1
|
Dahodwala H, Sharfstein ST. The 'Omics Revolution in CHO Biology: Roadmap to Improved CHO Productivity. Methods Mol Biol 2025; 2853:119-137. [PMID: 39460918 DOI: 10.1007/978-1-0716-4104-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Chinese hamster ovary (CHO) cell physiology understanding has advanced very rapidly in the past few years with incredible improvements in long-read sequencing, improved resolution, and increased computational power. Multiple parental lines have been sequenced and the resultant pan-genome can be leveraged to increase our understanding of the diverse pathways CHO cells can take to get high-productivity phenotypes. The same improvements in workflows have complemented transcriptomic studies. Microfluidics and label-free innovations have further increased the sensitivity and accuracy of proteomic methods, while also making proteomics more accessible. In this 'omics era, high-throughput screening methods, sophisticated informatic tools, and models continually drive major innovations in cell line development and process engineering. This review describes the various recent achievements in 'omics techniques and their application to improve recombinant protein expression from CHO cell lines.
Collapse
Affiliation(s)
- Hussain Dahodwala
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Susan T Sharfstein
- Department of Nanoscale Science and Engineering and The RNA Institute, University at Albany, Albany, NY, USA.
| |
Collapse
|
2
|
Nguyen M, Zimmer A. A reflection on the improvement of Chinese Hamster ovary cell-based bioprocesses through advances in proteomic techniques. Biotechnol Adv 2023; 65:108141. [PMID: 37001570 DOI: 10.1016/j.biotechadv.2023.108141] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Chinese hamster ovary (CHO) cells are the preferred mammalian host for the large-scale production of recombinant proteins in the biopharmaceutical industry. Research endeavors have been directed to the optimization of CHO-based bioprocesses to increase protein quantity and quality, often in an empirical manner. To provide a rationale for those achievements, a myriad of CHO proteomic studies has arisen in recent decades. This review gives an overview of significant advances in LC-MS-based proteomics and sheds light on CHO proteomic studies, with a particular focus on CHO cells with superior bioprocessing phenotypes (growth, viability, titer, productivity and cQA), that have exploited novel proteomic or sub-omic techniques. These proteomic findings expand the current knowledge and understanding about the underlying protein clusters, protein regulatory networks and biological pathways governing such phenotypic changes. The proteomic studies, highlighted herein, will help in the targeted modulation of these cell factories to the desired needs.
Collapse
|
3
|
Comparative systeomics to elucidate physiological differences between CHO and SP2/0 cell lines. Sci Rep 2022; 12:3280. [PMID: 35228567 PMCID: PMC8885639 DOI: 10.1038/s41598-022-06886-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Omics-based tools were coupled with bioinformatics for a systeomics analysis of two biopharma cell types: Chinese hamster ovary (M-CHO and CHO-K1) and SP2/0. Exponential and stationary phase samples revealed more than 10,000 transcripts and 6000 proteins across these two manufacturing cell lines. A statistical comparison of transcriptomics and proteomics data identified downregulated genes involved in protein folding, protein synthesis and protein metabolism, including PPIA-cyclophilin A, HSPD1, and EIF3K, in M-CHO compared to SP2/0 while cell cycle and actin cytoskeleton genes were reduced in SP2/0. KEGG pathway comparisons revealed glycerolipids, glycosphingolipids, ABC transporters, calcium signaling, cell adhesion, and secretion pathways depleted in M-CHO while retinol metabolism was upregulated. KEGG and IPA also indicated apoptosis, RNA degradation, and proteosomes enriched in CHO stationary phase. Alternatively, gene ontology analysis revealed an underrepresentation in ion and potassium channel activities, membrane proteins, and secretory granules including Stxbpt2, Syt1, Syt9, and Cma1 proteins in M-CHO. Additional enrichment strategies involving ultracentrifugation, biotinylation, and hydrazide chemistry identified over 4000 potential CHO membrane and secretory proteins, yet many secretory and membrane proteins were still depleted. This systeomics pipeline has revealed bottlenecks and potential opportunities for cell line engineering in CHO and SP2/0 to improve their production capabilities.
Collapse
|
4
|
Pérez-Rodriguez S, Wulff T, Voldborg BG, Altamirano C, Trujillo-Roldán MA, Valdez-Cruz NA. Compartmentalized Proteomic Profiling Outlines the Crucial Role of the Classical Secretory Pathway during Recombinant Protein Production in Chinese Hamster Ovary Cells. ACS OMEGA 2021; 6:12439-12458. [PMID: 34056395 PMCID: PMC8154153 DOI: 10.1021/acsomega.0c06030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 05/11/2023]
Abstract
Different cellular processes that contribute to protein production in Chinese hamster ovary (CHO) cells have been previously investigated by proteomics. However, although the classical secretory pathway (CSP) has been well documented as a bottleneck during recombinant protein (RP) production, it has not been well represented in previous proteomic studies. Hence, the significance of this pathway for production of RP was assessed by identifying its own proteins that were associated to changes in RP production, through subcellular fractionation coupled to shot-gun proteomics. Two CHO cell lines producing a monoclonal antibody with different specific productivities were used as cellular models, from which 4952 protein groups were identified, which represent a coverage of 59% of the Chinese hamster proteome. Data are available via ProteomeXchange with identifier PXD021014. By using SAM and ROTS algorithms, 493 proteins were classified as differentially expressed, of which about 80% was proposed as novel targets and one-third were assigned to the CSP. Endoplasmic reticulum (ER) stress, unfolded protein response, calcium homeostasis, vesicle traffic, glycosylation, autophagy, proteasomal activity, protein synthesis and translocation into ER lumen, and secretion of extracellular matrix components were some of the affected processes that occurred in the secretory pathway. Processes from other cellular compartments, such as DNA replication, transcription, cytoskeleton organization, signaling, and metabolism, were also modified. This study gives new insights into the molecular traits of higher producer cells and provides novel targets for development of new sub-lines with improved phenotypes for RP production.
Collapse
Affiliation(s)
- Saumel Pérez-Rodriguez
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Tune Wulff
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Bjørn G. Voldborg
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Claudia Altamirano
- Laboratorio
de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085 Valparaíso, Chile
| | - Mauricio A. Trujillo-Roldán
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Norma A. Valdez-Cruz
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| |
Collapse
|
5
|
Bryan L, Clynes M, Meleady P. The emerging role of cellular post-translational modifications in modulating growth and productivity of recombinant Chinese hamster ovary cells. Biotechnol Adv 2021; 49:107757. [PMID: 33895332 DOI: 10.1016/j.biotechadv.2021.107757] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Chinese hamster ovary (CHO) cells are one of the most commonly used host cell lines used for the production human therapeutic proteins. Much research over the past two decades has focussed on improving the growth, titre and cell specific productivity of CHO cells and in turn lowering the costs associated with production of recombinant proteins. CHO cell engineering has become of particular interest in recent years following the publication of the CHO cell genome and the availability of data relating to the proteome, transcriptome and metabolome of CHO cells. However, data relating to the cellular post-translational modification (PTMs) which can affect the functionality of CHO cellular proteins has only begun to be presented in recent years. PTMs are important to many cellular processes and can further alter proteins by increasing the complexity of proteins and their interactions. In this review, we describe the research presented from CHO cells to date related on three of the most important PTMs; glycosylation, phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Laura Bryan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
6
|
Pérez-Rodriguez S, Ramírez OT, Trujillo-Roldán MA, Valdez-Cruz NA. Comparison of protein precipitation methods for sample preparation prior to proteomic analysis of Chinese hamster ovary cell homogenates. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
7
|
Orellana CA, Martínez VS, MacDonald MA, Henry MN, Gillard M, Gray PP, Nielsen LK, Mahler S, Marcellin E. 'Omics driven discoveries of gene targets for apoptosis attenuation in CHO cells. Biotechnol Bioeng 2020; 118:481-490. [PMID: 32865815 DOI: 10.1002/bit.27548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/22/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
Chinese hamster ovary (CHO) cells are widely used in biopharmaceutical production. Improvements to cell lines and bioprocesses are constantly being explored. One of the major limitations of CHO cell culture is that the cells undergo apoptosis, leading to rapid cell death, which impedes reaching high recombinant protein titres. While several genetic engineering strategies have been successfully employed to reduce apoptosis, there is still room to further enhance CHO cell lines performance. 'Omics analysis is a powerful tool to better understand different phenotypes and for the identification of gene targets for engineering. Here, we present a comprehensive review of previous CHO 'omics studies that revealed changes in the expression of apoptosis-related genes. We highlight targets for genetic engineering that have reduced, or have the potential to reduce, apoptosis or to increase cell proliferation in CHO cells, with the final aim of increasing productivity.
