva 4, Switzerland
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Florent Rouviere
- Université de Lyon, Institut des Sciences Analytiques, CNRS, UMR5280, Université de Lyon, ENS, 69100 Villeurbanne, France
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Rue Michel-Servet, 1, 1211 Geneva 4, Switzerland
| | - Cyrille Dreyfus
- IRPF−Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Jean-François Haeuw
- IRPF−Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Alain Beck
- IRPF−Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Sabine Heinisch
- Université de Lyon, Institut des Sciences Analytiques, CNRS, UMR5280, Université de Lyon, ENS, 69100 Villeurbanne, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Rue Michel-Servet, 1, 1211 Geneva 4, Switzerland
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| |
Collapse
|
15
|
Goyon A, Fekete S, Beck A, Veuthey JL, Guillarme D. Unraveling the mysteries of modern size exclusion chromatography - the way to achieve confident characterization of therapeutic proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:368-378. [PMID: 29936373 DOI: 10.1016/j.jchromb.2018.06.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022]
Abstract
Modern size exclusion chromatography (SEC) can be defined by the use of relatively small columns (e.g., 150 × 4.6 mm) packed with sub-3 μm particles, allowing a 3- to 5-fold increase in method throughput compared to that of conventional SEC. The quick success of the first sub-2 μm SEC column introduced in 2010 led to the development of numerous ultra-high performance (UHP)-SEC columns for the analysis of therapeutic monoclonal antibody (mAb)-based products. Aggregates also known as high-molecular-weight species (HMWS) are indeed one of the most important critical quality attributes (CQAs) of mAbs, as HMWS may decrease the product efficacy or cause immunogenicity effects. Therefore, the confident characterization of mAbs requires strong knowledge of not only modern SEC performance (i.e., selectivity and efficiency) but also the inherent limitations caused by non-specific interactions more likely to occur with complex antibody drug conjugates (ADCs) and some commercial mAb products. This review discusses the importance of liquid chromatographic (LC) instrumentation in order to exploit the full potential of modern SEC columns and current trends to hyphenate SEC to mass spectrometry (MS). Recent applications for antibody-based products (i.e., mAbs, ADCs, Fc-Fusion proteins and bispecific antibodies) are presented. Finally, tips and tricks are provided to further optimize SEC separations and maintaining their performance over time with better understanding of unexpected SEC results.
Collapse
Affiliation(s)
- Alexandre Goyon
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel Servet, 1, 1206 Geneva 4, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel Servet, 1, 1206 Geneva 4, Switzerland
| | - Alain Beck
- IRPF, Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel Servet, 1, 1206 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel Servet, 1, 1206 Geneva 4, Switzerland.
| |
Collapse
|
16
|
Kaltashov IA, Pawlowski JW, Yang W, Muneeruddin K, Yao H, Bobst CE, Lipatnikov AN. LC/MS at the whole protein level: Studies of biomolecular structure and interactions using native LC/MS and cross-path reactive chromatography (XP-RC) MS. Methods 2018; 144:14-26. [PMID: 29702225 DOI: 10.1016/j.ymeth.2018.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/11/2018] [Accepted: 04/18/2018] [Indexed: 11/25/2022] Open
Abstract
Interfacing liquid chromatography (LC) with electrospray ionization (ESI) to enable on-line MS detection had been initially implemented using reversed phase LC, which in the past three decades remained the default type of chromatography used for LC/MS and LC/MS/MS studies of protein structure. In contrast, the advantages of other types of LC as front-ends for ESI MS, particularly those that allow biopolymer higher order structure to be preserved throughout the separation process, enjoyed relatively little appreciation until recently. However, the past few years witnessed a dramatic surge of interest in the so-called "native" (with "non-denaturing" being perhaps a more appropriate adjective) LC/MS and LC/MS/MS analyses within the bioanalytical and biophysical communities. This review focuses on recent advances in this field, with an emphasis on size exclusion and ion exchange chromatography as front-end platforms for protein characterization by LC/MS. Also discussed are the benefits provided by the integration of chemical reactions in the native LC/MS analyses, including both ion chemistry in the gas phase (e.g., limited charge reduction for characterization of highly heterogeneous biopolymers) and solution-phase reactions (using the recently introduced technique cross-path reactive chromatography).
Collapse
Affiliation(s)
- Igor A Kaltashov
- Institute for Applied Life Sciences and Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, United States.
| | - Jake W Pawlowski
- Institute for Applied Life Sciences and Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Wenhua Yang
- Institute for Applied Life Sciences and Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Khaja Muneeruddin
- Institute for Applied Life Sciences and Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Honglin Yao
- Institute for Applied Life Sciences and Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Cedric E Bobst
- Institute for Applied Life Sciences and Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, United States
| | - Andrei N Lipatnikov
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
17
|
MS-based conformation analysis of recombinant proteins in design, optimization and development of biopharmaceuticals. Methods 2018; 144:134-151. [PMID: 29678586 DOI: 10.1016/j.ymeth.2018.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 01/18/2023] Open
Abstract
Mass spectrometry (MS)-based methods for analyzing protein higher order structures have gained increasing application in the field of biopharmaceutical development. The predominant methods used in this area include native MS, hydrogen deuterium exchange-MS, covalent labeling, cross-linking and limited proteolysis. These MS-based methods will be briefly described in this article, followed by a discussion on how these methods contribute at different stages of discovery and development of protein therapeutics.
Collapse
|
18
|
Tian Y, Ruotolo BT. The growing role of structural mass spectrometry in the discovery and development of therapeutic antibodies. Analyst 2018; 143:2459-2468. [DOI: 10.1039/c8an00295a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The comprehensive structural characterization of therapeutic antibodies is of critical importance for the successful discovery and development of such biopharmaceuticals, yet poses many challenges to modern measurement science. Here, we review the current state-of-the-art mass spectrometry technologies focusing on the characterization of antibody-based therapeutics.
Collapse
Affiliation(s)
- Yuwei Tian
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | | |
Collapse
|
19
|
Ruhe L, Ickert S, Hochkirch U, Hofmann J, Beck S, Thomale J, Linscheid MW. Comprehensive Molecular Characterization of a Cisplatin-Specific Monoclonal Antibody. Mol Pharm 2017; 14:4454-4461. [PMID: 29129076 DOI: 10.1021/acs.molpharmaceut.7b00575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite their immense and rapidly increasing importance as analytical tools or therapeutic drugs, the detailed structural features of particular monoclonal antibodies are widely unknown. Here, an antibody already in use for diagnostic purposes and for molecular dosimetry studies in cancer therapy with very high affinity and specificity for cisplatin-induced DNA modifications was studied extensively. The molecular structure and modifications as well as the antigen specificity were investigated mainly by mass spectrometry. Using nano electrospray ionization mass spectrometry, it was possible to characterize the antibody in its native state. Tandem-MS experiments not only revealed specific fragments but also gave information on the molecular structure. The detailed primary structure was further elucidated by proteolytic treatment with a selection of enzymes and high resolution tandem-MS. The data were validated by comparison with known antibody sequences. Then, the complex glycan structures bound to the antibody were characterized in all detail. The Fc-bound oligosaccharides were released enzymatically and studied by matrix-assisted laser desorption/ionization mass spectrometry. Overall 16 different major glycan structures were identified. The binding specificity of the antibody was investigated by applying synthetic single and double stranded DNA oligomers harboring distinct Pt adducts. The antibody-antigen complexes were analyzed by mass spectrometry under native conditions. The stability of the complex with double stranded DNA was also investigated.
Collapse
Affiliation(s)
- Lena Ruhe
- Department of Chemistry, Humboldt-Universitaet zu Berlin , Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Stefanie Ickert
- Department of Chemistry, Humboldt-Universitaet zu Berlin , Brook-Taylor-Strasse 2, 12489 Berlin, Germany.,Federal Institute for Materials Research and Testing , Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany
| | - Ulrike Hochkirch
- Department of Chemistry, Humboldt-Universitaet zu Berlin , Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Johanna Hofmann
- Fritz Haber Institute of the Max Planck Society , Faradayweg 4-6, 14195 Berlin, Germany
| | - Sebastian Beck
- Department of Chemistry, Humboldt-Universitaet zu Berlin , Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Jürgen Thomale
- Department of Cell Biology, Universitaetsklinikum Essen , Hufelandstrasse 55, 45122 Essen, Germany
| | - Michael W Linscheid
- Department of Chemistry, Humboldt-Universitaet zu Berlin , Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| |
Collapse
|
20
|
Terral G, Champion T, Debaene F, Colas O, Bourguet M, Wagner-Rousset E, Corvaia N, Beck A, Cianferani S. Epitope characterization of anti-JAM-A antibodies using orthogonal mass spectrometry and surface plasmon resonance approaches. MAbs 2017; 9:1317-1326. [PMID: 28933642 DOI: 10.1080/19420862.2017.1380762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Junctional adhesion molecule-A (JAM-A) is an adherens and tight junction protein expressed by endothelial and epithelial cells and associated with cancer progression. We present here the extensive characterization of immune complexes involving JAM-A antigen and three monoclonal antibodies (mAbs), including hz6F4-2, a humanized version of anti-tumoral 6F4 mAb identified by a functional and proteomic approach in our laboratory. A specific workflow that combines orthogonal approaches has been designed to determine binding stoichiometries along with JAM-A epitope mapping determination at high resolution for these three mAbs. Native mass spectrometry experiments revealed different binding stoichiometries and affinities, with two molecules of JAM-A being able to bind to hz6F4-2 and F11 Fab, while only one JAM-A was bound to J10.4. Surface plasmon resonance indirect competitive binding assays suggested epitopes located in close proximity for hz6F4-2 and F11. Finally, hydrogen-deuterium exchange mass spectrometry was used to precisely identify epitopes for all mAbs. The results obtained by orthogonal biophysical approaches showed a clear correlation between the determined epitopes and JAM-A binding characteristics, allowing the basis for molecular recognition of JAM-A by hz6F4-2 to be definitively established for the first time. Taken together, our results highlight the power of MS-based structural approaches for epitope mapping and mAb conformational characterization.