Collapse
Affiliation(s)
- Camila A Orellana
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia.,Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Verónica S Martínez
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Michael A MacDonald
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Matthew N Henry
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Marianne Gillard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Peter P Gray
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Lars K Nielsen
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia.,Metabolomics Australia, The University of Queensland, Brisbane, Australia.,The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia.,Metabolomics Australia, The University of Queensland, Brisbane, Australia
| |
Collapse
|
8
|
Identifying metabolic features and engineering targets for productivity improvement in CHO cells by integrated transcriptomics and genome-scale metabolic model. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Henry MN, MacDonald MA, Orellana CA, Gray PP, Gillard M, Baker K, Nielsen LK, Marcellin E, Mahler S, Martínez VS. Attenuating apoptosis in Chinese hamster ovary cells for improved biopharmaceutical production. Biotechnol Bioeng 2020; 117:1187-1203. [DOI: 10.1002/bit.27269] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/25/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Matthew N. Henry
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Michael A. MacDonald
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
| | - Camila A. Orellana
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Peter P. Gray
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Marianne Gillard
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Kym Baker
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
- Patheon Biologics—A Part of Thermo Fisher Scientific Brisbane Queensland Australia
| | - Lars K. Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
- Metabolomics Australia The University of Queensland Brisbane Queensland Australia
- The Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Kgs. Lyngby Denmark
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
- Metabolomics Australia The University of Queensland Brisbane Queensland Australia
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
| | - Verónica S. Martínez
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
10
|
Kaushik P, Henry M, Clynes M, Meleady P. The Expression Pattern of the Phosphoproteome Is Significantly Changed During the Growth Phases of Recombinant CHO Cell Culture. Biotechnol J 2018; 13:e1700221. [DOI: 10.1002/biot.201700221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/13/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Prashant Kaushik
- National Institute for Cellular Biotechnology; Dublin City University; Dublin 9 Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology; Dublin City University; Dublin 9 Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology; Dublin City University; Dublin 9 Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology; Dublin City University; Dublin 9 Ireland
| |
Collapse
|
11
|
Lu Y, Zhou Q, Han Q, Wu P, Zhang L, Zhu L, Weaver DT, Xu C, Zhang B. Inactivation of deubiquitinase CYLD enhances therapeutic antibody production in Chinese hamster ovary cells. Appl Microbiol Biotechnol 2018; 102:6081-6093. [DOI: 10.1007/s00253-018-9070-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
|
12
|
Bertrand V, Vogg S, Villiger TK, Stettler M, Broly H, Soos M, Morbidelli M. Proteomic analysis of micro-scale bioreactors as scale-down model for a mAb producing CHO industrial fed-batch platform. J Biotechnol 2018; 279:27-36. [PMID: 29719200 DOI: 10.1016/j.jbiotec.2018.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/10/2018] [Accepted: 04/22/2018] [Indexed: 12/27/2022]
Abstract
The pharmaceutical production of recombinant proteins, such as monoclonal antibodies, is rather complex and requires proper development work. Accordingly, it is essential to develop appropriate scale-down models, which can mimic the corresponding production scale. In this work, we investigated the impact of the bioreactor scale on intracellular micro-heterogeneities of a CHO cell line producing monoclonal antibodies in fed-batch mode, using a 10 mL micro-bioreactor (ambr™) scale-down model and the corresponding 300 L pilot-scale bioreactor. For each scale, we measured the time evolution of the proteome, which enabled us to compare the impact of the bioreactor scale on the intracellular processes. Nearly absolute accordance between the scales was verified by data mining methods, such as hierarchical clustering and in-detail analysis on a single protein base. The time response of principal enzymes related to N-glycosylation was discussed, emphasizing major dissimilarities between the glycan fractions adorning the heavy chain and the corresponding protein abundance. The enzyme expression displayed mainly a constant profile, whereas the resulting glycan pattern changed over time. It is concluded that the enzymatic activity is influenced by the changing environmental conditions present in the fed-batch processes leading to the observed time-dependent variation.
Collapse
Affiliation(s)
- Vania Bertrand
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Sebastian Vogg
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Thomas K Villiger
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Matthieu Stettler
- Merck, Biotech Process Sciences, Corsier-sur -Vevey, ZI B 1809, Switzerland
| | - Hervé Broly
- Merck, Biotech Process Sciences, Corsier-sur -Vevey, ZI B 1809, Switzerland
| | - Miroslav Soos
- Department of Chemical Engineering, University of Chemistry and Technology, Technicka 3, 166 28, Prague, Czech Republic.
| | - Massimo Morbidelli
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
13
|
Torkashvand F, Mahboudi F, Vossoughi M, Fatemi E, Moosavi Basri SM, Heydari A, Vaziri B. Quantitative Proteomic Analysis of Cellular Responses to a Designed Amino Acid Feed in a Monoclonal Antibody
Producing Chinese Hamster Ovary Cell Line. IRANIAN BIOMEDICAL JOURNAL 2018. [PMID: 29678103 PMCID: PMC6305810 DOI: 10.29252/.22.6.385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Chinese hamster ovary (CHO) cell line is considered as the most common cell line in the biopharmaceutical industry because of its capability in performing efficient post-translational modifications and producing the recombinant proteins, which are similar to natural human proteins. The optimization of the upstream process via different feed strategies has a great impact on the target molecule expression and yield. Methods: To determine and understand the molecular events beneath the feed effects on the CHO cell, a label-free quantitative proteomic analysis was applied. The proteome changes followed by the addition of a designed amino acid feed to the monoclonal antibody producing CHO cell line culture medium were investigated. Results: The glutathione synthesis, the negative regulation of the programmed cell death, proteasomal catabolic process, and the endosomal transport pathway were up-regulated in the group fed with a designed amino acid feed compared to the control group. Conclusion: Our findings could be helpful to identify new targets for metabolic engineering.
Collapse
Affiliation(s)
- Fatemeh Torkashvand
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fereidoun Mahboudi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Biochemical and Bioenvironmental Research Center Sharif University of Technology, Tehran, Iran
| | - Elnaz Fatemi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Masoud Moosavi Basri
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Heydari
- Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Behrouz Vaziri
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Hausmann R, Chudobová I, Spiegel H, Schillberg S. Proteomic analysis of CHO cell lines producing high and low quantities of a recombinant antibody before and after selection with methotrexate. J Biotechnol 2017; 265:65-69. [PMID: 29137976 DOI: 10.1016/j.jbiotec.2017.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/26/2017] [Accepted: 11/10/2017] [Indexed: 11/25/2022]
Abstract
High levels of recombinant protein production in Chinese hamster ovary (CHO) cells can be achieved by amplification of transgenes using the dihydrofolate reductase/methotrexate (DHFR/MTX) system. With the aim to identify predictive markers enabling the preselection of suitable high producing clones we investigated the impact of MTX-based gene amplification on two CHO cells lines producing different levels of a human monoclonal antibody by carrying out a comparative proteome analysis. The difference in antibody yield between the high and low producer was 15-fold before and 245-fold after MTX selection. Difference in-gel electrophoresis of samples from before and after MTX selection revealed 17 unique proteins that were differentially expressed between the high and low productivity lines. Of these, five proteins were differently expressed before MTX selection, representing potential markers for productivity prior to selection and for engineering processes to generate novel CHO cell line with the desirable high productivity phenotype. Fifteen proteins were differently expressed between high and low producer after MTX selection. We further found that MTX selection induced more changes in the proteome of the low producer compared to the high producer.