Collapse
Affiliation(s)
- Guillaume Terral
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 , Strasbourg , France
| | - Thierry Champion
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - François Debaene
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 , Strasbourg , France
| | - Olivier Colas
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Maxime Bourguet
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 , Strasbourg , France
| | - Elsa Wagner-Rousset
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Nathalie Corvaia
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Alain Beck
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Sarah Cianferani
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 , Strasbourg , France
| |
Collapse
|
21
|
Gahoual R, Heidenreich AK, Somsen GW, Bulau P, Reusch D, Wuhrer M, Haberger M. Detailed Characterization of Monoclonal Antibody Receptor Interaction Using Affinity Liquid Chromatography Hyphenated to Native Mass Spectrometry. Anal Chem 2017; 89:5404-5412. [PMID: 28398745 DOI: 10.1021/acs.analchem.7b00211] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report on the online coupling of FcRn affinity liquid chromatography (LC) with electrospray ionization mass spectrometry (ESI-MS) in native conditions to study the influence of modifications on the interaction of recombinant mAbs with the immobilized FcRn receptor domain. The analysis conditions were designed to fit the requirements of both affinity LC and ESI-MS. The mobile phase composition was optimized to maintain the proteins studied in native conditions and enable sharp pH changes in order to mimic properly IgGs Fc domain/FcRn receptor interaction. Mobile phase components needed to be sufficiently volatile to achieve native MS analysis. MS data demonstrated the conservation of the pseudonative form of IgGs and allowed identification of the separated variants. Native FcRn affinity LC-ESI-MS was performed on a therapeutic mAb undergoing various oxidation stress. Native MS detection was used to determine the sample oxidation level. Lower retention was observed for mAbs oxidized variants compared to their intact counterparts indicating decreased affinities for the receptor. This methodology proved to be suitable to identify and quantify post-translational modifications at native protein level in order to correlate their influence on the binding to the FcRn receptor. Native FcRn affinity LC-ESI-MS can tremendously reduce the time required to assess the biological relevance of the IgG microheterogeneities thus providing valuable information for biopharmaceutical research and development.
Collapse
Affiliation(s)
- Rabah Gahoual
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands
| | | | - Govert W Somsen
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands
| | - Patrick Bulau
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH , Penzberg 82377, Germany
| | - Dietmar Reusch
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH , Penzberg 82377, Germany
| | - Manfred Wuhrer
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam , 1081 HV Amsterdam, The Netherlands.,Center for Proteomics and Metabolomics, Leiden University Medical Center , 2333 ZA Leiden, The Netherlands
| | - Markus Haberger
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH , Penzberg 82377, Germany
| |
Collapse
|
22
|
Van der Rest G, Rezaei H, Halgand F. Monitoring Conformational Landscape of Ovine Prion Protein Monomer Using Ion Mobility Coupled to Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:303-314. [PMID: 27757822 DOI: 10.1007/s13361-016-1522-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
Prion protein is involved in deadly neurodegenerative diseases. Its pathogenicity is linked to its structural conversion (α-helix to β-strand transition). However, recent studies suggest that prion protein can follow a plurality of conversion pathways, which hints towards different conformers that might coexist in solution. To gain insights on the plasticity of the ovine prion protein (PrP) monomer, wild type (A136, R154, Q171), mutants and deletions of ARQ were studied by traveling wave ion mobility experiments coupled to mass spectrometry. In order to perform the analysis of a large body of data sets, we designed and evaluated the performance of a processing pipeline based on Driftscope peak detection and a homemade script for automated peak assignment, annotation, and quantification on specific multiply charged protein data. Using this approach, we showed that in the gas phase, PrPs are represented by at least three conformer families differing in both charge state distribution and collisional cross-section, in agreement with the work of Hilton et al. (2010). We also showed that this plasticity is borne both by the N- and C-terminal domains. Effect of protein concentration, pH and temperature were also assessed, showing that (1) pH does not affect conformer distributions, (2) protein concentration modifies the conformational landscape of one mutant (I208M) only, and (3) heating leads to other unfolded species and to a modification of the conformer intensity ratios. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Guillaume Van der Rest
- Laboratoire de Chimie Physique, Université Paris Sud, CNRS UMR 8000, 91405, Orsay, France
| | - Human Rezaei
- Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Frédéric Halgand
- Laboratoire de Chimie Physique, Université Paris Sud, CNRS UMR 8000, 91405, Orsay, France.
| |
Collapse
|
23
|
Terral G, Beck A, Cianférani S. Insights from native mass spectrometry and ion mobility-mass spectrometry for antibody and antibody-based product characterization. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:79-90. [DOI: 10.1016/j.jchromb.2016.03.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
|
24
|
Jefferis R. Posttranslational Modifications and the Immunogenicity of Biotherapeutics. J Immunol Res 2016; 2016:5358272. [PMID: 27191002 PMCID: PMC4848426 DOI: 10.1155/2016/5358272] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/20/2016] [Indexed: 12/23/2022] Open
Abstract
Whilst the amino acid sequence of a protein is determined by its gene sequence, the final structure and function are determined by posttranslational modifications (PTMs), including quality control (QC) in the endoplasmic reticulum (ER) and during passage through the Golgi apparatus. These processes are species and cell specific and challenge the biopharmaceutical industry when developing a production platform for the generation of recombinant biologic therapeutics. Proteins and glycoproteins are also subject to chemical modifications (CMs) both in vivo and in vitro. The individual is naturally tolerant to molecular forms of self-molecules but nonself variants can provoke an immune response with the generation of anti-drug antibodies (ADA); aggregated forms can exhibit enhanced immunogenicity and QC procedures are developed to avoid or remove them. Monoclonal antibody therapeutics (mAbs) are a special case because their purpose is to bind the target, with the formation of immune complexes (ICs), a particular form of aggregate. Such ICs may be removed by phagocytic cells that have antigen presenting capacity. These considerations may frustrate the possibility of ameliorating the immunogenicity of mAbs by rigorous exclusion of aggregates from drug product. Alternate strategies for inducing immunosuppression or tolerance are discussed.