Collapse
Affiliation(s)
- Ruth Hausmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Ivana Chudobová
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
| |
Collapse
|
15
|
Shridhar S, Klanert G, Auer N, Hernandez-Lopez I, Kańduła MM, Hackl M, Grillari J, Stralis-Pavese N, Kreil DP, Borth N. Transcriptomic changes in CHO cells after adaptation to suspension growth in protein-free medium analysed by a species-specific microarray. J Biotechnol 2017; 257:13-21. [DOI: 10.1016/j.jbiotec.2017.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/07/2017] [Accepted: 03/11/2017] [Indexed: 11/26/2022]
|
16
|
Richelle A, Lewis NE. Improvements in protein production in mammalian cells from targeted metabolic engineering. ACTA ACUST UNITED AC 2017; 6:1-6. [PMID: 29104947 DOI: 10.1016/j.coisb.2017.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioprocess optimization has yielded powerful clones for biotherapeutic production. However, new genomic technologies allow more targeted approaches to cell line development. Here we review efforts to enhance protein production in mammalian cells through metabolic engineering. Most efforts aimed to reduce toxic byproducts accumulation to enhance protein productivity. However, recent work highlights the possibility of regulating other desirable traits (e.g., apoptosis and glycosylation) by targeting central metabolism since these processes are interconnected. Therefore, as we further detail the pathways underlying cell growth and protein production and deploy diverse algorithms for their analysis, opportunities will arise to move beyond simple cell line designs and facilitate cell engineering strategies with complex combinations of genes that together underlie a phenotype of interest.
Collapse
Affiliation(s)
- Anne Richelle
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States.,Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| | - Nathan E Lewis
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States.,Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| |
Collapse
|
17
|
Henry M, Power M, Kaushik P, Coleman O, Clynes M, Meleady P. Differential Phosphoproteomic Analysis of Recombinant Chinese Hamster Ovary Cells Following Temperature Shift. J Proteome Res 2017; 16:2339-2358. [DOI: 10.1021/acs.jproteome.6b00868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Henry
- National Institute for Cellular
Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Power
- National Institute for Cellular
Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Prashant Kaushik
- National Institute for Cellular
Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Orla Coleman
- National Institute for Cellular
Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular
Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular
Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
18
|
Bandyopadhyay AA, Khetan A, Malmberg LH, Zhou W, Hu WS. Advancement in bioprocess technology: parallels between microbial natural products and cell culture biologics. J Ind Microbiol Biotechnol 2017; 44:785-797. [PMID: 28185098 DOI: 10.1007/s10295-017-1913-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
The emergence of natural products and industrial microbiology nearly eight decades ago propelled an era of bioprocess innovation. Half a century later, recombinant protein technology spurred the tremendous growth of biologics and added mammalian cells to the forefront of industrial producing cells in terms of the value of products generated. This review highlights the process technology of natural products and protein biologics. Despite the separation in time, there is a remarkable similarity in their progression. As the new generation of therapeutics for gene and cell therapy emerges, its process technology development can take inspiration from that of natural products and biologics.
Collapse
Affiliation(s)
- Arpan A Bandyopadhyay
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455-0132, USA
| | - Anurag Khetan
- Biological Process Development, Bristol Myers Squibb, 521 NJ-173, Bloomsbury, NJ, 08804, USA
| | - Li-Hong Malmberg
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| | | | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455-0132, USA.
| |
Collapse
|
19
|
Dahodwala H, Sharfstein ST. The 'Omics Revolution in CHO Biology: Roadmap to Improved CHO Productivity. Methods Mol Biol 2017; 1603:153-168. [PMID: 28493129 DOI: 10.1007/978-1-4939-6972-2_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Increased understanding of Chinese hamster ovary (CHO) cell physiology has been ushered in upon availability of the parental CHO-K1 cell line genome. Free and openly accessible sequence information has complemented transcriptomic and proteomic studies. The previous decade has also seen an increase in sensitivity and accuracy of proteomic methods due to technology development. In this genomic era, high-throughput screening methods, sophisticated informatic tools, and models continually drive major innovations in cell line development and process engineering. This review describes the various achievements in 'omics techniques and their application to improve recombinant protein expression from CHO cell lines.
Collapse
Affiliation(s)
- Hussain Dahodwala
- Vaccine production program (VPP), VRC/NIAID/NIH, Gaithersburg, MD, 20878, USA
- SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY, 12203, USA
| | - Susan T Sharfstein
- Vaccine production program (VPP), VRC/NIAID/NIH, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
20
|
Hansen HG, Pristovšek N, Kildegaard HF, Lee GM. Improving the secretory capacity of Chinese hamster ovary cells by ectopic expression of effector genes: Lessons learned and future directions. Biotechnol Adv 2017; 35:64-76. [DOI: 10.1016/j.biotechadv.2016.11.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/12/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022]
|
21
|
Wippermann A, Rupp O, Brinkrolf K, Hoffrogge R, Noll T. Integrative analysis of DNA methylation and gene expression in butyrate-treated CHO cells. J Biotechnol 2016; 257:150-161. [PMID: 27890772 DOI: 10.1016/j.jbiotec.2016.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 01/01/2023]
Abstract
The cellular mechanisms responsible for the versatile properties of CHO cells as the major production cell line for biopharmaceutical molecules are not entirely understood yet, although several 'omics' data facilitate the understanding of CHO cells and their reactions to environmental conditions. However, genome-wide studies of epigenetic processes such as DNA methylation are still limited. To prove the applicability and usefulness of integrating DNA methylation and gene expression data in a biotechnological context, we exemplarily analyzed the time course of cellular reactions upon butyrate addition in antibody-producing CHO cells by whole-genome bisulfite sequencing and CHO-specific cDNA microarrays. Gene expression and DNA methylation analyses showed that pathways known to be affected by butyrate, including cell cycle and apoptosis, as well as pathways potentially involved in butyrate-induced hyperproductivity such as central energy metabolism and protein biosynthesis were affected. Differentially methylated regions were furthermore found to contain binding-site motifs of specific transcription factors and were hypothesized to represent regulatory regions closely connected to the cellular response to butyrate. Generally, our experiment underlines the benefit of integrating DNA methylation and gene expression data, as it provided potential novel candidate genes for rational cell line development and allowed for new insights into the butyrate effect on CHO cells.
Collapse
Affiliation(s)
- Anna Wippermann
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany; Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
| | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus-Liebig-University, Gießen, Germany
| | - Karina Brinkrolf
- Department of Biorescources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
| | - Raimund Hoffrogge
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany; Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Thomas Noll
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany; Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
22
|
Zhu G, Sun L, Albanetti T, Linkous T, Larkin C, Schoner R, McGivney JB, Dovichi NJ. Quantitative analysis of the supernatant from host and transfected CHO cells using iTRAQ 8-plex technique. Biotechnol Bioeng 2016; 113:2140-8. [DOI: 10.1002/bit.25991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/19/2016] [Accepted: 04/07/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Guijie Zhu
- Department of Chemistry and Biochemistry; University of Notre Dame; Notre Dame Indiana 46556
| | - Liangliang Sun
- Department of Chemistry and Biochemistry; University of Notre Dame; Notre Dame Indiana 46556
| | - Thomas Albanetti
- BioPharmaceutical Development MedImmune LLC; Gaithersburg Maryland
| | - Travis Linkous
- BioPharmaceutical Development MedImmune LLC; Gaithersburg Maryland
| | | | - Ronald Schoner
- BioPharmaceutical Development MedImmune LLC; Gaithersburg Maryland
| | | | - Norman J. Dovichi
- Department of Chemistry and Biochemistry; University of Notre Dame; Notre Dame Indiana 46556
| |
Collapse
|
23
|
McVey D, Aronov M, Rizzi G, Cowan A, Scott C, Megill J, Russell R, Tirosh B. CHO cells knocked out for TSC2 display an improved productivity of antibodies under fed batch conditions. Biotechnol Bioeng 2016; 113:1942-52. [DOI: 10.1002/bit.25951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Duncan McVey
- Division of Global Manufacturing and Supply; Bristol Myers Squibb Company; Bloomsbury New Jersey
| | - Michael Aronov
- Institute for Drug Research; The School of Pharmacy; The Hebrew University of Jerusalem; Jerusalem 91120 Israel
| | - Giovanni Rizzi
- Division of Global Manufacturing and Supply; Bristol Myers Squibb Company; Bloomsbury New Jersey
| | - Alexis Cowan
- Division of Global Manufacturing and Supply; Bristol Myers Squibb Company; Bloomsbury New Jersey
| | - Charo Scott
- Division of Global Manufacturing and Supply; Bristol Myers Squibb Company; Bloomsbury New Jersey
| | - John Megill
- Discovery Toxicology; Bristol Myers Squibb Company; Pennington New Jersey
| | - Reb Russell
- Division of Global Manufacturing and Supply; Bristol Myers Squibb Company; Bloomsbury New Jersey
| | - Boaz Tirosh
- Division of Global Manufacturing and Supply; Bristol Myers Squibb Company; Bloomsbury New Jersey
- Institute for Drug Research; The School of Pharmacy; The Hebrew University of Jerusalem; Jerusalem 91120 Israel
| |
Collapse
|
24
|
The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol Adv 2015; 33:1878-96. [DOI: 10.1016/j.biotechadv.2015.10.015] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/21/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
|
25
|
Lewis AM, Abu-Absi NR, Borys MC, Li ZJ. The use of 'Omics technology to rationally improve industrial mammalian cell line performance. Biotechnol Bioeng 2015; 113:26-38. [PMID: 26059229 DOI: 10.1002/bit.25673] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/25/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023]
Abstract
Biologics represent an increasingly important class of therapeutics, with 7 of the 10 top selling drugs from 2013 being in this class. Furthermore, health authority approval of biologics in the immuno-oncology space is expected to transform treatment of patients with debilitating and deadly diseases. The growing importance of biologics in the healthcare field has also resulted in the recent approvals of several biosimilars. These recent developments, combined with pressure to provide treatments at lower costs to payers, are resulting in increasing need for the industry to quickly and efficiently develop high yielding, robust processes for the manufacture of biologics with the ability to control quality attributes within narrow distributions. Achieving this level of manufacturing efficiency and the ability to design processes capable of regulating growth, death and other cellular pathways through manipulation of media, feeding strategies, and other process parameters will undoubtedly be facilitated through systems biology tools generated in academic and public research communities. Here we discuss the intersection of systems biology, 'Omics technologies, and mammalian bioprocess sciences. Specifically, we address how these methods in conjunction with traditional monitoring techniques represent a unique opportunity to better characterize and understand host cell culture state, shift from an empirical to rational approach to process development and optimization of bioreactor cultivation processes. We summarize the following six key areas: (i) research applied to parental, non-recombinant cell lines; (ii) systems level datasets generated with recombinant cell lines; (iii) datasets linking phenotypic traits to relevant biomarkers; (iv) data depositories and bioinformatics tools; (v) in silico model development, and (vi) examples where these approaches have been used to rationally improve cellular processes. We critically assess relevant and state of the art research being conducted in academic, government and industrial laboratories. Furthermore, we apply our expertise in bioprocess to define a potential model for integration of these systems biology approaches into biologics development.
Collapse
Affiliation(s)
- Amanda M Lewis
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, 35 South Street, Hopkinton 01748, Massachusetts.
| | - Nicholas R Abu-Absi
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, 35 South Street, Hopkinton 01748, Massachusetts
| | - Michael C Borys
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, 35 South Street, Hopkinton 01748, Massachusetts
| | - Zheng Jian Li
- Biologics Development, Global Manufacturing and Supply, Bristol-Myers Squibb Company, 35 South Street, Hopkinton 01748, Massachusetts
| |
Collapse
|
26
|
Jamnikar U, Nikolic P, Belic A, Blas M, Gaser D, Francky A, Laux H, Blejec A, Baebler S, Gruden K. Transcriptome study and identification of potential marker genes related to the stable expression of recombinant proteins in CHO clones. BMC Biotechnol 2015; 15:98. [PMID: 26499110 PMCID: PMC4812793 DOI: 10.1186/s12896-015-0218-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chinese hamster ovary (CHO) cells have become the host of choice for the production of recombinant proteins, due to their capacity for correct protein folding, assembly, and posttranslational modifications. The most widely used system for recombinant proteins is the gene amplification procedure that uses the CHO-Dhfr expression system. However, CHO cells are known to have a very unstable karyotype. This is due to chromosome rearrangements that can arise from translocations and homologous recombination, especially when cells with the CHO-Dhfr expression system are treated with methotrexate hydrate. The present method used in the industry for testing clones for their long-term stability of recombinant protein production is empirical, and it involves their cultivation over extended periods of time prior to the selection of the most suitable clone for further bioprocess development. The aim of the present study was the identification of marker genes that can predict stable expression of recombinant genes in particular clones early in the development stage. RESULTS The transcriptome profiles of CHO clones with stable and unstable recombinant protein production were investigated over 10-weeks of cultivation, using a DNA microarray. We identified 14 genes that were differentially expressed between the stable and unstable clones already at 2 weeks from the beginning of the cultivation. Their expression was validated by reverse-transcription quantitative real-time PCR (RT-qPCR). Furthermore, the k-nearest neighbour algorithm approach shows that the combination of the gene expression patterns of only five of these 14 genes is sufficient to predict stable recombinant protein production in clones in the early phases of cell-line development. CONCLUSIONS The exact molecular mechanisms that cause unstable recombinant protein production are not fully understood. However, the expression profiles of some genes in clones with stable and unstable recombinant protein production allow prediction of such instability early in the cell-line development stage. We have thus developed a proof-of-concept for a novel approach to eliminate unstable clones in the CHO-Dhfr expression system, which saves time and labour-intensive work in cell-line development.
Collapse
Affiliation(s)
- Uros Jamnikar
- Sandoz Biopharmaceuticals, Kolodvorska 27, SI-1234, Menges, Slovenia.
| | - Petra Nikolic
- Jozef Stefan Institute, Jamova cesta 39, SI-1000, Ljubljana, Slovenia.
| | - Ales Belic
- Sandoz Biopharmaceuticals, Kolodvorska 27, SI-1234, Menges, Slovenia.
| | - Marjanca Blas
- Sandoz Biopharmaceuticals, Kolodvorska 27, SI-1234, Menges, Slovenia.
| | - Dominik Gaser
- Sandoz Biopharmaceuticals, Kolodvorska 27, SI-1234, Menges, Slovenia.
| | - Andrej Francky
- Sandoz Biopharmaceuticals, Kolodvorska 27, SI-1234, Menges, Slovenia.
| | - Holger Laux
- Novartis Pharma AG, WKL-681.1.08, 4002, Basel, Switzerland.
| | - Andrej Blejec
- National Institute of Biology, Vecna pot 111, SI-1000, Ljubljana, Slovenia.
| | - Spela Baebler
- National Institute of Biology, Vecna pot 111, SI-1000, Ljubljana, Slovenia.
| | - Kristina Gruden
- National Institute of Biology, Vecna pot 111, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
27
|
Harreither E, Hackl M, Pichler J, Shridhar S, Auer N, Łabaj PP, Scheideler M, Karbiener M, Grillari J, Kreil DP, Borth N. Microarray profiling of preselected CHO host cell subclones identifies gene expression patterns associated with increased production capacity. Biotechnol J 2015; 10:1625-38. [PMID: 26315449 DOI: 10.1002/biot.201400857] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 06/22/2015] [Accepted: 08/21/2015] [Indexed: 01/02/2023]
Abstract
Over the last three decades, product yields from CHO cells have increased dramatically, yet specific productivity (qP) remains a limiting factor. In a previous study, using repeated cell-sorting, we have established different host cell subclones that show superior transient qP over their respective parental cell lines (CHO-K1, CHO-S). The transcriptome of the resulting six cell lines in different biological states (untransfected, mock transfected, plasmid transfected) was first explored by hierarchical clustering and indicated that gene activity associated with increased qP did not stem from a certain cellular state but seemed to be inherent for a high qP host line. We then performed a novel gene regression analysis identifying drivers for an increase in qP. Genes significantly implicated were first systematically tested for enrichment of GO terms using a Bayesian approach incorporating the hierarchical structure of the GO term tree. Results indicated that specific cellular components such as nucleus, ER, and Golgi are relevant for cellular productivity. This was complemented by targeted GSA that tested functionally homogeneous, manually curated subsets of KEGG pathways known to be involved in transcription, translation, and protein processing. Significantly implicated pathways included mRNA surveillance, proteasome, protein processing in the ER and SNARE interactions in vesicular transport.