Collapse
Affiliation(s)
- Roy Jefferis
- Institute of Immunology & Immunotherapy, College of Medical & Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
25
|
Haberger M, Leiss M, Heidenreich AK, Pester O, Hafenmair G, Hook M, Bonnington L, Wegele H, Haindl M, Reusch D, Bulau P. Rapid characterization of biotherapeutic proteins by size-exclusion chromatography coupled to native mass spectrometry. MAbs 2015; 8:331-9. [PMID: 26655595 PMCID: PMC4966600 DOI: 10.1080/19420862.2015.1122150] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
High-molecular weight aggregates such as antibody dimers and other side products derived from incorrect light or heavy chain association typically represent critical product-related impurities for bispecific antibody formats. In this study, an approach employing ultra-pressure liquid chromatography size-exclusion separation combined with native electrospray ionization mass spectrometry for the simultaneous formation, identification and quantification of size variants in recombinant antibodies was developed. Samples exposed to storage and elevated temperature(s) enabled the identification of various bispecific antibody size variants. This test system hence allowed us to study the variants formed during formulation and bio-process development, and can thus be transferred to quality control units for routine in-process control and release analytics. In addition, native SEC-UV/MS not only facilitates the detailed analysis of low-abundant and non-covalent size variants during process characterization/validation studies, but is also essential for the SEC-UV method validation prior to admission to the market.
Collapse
Affiliation(s)
- Markus Haberger
- a Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2 , 82377 Penzberg , Germany
| | - Michael Leiss
- a Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2 , 82377 Penzberg , Germany
| | - Anna-Katharina Heidenreich
- a Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2 , 82377 Penzberg , Germany
| | - Oxana Pester
- a Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2 , 82377 Penzberg , Germany
| | - Georg Hafenmair
- a Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2 , 82377 Penzberg , Germany
| | - Michaela Hook
- a Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2 , 82377 Penzberg , Germany
| | - Lea Bonnington
- a Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2 , 82377 Penzberg , Germany
| | - Harald Wegele
- a Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2 , 82377 Penzberg , Germany
| | - Markus Haindl
- a Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2 , 82377 Penzberg , Germany
| | - Dietmar Reusch
- a Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2 , 82377 Penzberg , Germany
| | - Patrick Bulau
- a Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2 , 82377 Penzberg , Germany
| |
Collapse
|
26
|
Liu R, Giddens J, McClung CM, Magnelli PE, Wang LX, Guthrie EP. Evaluation of a glycoengineered monoclonal antibody via LC-MS analysis in combination with multiple enzymatic digestion. MAbs 2015; 8:340-6. [PMID: 26514686 PMCID: PMC4966608 DOI: 10.1080/19420862.2015.1113361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Glycosylation affects the efficacy, safety and pharmacokinetics/pharmacodynamics properties of therapeutic monoclonal antibodies (mAbs), and glycoengineering is now being used to produce mAbs with improved efficacy. In this work, a glycoengineered version of rituximab was produced by chemoenzymatic modification to generate human-like N-glycosylation with α 2,6 linked sialic acid. This modified rituximab was comprehensively characterized by liquid chromatography-mass spectrometry and compared to commercially available rituximab. As anticipated, the majority of N-glycans were converted to α 2,6 linked sialic acid, in contrast to CHO-produced rituximab, which only contains α 2,3 linked sialic acid. Typical posttranslational modifications, such as pyro-glutamic acid formation at the N-terminus, oxidation at methionine, deamidation at asparagine, and disulfide linkages were also characterized in both the commercial and glycoengineered mAbs using multiple enzymatic digestion and mass spectrometric analysis. The comparative study reveals that the glycoengineering approach does not cause any additional posttranslational modifications in the antibody except the specific transformation of the glycoforms, demonstrating the mildness and efficiency of the chemoenzymatic approach for glycoengineering of therapeutic antibodies.
Collapse
Affiliation(s)
- Renpeng Liu
- a New England Biolabs Inc. , Ipswich , MA 01938
| | - John Giddens
- b Department of Chemistry & Biochemistry ; University of Maryland , College Park , MD 20742
| | | | | | - Lai-Xi Wang
- b Department of Chemistry & Biochemistry ; University of Maryland , College Park , MD 20742
| | | |
Collapse
|
27
|
|
28
|
Dyachenko A, Wang G, Belov M, Makarov A, de Jong RN, van den Bremer ETJ, Parren PWHI, Heck AJR. Tandem Native Mass-Spectrometry on Antibody–Drug Conjugates and Submillion Da Antibody–Antigen Protein Assemblies on an Orbitrap EMR Equipped with a High-Mass Quadrupole Mass Selector. Anal Chem 2015; 87:6095-102. [DOI: 10.1021/acs.analchem.5b00788] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andrey Dyachenko
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan
8, 3584 CH, Utrecht, The Netherlands
| | - Guanbo Wang
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan
8, 3584 CH, Utrecht, The Netherlands
| | - Mike Belov
- Thermo Fisher Scientific, Bremen, Germany
| | - Alexander Makarov
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH, Utrecht, The Netherlands
- Thermo Fisher Scientific, Bremen, Germany
| | | | | | - Paul W. H. I. Parren
- Genmab, Utrecht, The Netherlands
- Department
of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan
8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
29
|
Haberger M, Heidenreich AK, Schlothauer T, Hook M, Gassner J, Bomans K, Yegres M, Zwick A, Zimmermann B, Wegele H, Bonnington L, Reusch D, Bulau P. Functional assessment of antibody oxidation by native mass spectrometry. MAbs 2015; 7:891-900. [PMID: 26000623 PMCID: PMC4622615 DOI: 10.1080/19420862.2015.1052199] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Oxidation of methionine (Met) residues is one of several chemical degradation pathways for recombinant IgG1 antibodies. Studies using several methodologies have indicated that Met oxidation in the constant IgG1 domains affects in vitro interaction with human neonatal Fc (huFcRn) receptor, which is important for antibody half-life. Here, a completely new approach to investigating the effect of oxidative stress conditions has been applied. Quantitative ultra-performance liquid chromatography mass spectrometry (MS) peptide mapping, classical surface plasmon resonance and the recently developed FcRn column chromatography were combined with the new fast-growing approach of native MS as a near native state protein complex analysis in solution. Optimized mass spectrometric voltage and pressure conditions were applied to stabilize antibody/huFcRn receptor complexes in the gas phase for subsequent native MS experiments with oxidized IgG1 material. This approach demonstrated a linear correlation between quantitative native MS and IgG-FcRn functional analysis. In our study, oxidation of the heavy chain Met-265 resulted in a stepwise reduction of mAb3/huFcRn receptor complex formation. Remarkably, a quantitative effect of the heavy chain Met-265 oxidation on relative binding capacity was only detected for doubly oxidized IgG1, whereas IgG1 with only one oxidized heavy chain Met-265 was not found to significantly affect IgG1 binding to huFcRn. Thus, mono-oxidized IgG1 heavy chain Met-265 most likely does not represent a critical quality attribute for pharmacokinetics.
Collapse
Affiliation(s)
- Markus Haberger
- a Pharma Technical Development Penzberg; Roche Diagnostics GmbH ; Penzberg , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Absolute and multiplex quantification of antibodies in serum using PSAQ™ standards and LC-MS/MS. Bioanalysis 2015; 7:1237-51. [DOI: 10.4155/bio.15.56] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background: In preclinical studies, monoclonal antibodies (mAbs) are traditionally assayed by ligand-binding-assays. Recently, quantitative liquid chromatography mass spectrometry (MS)-based assays have emerged which circumvent a number of challenges. These assays may also be multiplex, making them potentially compatible with pharmacokinetic assays for combined antibody therapies. Materials & methods: We combined a quantitative MS-based approach with the protein standard for absolute quantification (PSAQ™) strategy to simultaneously quantify three mAb variants presenting minor sequence differences. Stable isotopically labeled mAbs were produced and used as quantification standards. Titration curves were performed to assess the analytical performances of the method. LC-MS/MS and ELISA data were cross-compared. Results: The approach presented provides similar accuracy and precision than ELISA, while being multiplex and faster to develop. It has applications at all stages of the pharmaceutical development.
Collapse
|
31
|
Ayoub D, Bertaccini D, Diemer H, Wagner-Rousset E, Colas O, Cianférani S, Van Dorsselaer A, Beck A, Schaeffer-Reiss C. Characterization of the N-Terminal Heterogeneities of Monoclonal Antibodies Using In-Gel Charge Derivatization of α-Amines and LC-MS/MS. Anal Chem 2015; 87:3784-90. [DOI: 10.1021/ac504427k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Daniel Ayoub
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Diego Bertaccini
- BioOrganic
Mass
Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS,
UMR7178, 67087 Strasbourg, France
| | - Hélène Diemer
- BioOrganic
Mass
Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS,
UMR7178, 67087 Strasbourg, France
| | - Elsa Wagner-Rousset
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Olivier Colas
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- BioOrganic
Mass
Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS,
UMR7178, 67087 Strasbourg, France
| | - Alain Van Dorsselaer
- BioOrganic
Mass
Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS,
UMR7178, 67087 Strasbourg, France
| | - Alain Beck
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Christine Schaeffer-Reiss
- BioOrganic
Mass
Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS,
UMR7178, 67087 Strasbourg, France
| |
Collapse
|
32
|
Beck A, Debaene F, Diemer H, Wagner-Rousset E, Colas O, Van Dorsselaer A, Cianférani S. Cutting-edge mass spectrometry characterization of originator, biosimilar and biobetter antibodies. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:285-297. [PMID: 25800010 DOI: 10.1002/jms.3554] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
The approval process for antibody biosimilars relies primarily on comprehensive analytical data to establish comparability and high similarity with the originator. Mass spectrometry (MS) in combination with liquid chromatography (LC) and electrophoretic methods are the corner stone for comparability and biosimilarity evaluation. In this special feature we report head-to-head comparison of trastuzumab and cetuximab with corresponding biosimilar and biobetter candidates based on cutting-edge mass spectrometry techniques such as native MS and ion-mobility MS at different levels (top, middle and bottom). In addition, we discuss the advantages and the limitations of sample preparation and enzymatic digestion, middle-up and -down strategies and the use of hydrogen/deuterium exchange followed by MS (HDX-MS). Last but not least, emerging separation methods combined to MS such as capillary zone electrophoresis-tandem MS (CESI-MS/MS), electron transfer dissociation (ETD), top down-sequencing (TDS) and high-resolution MS (HR-MS) that complete the panel of state-of-the-art MS-based options for comparability and biosimilarity evaluation are presented.