Collapse
Affiliation(s)
- Eva Harreither
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Matthias Hackl
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johannes Pichler
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Smriti Shridhar
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Paweł P Łabaj
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marcel Scheideler
- RNA Biology Group, Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
| | - Michael Karbiener
- RNA Biology Group, Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
| | - Johannes Grillari
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - David P Kreil
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria. .,ACIB GmbH, Graz, Austria.
| |
Collapse
|
28
|
Madsen JA, Farutin V, Carbeau T, Wudyka S, Yin Y, Smith S, Anderson J, Capila I. Toward the complete characterization of host cell proteins in biotherapeutics via affinity depletions, LC-MS/MS, and multivariate analysis. MAbs 2015; 7:1128-37. [PMID: 26291024 DOI: 10.1080/19420862.2015.1082017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Host cell protein (HCP) impurities are generated by the host organism during the production of therapeutic recombinant proteins, and are difficult to remove completely. Though commonly present in small quantities, if levels are not controlled, HCPs can potentially reduce drug efficacy and cause adverse patient reactions. A high resolution approach for thorough HCP characterization of therapeutic monoclonal antibodies is presented herein. In this method, antibody samples are first depleted via affinity enrichment (e.g., Protein A, Protein L) using milligram quantities of material. The HCP-containing flow-through is then enzymatically digested, analyzed using nano-UPLC-MS/MS, and proteins are identified through database searching. Nearly 700 HCPs were identified from samples with very low total HCP levels (< 1 ppm to ∼ 10 ppm) using this method. Quantitation of individual HCPs was performed using normalized spectral counting as the number of peptide spectrum matches (PSMs) per protein is proportional to protein abundance. Multivariate analysis tools were utilized to assess similarities between HCP profiles by: 1) quantifying overlaps between HCP identities; and 2) comparing correlations between individual protein abundances as calculated by spectral counts. Clustering analysis using these measures of dissimilarity between HCP profiles enabled high resolution differentiation of commercial grade monoclonal antibody samples generated from different cell lines, cell culture, and purification processes.
Collapse
Affiliation(s)
| | | | | | | | - Yan Yin
- a Momenta Pharmaceuticals ; Cambridge , MA USA
| | | | | | | |
Collapse
|
29
|
Yuk IH, Nishihara J, Walker D, Huang E, Gunawan F, Subramanian J, Pynn AFJ, Yu XC, Zhu-Shimoni J, Vanderlaan M, Krawitz DC. More similar than different: Host cell protein production using three null CHO cell lines. Biotechnol Bioeng 2015; 112:2068-83. [PMID: 25894672 DOI: 10.1002/bit.25615] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/03/2015] [Accepted: 04/09/2015] [Indexed: 12/25/2022]
Abstract
To understand the diversity in the cell culture harvest (i.e., feedstock) provided for downstream processing, we compared host cell protein (HCP) profiles using three Chinese Hamster Ovary (CHO) cell lines in null runs which did not generate any recombinant product. Despite differences in CHO lineage, upstream process, and culture performance, the cell lines yielded similar cell-specific productivities for immunogenic HCPs. To compare the dynamics of HCP production, we searched for correlations between the time-course profiles of HCP (as measured by multi-analyte ELISA) and those of two intracellular HCP species, phospholipase B-like 2 (PLBL2) and lactate dehydrogenase (LDH). Across the cell lines, proteins in the day 14 supernatants analyzed by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) showed different spot patterns. However, subsequent analysis by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) indicated otherwise: the total number of peptides and proteins identified were comparable, and 80% of the top 1,000 proteins identified were common to all three lines. Finally, to assess the impact of culture viability on extracellular HCP profiles, we analyzed supernatants from a cell line whose viability dropped after day 10. The amounts of HCP and PLBL2 (quantified by their respective ELISAs) as well as the numbers and major populations of HCPs (identified by LC-MS/MS) were similar across days 10, 14, and 17, during which viabilities declined from ∼80% to <20% and extracellular LDH levels increased several-fold. Our findings indicate that the CHO-derived HCPs in the feedstock for downstream processing may not be as diverse across cell lines and upstream processes, or change as dramatically upon viability decline as originally expected. In addition, our findings show that high density CHO cultures (>10(7) cells/mL)-operated in fed-batch mode and exhibiting high viabilities (>70%) throughout the culture duration-can accumulate a considerable amount of immunogenic HCP (∼1-2 g/L) in the extracellular environment at the time of harvest (day 14). This work also demonstrates the potential of using LC-MS/MS to overcome the limitations associated with ELISA and 2D-PAGE for HCP analysis.
Collapse
Affiliation(s)
- Inn H Yuk
- Early Stage Cell Culture, Genentech, 1 DNA Way, South San Francisco, California, 94080.
| | - Julie Nishihara
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California, 94080
| | - Donald Walker
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California, 94080
| | - Eric Huang
- Early Stage Cell Culture, Genentech, 1 DNA Way, South San Francisco, California, 94080
| | - Feny Gunawan
- Analytical Operations, Genentech, 1 DNA Way, South San Francisco, California, 94080
| | - Jayashree Subramanian
- Early Stage Cell Culture, Genentech, 1 DNA Way, South San Francisco, California, 94080
| | - Abigail F J Pynn
- Early Stage Cell Culture, Genentech, 1 DNA Way, South San Francisco, California, 94080
| | - X Christopher Yu
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California, 94080
| | - Judith Zhu-Shimoni
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California, 94080
| | - Martin Vanderlaan
- Analytical Operations, Genentech, 1 DNA Way, South San Francisco, California, 94080
| | - Denise C Krawitz
- Analytical Operations, Genentech, 1 DNA Way, South San Francisco, California, 94080
| |
Collapse
|
30
|
Liu Z, Dai S, Bones J, Ray S, Cha S, Karger BL, Li JJ, Wilson L, Hinckle G, Rossomando A. A quantitative proteomic analysis of cellular responses to high glucose media in Chinese hamster ovary cells. Biotechnol Prog 2015; 31:1026-38. [PMID: 25857574 DOI: 10.1002/btpr.2090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 03/11/2015] [Indexed: 12/12/2022]
Abstract
A goal in recombinant protein production using Chinese hamster ovary (CHO) cells is to achieve both high specific productivity and high cell density. Addition of glucose to the culture media is necessary to maintain both cell growth and viability. We varied the glucose concentration in the media from 5 to 16 g/L and found that although specific productivity of CHO-DG44 cells increased with the glucose level, the integrated viable cell density decreased. To examine the biological basis of these results, we conducted a discovery proteomic study of CHO-DG44 cells grown under batch conditions in normal (5 g/L) or high (15 g/L) glucose over 3, 6, and 9 days. Approximately 5,000 proteins were confidently identified against an mRNA-based CHO-DG44 specific proteome database, with 2,800 proteins quantified with at least two peptides. A self-organizing map algorithm was used to deconvolute temporal expression profiles of quantitated proteins. Functional analysis of altered proteins suggested that differences in growth between the two glucose levels resulted from changes in crosstalk between glucose metabolism, recombinant protein expression, and cell death, providing an overall picture of the responses to high glucose environment. The high glucose environment may enhance recombinant dihydrofolate reductase in CHO cells by up-regulating NCK1 and down-regulating PRKRA, and may lower integrated viable cell density by activating mitochondrial- and endoplasmic reticulum-mediated cell death pathways by up-regulating HtrA2 and calpains. These proteins are suggested as potential targets for bioengineering to enhance recombinant protein production.
Collapse
Affiliation(s)
- Zhenke Liu
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Shujia Dai
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Jonathan Bones
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Somak Ray
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Sangwon Cha
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Barry L Karger
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Jingyi Jessica Li
- Dept. of Statistics, University of California, Los Angeles, CA, 90095
| | - Lee Wilson
- Alnylam Pharmaceuticals, Cambridge, MA, 02142
| | | | | |
Collapse
|
31
|
Wippermann A, Rupp O, Brinkrolf K, Hoffrogge R, Noll T. The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells. J Biotechnol 2015; 199:38-46. [DOI: 10.1016/j.jbiotec.2015.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022]
|
32
|
p58IPK is an inhibitor of the eIF2α kinase GCN2 and its localization and expression underpin protein synthesis and ER processing capacity. Biochem J 2015; 465:213-25. [PMID: 25329545 DOI: 10.1042/bj20140852] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
One of the key cellular responses to stress is the attenuation of mRNA translation and protein synthesis via the phosphorylation of eIF2α (eukaryotic translation initiation factor 2α). This is mediated by four eIF2α kinases and it has been suggested that each kinase is specific to the cellular stress imposed. In the present study, we show that both PERK (PKR-like endoplasmic reticulum kinase/eIF2α kinase 3) and GCN2 (general control non-derepressible 2/eIF2α kinase 4) are required for the stress responses associated with conditions encountered by cells overexpressing secreted recombinant protein. Importantly, whereas GCN2 is the kinase that is activated following cold-shock/hypothermic culturing of mammalian cells, PERK and GCN2 have overlapping functions since knockdown of one of these at the mRNA level is compensated for by the cell by up-regulating levels of the other. The protein p58IPK {also known as DnaJ3C [DnaJ heat-shock protein (hsp) 40 homologue, subfamily C, member 3]} is known to inhibit the eIF2α kinases PKR (dsRNA-dependent protein kinase/eIF2α kinase 2) and PERK and hence prevent or delay eIF2α phosphorylation and consequent inhibition of translation. However, we show that p58IPK is a general inhibitor of the eIF2α kinases in that it also interacts with GCN2. Thus forced overexpression of cytoplasmic p58 delays eIF2α phosphorylation, suppresses GCN2 phosphorylation and prolongs protein synthesis under endoplasmic reticulum (ER), hypothermic and prolonged culture stress conditions. Taken together, our data suggest that there is considerable cross talk between the eIF2α kinases to ensure that protein synthesis is tightly regulated. Their activation is controlled by p58 and the expression levels and localization of this protein are crucial in the capacity the cells to respond to cellular stress via control of protein synthesis rates and subsequent folding in the ER.
Collapse
|
33
|
Orellana CA, Marcellin E, Schulz BL, Nouwens AS, Gray PP, Nielsen LK. High-Antibody-Producing Chinese Hamster Ovary Cells Up-Regulate Intracellular Protein Transport and Glutathione Synthesis. J Proteome Res 2015; 14:609-18. [DOI: 10.1021/pr501027c] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Camila A. Orellana
- Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Esteban Marcellin
- Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Benjamin L. Schulz
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Amanda S. Nouwens
- Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter P. Gray
- Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Lars K. Nielsen
- Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| |
Collapse
|
34
|
Harnessing Chinese hamster ovary cell proteomics for biopharmaceutical processing. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Farrell A, McLoughlin N, Milne JJ, Marison IW, Bones J. Application of Multi-Omics Techniques for Bioprocess Design and Optimization in Chinese Hamster Ovary Cells. J Proteome Res 2014; 13:3144-59. [DOI: 10.1021/pr500219b] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amy Farrell
- Characterisation
and Comparability Laboratory, NIBRT − The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Niaobh McLoughlin
- Characterisation
and Comparability Laboratory, NIBRT − The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - John J. Milne
- Characterisation
and Comparability Laboratory, NIBRT − The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Ian W. Marison
- Laboratory
of Integrated Bioprocessing, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Jonathan Bones
- Characterisation
and Comparability Laboratory, NIBRT − The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| |
Collapse
|
36
|
Lee JE, Park JH, Moon PG, Baek MC. Identification of differentially expressed proteins by treatment with PUGNAc in 3T3-L1 adipocytes through analysis of ATP-binding proteome. Proteomics 2014; 13:2998-3012. [PMID: 23946262 DOI: 10.1002/pmic.201200549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 06/27/2013] [Accepted: 07/13/2013] [Indexed: 12/13/2022]
Abstract
O-GlcNAc (2-acetamino-2-deoxy-β-D-glucopyranose), an important modification for cellular processes, is catalyzed by O-GlcNAc transferase and O-GlcNAcase. O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino-N-phenylcarbamate (PUGNAc) is a nonselective inhibitor of O-GlcNAcase, which increases the level of protein O-GlcNAcylation and is known to induce insulin-resistance in adipose cells due to uncharacterized targets of this inhibitor. In this study, using ATP affinity chromatography, we applied a targeted proteomic approach for identification of proteins induced by treatment with PUGNAc. For optimization of proteomic methods using ATP affinity chromatography, comparison of two cell lines (3T3-L1 adipocytes and C2C12 myotubes) and two different digestion steps was performed using four different structures of immobilized ATP-bound resins. Using this approach, based on DNA sequence homologies, we found that the identified proteins covered almost half of ATP-binding protein families classified by PROSITE. The optimized ATP affinity chromatography approach was applied for identification of proteins that were differentially expressed in 3T3-L1 adipocytes following treatment with PUGNAc. For label-free quantitation, a gel-assisted method was used for digestion of the eluted proteins, and analysis was performed using two different MS modes, data-independent (671 proteins identified) and data-dependent (533 proteins identified) analyses. Among identified proteins, 261 proteins belong to nucleotide-binding proteins and we focused on some nucleotide-binding proteins, ubiquitin-activation enzyme 1 (E1), Hsp70, vasolin-containing protein (Vcp), and Hsp90, involved in ubiquitin-proteasome degradation and insulin signaling pathways. In addition, we found that treatment with PUGNAc resulted in increased ubiquitination of proteins in a time-dependent manner, and a decrease in both the amount of Akt and the level of phosphorylation of Akt, a key component in insulin signaling, through downregulation of Hsp90. In this study, based on a targeted proteomic approach using ATP affinity chromatography, we found four proteins related to ubiquitination and insulin signaling pathways that were induced by treatment with PUGNAc. This result would provide insight into understanding functions of PUGNAc in 3T3-L1 cells.
Collapse
Affiliation(s)
- Jeong-Eun Lee
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | |
Collapse
|
37
|
Hussain H, Maldonado-Agurto R, Dickson AJ. The endoplasmic reticulum and unfolded protein response in the control of mammalian recombinant protein production. Biotechnol Lett 2014; 36:1581-93. [PMID: 24752815 DOI: 10.1007/s10529-014-1537-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/10/2014] [Indexed: 12/31/2022]
Abstract
The endoplasmic reticulum (ER) of eukaryotic cells is involved in the synthesis and processing of proteins and lipids in the secretory pathway. These processing events that proteins undergo in the ER may present major limiting steps for recombinant protein production. Increased protein synthesis, accumulation of improperly processed or mis-folded protein can induce ER stress. To cope with ER stress, the ER has quality control mechanisms, such as the unfolded protein response (UPR) and ER-associated degradation to restore homeostasis. ER stress and UPR activation trigger multiple physiological cellular changes. Here we review cellular mechanisms that cope with ER stress and illustrate how this knowledge can be applied to increase the efficiency of recombinant protein expression.
Collapse
Affiliation(s)
- Hirra Hussain
- Faculty of Life Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
38
|
Zhang Q, Goetze AM, Cui H, Wylie J, Trimble S, Hewig A, Flynn GC. Comprehensive tracking of host cell proteins during monoclonal antibody purifications using mass spectrometry. MAbs 2014; 6:659-70. [PMID: 24518299 DOI: 10.4161/mabs.28120] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
An advanced two-dimensional liquid chromatography/mass spectrometry platform was used to quantify individual host cell proteins (HCPs) present at various purification steps for several therapeutic monoclonal antibodies (mAbs) produced in Chinese hamster ovary cells. The methodology produced reproducible identifications and quantifications among replicate analyses consistent with a previously documented individual limit of quantification of ~13 ppm. We were able to track individual HCPs from cell culture fluid to protein A eluate pool to subsequent viral inactivation pool and, in some cases, further downstream. Approximately 500 HCPs were confidently identified in cell culture fluid and this number declined progressively through the purification scheme until no HCPs could be confidently identified in polishing step cation-exchange eluate pools. The protein A eluate pool of nine different mAbs contained widely differing numbers, and total levels, of HCPs, yet the bulk of the total HCP content in each case consisted of a small subset of normally intracellular HCPs highly abundant in cell culture fluid. These observations hint that minimizing cell lysis during cell culture/harvest may be useful in minimizing downstream HCP content. Clusterin and actin are abundant in the protein A eluate pools of most mAbs studied. HCP profiling by this methodology can provide useful information to process developers and lead to the refinement of existing purification platforms.