Collapse
Affiliation(s)
- Alain Beck
- Centre d'Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164, Saint-Julien-en-Genevois, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Li W, Kerwin JL, Schiel J, Formolo T, Davis D, Mahan A, Benchaar SA. Structural Elucidation of Post-Translational Modifications in Monoclonal Antibodies. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wenzhou Li
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - James L. Kerwin
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - John Schiel
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Trina Formolo
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Darryl Davis
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Andrew Mahan
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Sabrina A. Benchaar
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
34
|
Debaene F, Bœuf A, Wagner-Rousset E, Colas O, Ayoub D, Corvaïa N, Van Dorsselaer A, Beck A, Cianférani S. Innovative Native MS Methodologies for Antibody Drug Conjugate Characterization: High Resolution Native MS and IM-MS for Average DAR and DAR Distribution Assessment. Anal Chem 2014; 86:10674-83. [DOI: 10.1021/ac502593n] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- François Debaene
- BioOrganic
Mass Spectrometry Laboratory
(LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS, UMR7178, 67087 Strasbourg, France
| | - Amandine Bœuf
- Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon
III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Elsa Wagner-Rousset
- Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon
III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Olivier Colas
- Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon
III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Daniel Ayoub
- Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon
III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Nathalie Corvaïa
- Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon
III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Alain Van Dorsselaer
- BioOrganic
Mass Spectrometry Laboratory
(LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS, UMR7178, 67087 Strasbourg, France
| | - Alain Beck
- Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon
III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- BioOrganic
Mass Spectrometry Laboratory
(LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS, UMR7178, 67087 Strasbourg, France
| |
Collapse
|
35
|
Conjugated critical reagent characterization for ligand-binding assays: using MALDI-TOF-MS as an orthogonal tool to assess assay performance. Bioanalysis 2014; 6:983-92. [DOI: 10.4155/bio.14.65] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Large-molecule biotherapeutics are forming an increasingly large percentage of emerging pharmaceutical pipelines. These molecules present specific challenges to the bioanalysts charged with measuring in vivo concentrations of the biotherapeutic. The challenges are typically met using ligand-binding assays in support of pharmacokinetic, pharmacodynamic and immunogenicity assays. Ligand-binding assays employ complex biological molecules that specifically recognize the biotherapeutic for quantitation. Generally, a minimum of one of these critical reagents must be chemically modified to generate a signal that is measured in the assay. Once chemically modified it is necessary to characterize the reagent prior to use in an assay. The concentration, purity and molar incorporation ratio of chemical modification are key characteristics. This article presents mass spectral techniques for determining the molar incorporation ratio. Case studies are provided to demonstrate the time and cost savings that can be realized with timely and detailed characterization of critical reagents for ligand-binding assays.
Collapse
|
36
|
Rosati S, Yang Y, Barendregt A, Heck AJR. Detailed mass analysis of structural heterogeneity in monoclonal antibodies using native mass spectrometry. Nat Protoc 2014; 9:967-76. [PMID: 24675736 DOI: 10.1038/nprot.2014.057] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The molecular complexity of biopharmaceuticals puts severe demands on the bioanalytical techniques required for their comprehensive structural characterization. Mass spectrometry (MS) has gained importance in the analysis of biopharmaceuticals, taking different complementary approaches ranging from peptide-based sequencing to direct analysis of intact proteins and protein assemblies. In this protocol, we describe procedures optimized to perform the analysis of monoclonal antibodies (mAbs) at the intact protein level under pseudo-native conditions, using native MS. Some of the strengths of native MS in the analysis of biopharmaceuticals are its analysis speed, sensitivity and specificity: for most experiments, the whole protocol requires one working day, whereby tens of samples can be analyzed in a multiplexed manner, making it suitable for high-throughput analysis. This method can be used for different applications such as the analysis of mixtures of mAbs, drug-antibody conjugates and the analysis of mAb post-translational modifications, including the qualitative and quantitative analysis of mAb glycosylation.
Collapse
Affiliation(s)
- Sara Rosati
- 1] Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands. [2] Netherlands Proteomics Centre, Utrecht, The Netherlands. [3]
| | - Yang Yang
- 1] Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands. [2] Netherlands Proteomics Centre, Utrecht, The Netherlands. [3]
| | - Arjan Barendregt
- 1] Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands. [2] Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Albert J R Heck
- 1] Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands. [2] Netherlands Proteomics Centre, Utrecht, The Netherlands
| |
Collapse
|
37
|
Sandra K, Vandenheede I, Sandra P. Modern chromatographic and mass spectrometric techniques for protein biopharmaceutical characterization. J Chromatogr A 2014; 1335:81-103. [DOI: 10.1016/j.chroma.2013.11.057] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 10/25/2022]
|
38
|
Wang X, Liu Y, Wang H. A structure-differential binding method for elucidating the interactions between flavonoids and cytochrome-c by ESI-MS and molecular docking. Talanta 2013; 116:368-75. [DOI: 10.1016/j.talanta.2013.05.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/06/2013] [Accepted: 05/28/2013] [Indexed: 01/26/2023]
|
39
|
Debaene F, Wagner-Rousset E, Colas O, Ayoub D, Corvaïa N, Van Dorsselaer A, Beck A, Cianférani S. Time Resolved Native Ion-Mobility Mass Spectrometry to Monitor Dynamics of IgG4 Fab Arm Exchange and “Bispecific” Monoclonal Antibody Formation. Anal Chem 2013; 85:9785-92. [DOI: 10.1021/ac402237v] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- François Debaene
- Laboratoire
de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg, CNRS, UMR7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Elsa Wagner-Rousset
- Centre d’Immunologie Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP
60497, 74164 Saint-Julien-en-Genevois, France
| | - Olivier Colas
- Centre d’Immunologie Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP
60497, 74164 Saint-Julien-en-Genevois, France
| | - Daniel Ayoub
- Centre d’Immunologie Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP
60497, 74164 Saint-Julien-en-Genevois, France
| | - Nathalie Corvaïa
- Centre d’Immunologie Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP
60497, 74164 Saint-Julien-en-Genevois, France
| | - Alain Van Dorsselaer
- Laboratoire
de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg, CNRS, UMR7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Alain Beck
- Centre d’Immunologie Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP
60497, 74164 Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- Laboratoire
de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg, CNRS, UMR7178, 25 rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
40
|
|
41
|
Beck A, Diemer H, Ayoub D, Debaene F, Wagner-Rousset E, Carapito C, Van Dorsselaer A, Sanglier-Cianférani S. Analytical characterization of biosimilar antibodies and Fc-fusion proteins. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.02.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Kaltashov IA, Bobst CE, Nguyen SN, Wang S. Emerging mass spectrometry-based approaches to probe protein-receptor interactions: focus on overcoming physiological barriers. Adv Drug Deliv Rev 2013; 65:1020-30. [PMID: 23624418 DOI: 10.1016/j.addr.2013.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 01/10/2023]
Abstract
Physiological barriers, such as the blood-brain barrier and intestinal epithelial barrier, remain significant obstacles towards wider utilization of biopharmaceutical products. Receptor-mediated transcytosis has long been viewed as an attractive means of crossing such barriers, but successful exploitation of this route requires better understanding of the interactions between the receptors and protein-based therapeutics. Detailed characterization of such processes at the molecular level is challenging due to the very large physical size and heterogeneity of these species, which makes use of many state-of-the art analytical techniques, such as high-resolution NMR and X-ray crystallography impractical. Mass spectrometry has emerged in the past decade as a powerful tool to study protein-receptor interactions, although its applications to investigate interaction of biopharmaceuticals with their physiological partners are still limited. We highlight the potential of this technique by considering several recent examples where it had been instrumental for understanding molecular mechanisms critical for receptor-mediated transcytosis of transferrin-based therapeutics.
Collapse
|
43
|
Thompson NJ, Rosati S, Heck AJR. Performing native mass spectrometry analysis on therapeutic antibodies. Methods 2013; 65:11-7. [PMID: 23688935 DOI: 10.1016/j.ymeth.2013.05.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 12/11/2022] Open
Abstract
Since the introduction of "soft" ionization techniques, the role of mass spectrometry (MS) in the field of structural biology has increasingly expanded. With the incorporation of volatile buffers as electrospray ionization (ESI) solvents, non-covalent protein complexes could be efficiently transferred to the gas phase for mass analysis. While native MS has not become a technique used for standard characterization of therapeutic proteins in an industrial setting, it is increasingly used to probe the structural heterogeneity of these complex biomolecules. Here, we describe a detailed sample protocol for the analysis of monoclonal antibodies (mAbs) by native MS and highlight some recent applications of native MS in the analysis of intact mAbs and mAb-based therapeutics.
Collapse
Affiliation(s)
- Natalie J Thompson
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sara Rosati
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
44
|
Atmanene C, Wagner-Rousset E, Corvaïa N, Van Dorsselaer A, Beck A, Sanglier-Cianférani S. Noncovalent mass spectrometry for the characterization of antibody/antigen complexes. Methods Mol Biol 2013; 988:243-268. [PMID: 23475725 DOI: 10.1007/978-1-62703-327-5_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Monoclonal antibodies (mAbs) have taken on an increasing importance for the treatment of various diseases including cancers, immunological disorders, and other pathologies. These large biomolecules display specific structural features, which affect their efficiency and need therefore to be extensively characterized using sensitive and orthogonal analytical techniques. Among them, mass spectrometry (MS) has become the method of choice to study mAb amino acid sequences as well as their posttranslational modifications with the aim of reducing their chemistry, manufacturing, and control liabilities. This chapter will provide the reader with a description of the general approach allowing antibody/antigen systems to be characterized by noncovalent MS. In the present chapter, we describe how recent noncovalent MS technologies are used to characterize immune complexes involving both murine and humanized mAb 6F4 directed against human JAM-A, a newly identified antigenic protein (Ag) over-expressed in tumor cells. We will detail experimental conditions (sample preparation, optimization of instrumental parameters, etc.) required for the detection of noncovalent antibody/antigen complexes by MS. We will then focus on the type and the reliability of the information that we get from noncovalent MS data, with emphasis on the determination of the stoichiometry of antibody/antigen systems. Noncovalent MS appears as an additional supporting technique for therapeutic mAbs lead characterization and development.
Collapse
Affiliation(s)
- Cédric Atmanene
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, CNRS, UMR7178, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
45
|
Rosati S, Rose RJ, Thompson NJ, van Duijn E, Damoc E, Denisov E, Makarov A, Heck AJR. Etablierung eines Orbitrap-Analysators zur Charakterisierung von intakten Antikörpern mittels nativer Massenspektrometrie. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of Therapeutic Antibodies and Related Products. Anal Chem 2012; 85:715-36. [DOI: 10.1021/ac3032355] [Citation(s) in RCA: 445] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alain Beck
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Elsa Wagner-Rousset
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Daniel Ayoub
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| | - Sarah Sanglier-Cianférani
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| |
Collapse
|
47
|
Goetsch L, Haeuw JF, Beau-Larvor C, Gonzalez A, Zanna L, Malissard M, Lepecquet AM, Robert A, Bailly C, Broussas M, Corvaia N. A novel role for junctional adhesion molecule-A in tumor proliferation: modulation by an anti-JAM-A monoclonal antibody. Int J Cancer 2012; 132:1463-74. [PMID: 22886345 DOI: 10.1002/ijc.27772] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 07/23/2012] [Indexed: 02/02/2023]
Abstract
To identify new potential targets in oncology, functional approaches were developed using tumor cells as immunogens to select monoclonal antibodies targeting membrane receptors involved in cell proliferation. For that purpose cancer cells were injected into mice and resulting hybridomas were screened for their ability to inhibit cell proliferation in vitro. Based on this functional approach coupled to proteomic analysis, a monoclonal antibody specifically recognizing the human junctional adhesion molecule-A (JAM-A) was defined. Interestingly, compared to both normal and tumor tissues, we observed that JAM-A was mainly overexpressed on breast, lung and kidney tumor tissues. In vivo experiments demonstrated that injections of anti-JAM-A antibody resulted in a significant tumor growth inhibition of xenograft human tumors. Treatment with monoclonal antibody induced a decrease of the Ki67 expression and downregulated JAM-A levels. All together, our results show for the first time that JAM-A can interfere with tumor proliferation and suggest that JAM-A is a potential novel target in oncology. The results also demonstrate that a functional approach coupled to a robust proteomic analysis can be successful to identify new antibody target molecules that lead to promising new antibody-based therapies against cancers.