Collapse
Affiliation(s)
- Qingchun Zhang
- Product Attribute Sciences, Amgen Inc.; Thousand Oaks, CA USA
| | - Andrew M Goetze
- Product Attribute Sciences, Amgen Inc.; Thousand Oaks, CA USA
| | - Huanchun Cui
- Drug Substance Development, Amgen Inc.; Thousand Oaks, CA USA
| | - Jenna Wylie
- Drug Substance Development, Amgen Inc.; Thousand Oaks, CA USA
| | - Steve Trimble
- Drug Substance Development, Amgen Inc.; Seattle, WA USA
| | - Art Hewig
- Drug Substance Development, Amgen Inc.; Thousand Oaks, CA USA
| | - Gregory C Flynn
- Product Attribute Sciences, Amgen Inc.; Thousand Oaks, CA USA
| |
Collapse
|
39
|
Nishimiya D. Proteins improving recombinant antibody production in mammalian cells. Appl Microbiol Biotechnol 2013; 98:1031-42. [PMID: 24327213 DOI: 10.1007/s00253-013-5427-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/13/2022]
Abstract
Mammalian cells have been successfully used for the industrial manufacture of antibodies due to their ability to synthesize antibodies correctly. Nascent polypeptides must be subjected to protein folding and assembly in the ER and the Golgi to be secreted as mature proteins. If these reactions do not proceed appropriately, unfolded or misfolded proteins are degraded by the ER-associated degradation (ERAD) pathway. The accumulation of unfolded proteins or intracellular antibody crystals accompanied by this failure triggers the unfolded protein response (UPR), which can considerably attenuate the levels of translation, folding, assembly, and secretion, resulting in reduction of antibody productivity. Accumulating studies by omics-based analysis of recombinant mammalian cells suggest that not only protein secretion processes including protein folding and assembly but also translation are likely to be the rate-limiting factors for increasing antibody production. Here, this review describes the mechanism of antibody folding and assembly and recent advantages which could improve recombinant antibody production in mammalian cells by utilizing proteins such as ER chaperones or UPR-related proteins.
Collapse
Affiliation(s)
- Daisuke Nishimiya
- New Modality Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan,
| |
Collapse
|
40
|
Kildegaard HF, Baycin-Hizal D, Lewis NE, Betenbaugh MJ. The emerging CHO systems biology era: harnessing the ‘omics revolution for biotechnology. Curr Opin Biotechnol 2013; 24:1102-7. [DOI: 10.1016/j.copbio.2013.02.007] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/17/2013] [Accepted: 02/09/2013] [Indexed: 11/29/2022]
|
41
|
Kang S, Ren D, Xiao G, Daris K, Buck L, Enyenihi AA, Zubarev R, Bondarenko PV, Deshpande R. Cell line profiling to improve monoclonal antibody production. Biotechnol Bioeng 2013; 111:748-60. [DOI: 10.1002/bit.25141] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/24/2013] [Accepted: 10/21/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Sohye Kang
- Product Attribute Sciences; Amgen, Inc.; One Amgen Center Drive Thousand Oaks California 91320
| | - Da Ren
- Product Attribute Sciences; Amgen, Inc.; One Amgen Center Drive Thousand Oaks California 91320
| | - Gang Xiao
- Product Attribute Sciences; Amgen, Inc.; One Amgen Center Drive Thousand Oaks California 91320
| | - Kristi Daris
- Drug Substance Development; Amgen, Inc.; Thousand Oaks California
| | - Lynette Buck
- Drug Substance Development; Amgen, Inc.; Thousand Oaks California
| | - Atim A. Enyenihi
- Department of Medical Biochemistry and Biophysics; Karolinska Institute; Stockholm Sweden
| | - Roman Zubarev
- Department of Medical Biochemistry and Biophysics; Karolinska Institute; Stockholm Sweden
- SciLifeLab; Stockholm Sweden
| | - Pavel V. Bondarenko
- Product Attribute Sciences; Amgen, Inc.; One Amgen Center Drive Thousand Oaks California 91320
| | - Rohini Deshpande
- Drug Substance Development; Amgen, Inc.; Thousand Oaks California
| |
Collapse
|
42
|
Translatome analysis of CHO cells to identify key growth genes. J Biotechnol 2013; 167:215-24. [PMID: 23876478 DOI: 10.1016/j.jbiotec.2013.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/14/2013] [Accepted: 07/10/2013] [Indexed: 11/20/2022]
Abstract
We report the first investigation of translational efficiency on a global scale, also known as translatome, of a Chinese hamster ovary (CHO) DG44 cell line producing monoclonal antibodies (mAb). The translatome data was generated via combined use of high resolution and streamlined polysome profiling technology and proprietary Nimblegen microarrays probing for more than 13K annotated CHO-specific genes. The distribution of ribosome loading during the exponential growth phase revealed the translational activity corresponding to the maximal growth rate, thus allowing us to identify stably and highly translated genes encoding heterogeneous nuclear ribonucleoproteins (Hnrnpc and Hnrnpa2b1), protein regulator of cytokinesis 1 (Prc1), glucose-6-phosphate dehydrogenase (G6pdh), UTP6 small subunit processome (Utp6) and RuvB-like protein 1 (Ruvbl1) as potential key players for cellular growth. Moreover, correlation analysis between transcriptome and translatome data sets showed that transcript level and translation efficiency were uncoupled for 95% of investigated genes, suggesting the implication of translational control mechanisms such as the mTOR pathway. Thus, the current translatome analysis platform offers new insights into gene expression in CHO cell cultures by bridging the gap between transcriptome and proteome data, which will enable researchers of the bioprocessing field to prioritize in high-potential candidate genes and to devise optimal strategies for cell engineering toward improving culture performance.
Collapse
|
43
|
Hilal-Alnaqbi A, Hu AYC, Zhang Z, Al-Rubeai M. Growth, metabolic activity, and productivity of immobilized and freely suspended CHO cells in perfusion culture. Biotechnol Appl Biochem 2013; 60:436-45. [PMID: 23701045 DOI: 10.1002/bab.1103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/24/2013] [Indexed: 11/09/2022]
Abstract
Chinese hamster ovary (CHO) cells producing β-galactosidase (β-gal) were successfully cultured on silicone-based porous microcarriers (ImmobaSil FS) in a 1 L stirred-tank perfusion bioreactor. We studied the growth, metabolism, and productivity of free and immobilized cells to understand cellular activity in immobilized conditions. CHO cells attached to ImmobaSil FS significantly better than to other microcarriers. Scanning electron microscope images showed that the CHO cells thoroughly colonized the porous surfaces of the ImmobaSil FS, exhibiting a spherical morphology with microvilli that extended to anchorage cells on the silicone surface. In perfusion culture, the concentration of the attached cells reached 8 × 10(8) cells/mL of carrier, whereas those that remained freely suspended reached 2 × 10(7) cells/mL medium. The β-gal concentration reached more than 5 unit/mL in perfusion culture, more than fivefold that of batch culture. The maximum concentration per microcarrier was proportional to the initial cell density. The specific growth rate, the specific β-gal production rate, the percentage of S phase, and the oxygen uptake rate were all relatively lower for immobilized cells than freely suspended cells in the same bioreactor, indicating that not only do cells survive and grow to a greater extent in a free suspension state, but they are also metabolically more active than viable cells inside the pores of the microcarriers.
Collapse
Affiliation(s)
- Ali Hilal-Alnaqbi
- School of Chemical & Bioprocess Engineering, University College Dublin, Belfield, Dublin, Ireland; Faculty of Engineering, UAE University, Al Ain, United Arab Emirates
| | | | | | | |
Collapse
|
44
|
Datta P, Linhardt RJ, Sharfstein ST. An 'omics approach towards CHO cell engineering. Biotechnol Bioeng 2013; 110:1255-71. [DOI: 10.1002/bit.24841] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/19/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022]
|
45
|
Mead EJ, Chiverton LM, Spurgeon SK, Martin EB, Montague GA, Smales CM, von der Haar T. Experimental and in silico modelling analyses of the gene expression pathway for recombinant antibody and by-product production in NS0 cell lines. PLoS One 2012; 7:e47422. [PMID: 23071804 PMCID: PMC3468484 DOI: 10.1371/journal.pone.0047422] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 09/17/2012] [Indexed: 11/18/2022] Open
Abstract
Monoclonal antibodies are commercially important, high value biotherapeutic drugs used in the treatment of a variety of diseases. These complex molecules consist of two heavy chain and two light chain polypeptides covalently linked by disulphide bonds. They are usually expressed as recombinant proteins from cultured mammalian cells, which are capable of correctly modifying, folding and assembling the polypeptide chains into the native quaternary structure. Such recombinant cell lines often vary in the amounts of product produced and in the heterogeneity of the secreted products. The biological mechanisms of this variation are not fully defined. Here we have utilised experimental and modelling strategies to characterise and define the biology underpinning product heterogeneity in cell lines exhibiting varying antibody expression levels, and then experimentally validated these models. In undertaking these studies we applied and validated biochemical (rate-constant based) and engineering (nonlinear) models of antibody expression to experimental data from four NS0 cell lines with different IgG4 secretion rates. The models predict that export of the full antibody and its fragments are intrinsically linked, and cannot therefore be manipulated individually at the level of the secretory machinery. Instead, the models highlight strategies for the manipulation at the precursor species level to increase recombinant protein yields in both high and low producing cell lines. The models also highlight cell line specific limitations in the antibody expression pathway.