Collapse
Affiliation(s)
- Liliane Goetsch
- Institut de Recherche Pierre Fabre, Center d'Immunologie Pierre Fabre, 74160 Saint Julien en Genevois, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Thompson NJ, Rosati S, Rose RJ, Heck AJR. The impact of mass spectrometry on the study of intact antibodies: from post-translational modifications to structural analysis. Chem Commun (Camb) 2012. [PMID: 23183499 DOI: 10.1039/c2cc36755f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Monoclonal antibodies (mAbs) are important therapeutics, targeting a variety of diseases ranging from cancers to neurodegenerative disorders. In developmental stages and prior to clinical use, these molecules require thorough structural characterisation, but their large size and heterogeneity present challenges for most analytical techniques. Over the past 20 years, mass spectrometry (MS) has transformed from a tool for small molecule analysis to a technique that can be used to study large intact proteins and non-covalent protein complexes. Here, we review several MS-based techniques that have emerged for the analysis of intact mAbs and discuss the prospects of using these technologies for the analysis of biopharmaceuticals.
Collapse
Affiliation(s)
- Natalie J Thompson
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
49
|
Rosati S, Rose RJ, Thompson NJ, van Duijn E, Damoc E, Denisov E, Makarov A, Heck AJR. Exploring an orbitrap analyzer for the characterization of intact antibodies by native mass spectrometry. Angew Chem Int Ed Engl 2012; 51:12992-6. [PMID: 23172610 DOI: 10.1002/anie.201206745] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/02/2012] [Indexed: 11/06/2022]
Abstract
Antibody profiling: native mass spectrometry analysis of intact antibodies can be achieved with improved speed, sensitivity, and mass resolution by using a modified orbitrap instrument. Complex mixtures of monoclonal antibodies can be resolved and their glycan "fingerprints" can be profiled. Noncovalent interactions are maintained, thus allowing antibody-antigen binding to be measured.
Collapse
Affiliation(s)
- Sara Rosati
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lorenzi M, Sylvi L, Gerbaud G, Mileo E, Halgand F, Walburger A, Vezin H, Belle V, Guigliarelli B, Magalon A. Conformational selection underlies recognition of a molybdoenzyme by its dedicated chaperone. PLoS One 2012. [PMID: 23185350 PMCID: PMC3501500 DOI: 10.1371/journal.pone.0049523] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Molecular recognition is central to all biological processes. Understanding the key role played by dedicated chaperones in metalloprotein folding and assembly requires the knowledge of their conformational ensembles. In this study, the NarJ chaperone dedicated to the assembly of the membrane-bound respiratory nitrate reductase complex NarGHI, a molybdenum-iron containing metalloprotein, was taken as a model of dedicated chaperone. The combination of two techniques ie site-directed spin labeling followed by EPR spectroscopy and ion mobility mass spectrometry, was used to get information about the structure and conformational dynamics of the NarJ chaperone upon binding the N-terminus of the NarG metalloprotein partner. By the study of singly spin-labeled proteins, the E119 residue present in a conserved elongated hydrophobic groove of NarJ was shown to be part of the interaction site. Moreover, doubly spin-labeled proteins studied by pulsed double electron-electron resonance (DEER) spectroscopy revealed a large and composite distribution of inter-label distances that evolves into a single preexisting one upon complex formation. Additionally, ion mobility mass spectrometry experiments fully support these findings by revealing the existence of several conformers in equilibrium through the distinction of different drift time curves and the selection of one of them upon complex formation. Taken together our work provides a detailed view of the structural flexibility of a dedicated chaperone and suggests that the exquisite recognition and binding of the N-terminus of the metalloprotein is governed by a conformational selection mechanism.
Collapse
Affiliation(s)
- Magali Lorenzi
- Unité de Bioénergétique et Ingénierie des Protéines (UMR7281), Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
| | - Léa Sylvi
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
| | - Guillaume Gerbaud
- Unité de Bioénergétique et Ingénierie des Protéines (UMR7281), Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
| | - Elisabetta Mileo
- Unité de Bioénergétique et Ingénierie des Protéines (UMR7281), Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
| | - Frédéric Halgand
- Unité de Bioénergétique et Ingénierie des Protéines (UMR7281), Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
| | - Anne Walburger
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
| | - Hervé Vezin
- Laboratoire de Spectrochimie Infrarouge et Raman (UMR8516), Villeneuve d'Ascq, France
| | - Valérie Belle
- Unité de Bioénergétique et Ingénierie des Protéines (UMR7281), Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
- * E-mail: (VB); (AM)
| | - Bruno Guigliarelli
- Unité de Bioénergétique et Ingénierie des Protéines (UMR7281), Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
| | - Axel Magalon
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
- * E-mail: (VB); (AM)
| |
Collapse
|