Collapse
Affiliation(s)
- Emma J. Mead
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Centre for Molecular Processing, University of Kent, Canterbury, United Kingdom
- * E-mail: (EJM); (CMS); (TvdH)
| | - Lesley M. Chiverton
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Centre for Molecular Processing, University of Kent, Canterbury, United Kingdom
| | - Sarah K. Spurgeon
- School of Engineering and Digital Arts, University of Kent, Canterbury, United Kingdom
- Centre for Molecular Processing, University of Kent, Canterbury, United Kingdom
| | - Elaine B. Martin
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle, United Kingdom
| | - Gary A. Montague
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle, United Kingdom
| | - C. Mark Smales
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Centre for Molecular Processing, University of Kent, Canterbury, United Kingdom
- * E-mail: (EJM); (CMS); (TvdH)
| | - Tobias von der Haar
- School of Biosciences, University of Kent, Canterbury, United Kingdom
- Centre for Molecular Processing, University of Kent, Canterbury, United Kingdom
- * E-mail: (EJM); (CMS); (TvdH)
| |
Collapse
|
46
|
Baycin-Hizal D, Tabb DL, Chaerkady R, Chen L, Lewis NE, Nagarajan H, Sarkaria V, Kumar A, Wolozny D, Colao J, Jacobson E, Tian Y, O'Meally RN, Krag SS, Cole RN, Palsson BO, Zhang H, Betenbaugh M. Proteomic analysis of Chinese hamster ovary cells. J Proteome Res 2012; 11:5265-76. [PMID: 22971049 DOI: 10.1021/pr300476w] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO cells including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis, multidimensional liquid chromatography, and solid phase extraction of glycopeptides (SPEG). From the 120 different mass spectrometry analyses generating 682,097 MS/MS spectra, 93,548 unique peptide sequences were identified with at most 0.02 false discovery rate (FDR). A total of 6164 grouped proteins were identified from both glycoproteome and proteome analysis, representing an 8-fold increase in the number of proteins currently identified in the CHO proteome. Furthermore, this is the first proteomic study done using the CHO genome exclusively, which provides for more accurate identification of proteins. From this analysis, the CHO codon frequency was determined and found to be distinct from humans, which will facilitate expression of human proteins in CHO cells. Analysis of the combined proteomic and mRNA data sets indicated the enrichment of a number of pathways including protein processing and apoptosis but depletion of proteins involved in steroid hormone and glycosphingolipid metabolism. Five-hundred four of the detected proteins included N-acetylation modifications, and 1292 different proteins were observed to be N-glycosylated. This first large-scale proteomic analysis will enhance the knowledge base about CHO capabilities for recombinant expression and provide information useful in cell engineering efforts aimed at modifying CHO cellular functions.
Collapse
Affiliation(s)
- Deniz Baycin-Hizal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
A multi-omics analysis of recombinant protein production in Hek293 cells. PLoS One 2012; 7:e43394. [PMID: 22937046 PMCID: PMC3427347 DOI: 10.1371/journal.pone.0043394] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 07/19/2012] [Indexed: 11/19/2022] Open
Abstract
Hek293 cells are the predominant hosts for transient expression of recombinant proteins and are used for stable expression of proteins where post-translational modifications performed by CHO cells are inadequate. Nevertheless, there is little information available on the key cellular features underpinning recombinant protein production in Hek293 cells. To improve our understanding of recombinant protein production in Hek293 cells and identify targets for the engineering of an improved host cell line, we have compared a stable, recombinant protein producing Hek293 cell line and its parental cell line using a combination of transcriptomics, metabolomics and fluxomics. Producer cultures consumed less glucose than non-producer cultures while achieving the same growth rate, despite the additional burden of recombinant protein production. Surprisingly, there was no indication that producer cultures compensated for the reduction in glycolytic energy by increasing the efficiency of glucose utilization or increasing glutamine consumption. In contrast, glutamine consumption was lower and the majority of genes involved in oxidative phosphorylation were downregulated in producer cultures. We observed an overall downregulation of a large number of genes associated with broad cellular functions (e.g., cell growth and proliferation) in producer cultures, and therefore speculate that a broad adaptation of the cellular network freed up resources for recombinant protein production while maintaining the same growth rate. Increased abundance of genes associated with endoplasmic reticulum stress indicated a possible bottleneck at the point of protein folding and assembly.
Collapse
|
48
|
Tep S, Hincapie M, Hancock WS. The characterization and quantitation of glycomic changes in CHO cells during a bioreactor campaign. Biotechnol Bioeng 2012; 109:3007-17. [DOI: 10.1002/bit.24590] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 06/05/2012] [Accepted: 06/20/2012] [Indexed: 12/13/2022]
|
49
|
Doneanu CE, Xenopoulos A, Fadgen K, Murphy J, Skilton SJ, Prentice H, Stapels M, Chen W. Analysis of host-cell proteins in biotherapeutic proteins by comprehensive online two-dimensional liquid chromatography/mass spectrometry. MAbs 2012; 4:24-44. [PMID: 22327428 DOI: 10.4161/mabs.4.1.18748] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Assays for identification and quantification of host-cell proteins (HCPs) in biotherapeutic proteins over 5 orders of magnitude in concentration are presented. The HCP assays consist of two types: HCP identification using comprehensive online two-dimensional liquid chromatography coupled with high resolution mass spectrometry (2D-LC/MS), followed by high-throughput HCP quantification by liquid chromatography, multiple reaction monitoring (LC-MRM). The former is described as a "discovery" assay, the latter as a "monitoring" assay. Purified biotherapeutic proteins (e.g., monoclonal antibodies) were digested with trypsin after reduction and alkylation, and the digests were fractionated using reversed-phase (RP) chromatography at high pH (pH 10) by a step gradient in the first dimension, followed by a high-resolution separation at low pH (pH 2.5) in the second dimension. As peptides eluted from the second dimension, a quadrupole time-of-flight mass spectrometer was used to detect the peptides and their fragments simultaneously by alternating the collision cell energy between a low and an elevated energy (MSE methodology). The MSE data was used to identify and quantify the proteins in the mixture using a proven label-free quantification technique ("Hi3" method). The same data set was mined to subsequently develop target peptides and transitions for monitoring the concentration of selected HCPs on a triple quadrupole mass spectrometer in a high-throughput manner (20 min LC-MRM analysis). This analytical methodology was applied to the identification and quantification of low-abundance HCPs in six samples of PTG1, a recombinant chimeric anti-phosphotyrosine monoclonal antibody (mAb). Thirty three HCPs were identified in total from the PTG1 samples among which 21 HCP isoforms were selected for MRM monitoring. The absolute quantification of three selected HCPs was undertaken on two different LC-MRM platforms after spiking isotopically labeled peptides in the samples. Finally, the MRM quantitation results were compared with TOF-based quantification based on the Hi3 peptides, and the TOF and MRM data sets correlated reasonably well. The results show that the assays provide detailed valuable information to understand the relative contributions of purification schemes to the nature and concentrations of HCP impurities in biopharmaceutical samples, and the assays can be used as generic methods for HCP analysis in the biopharmaceutical industry.
Collapse
|
50
|
Analysis of dynamic changes in the proteome of a Bcl-XL overexpressing Chinese hamster ovary cell culture during exponential and stationary phases. Biotechnol Prog 2012; 28:814-23. [DOI: 10.1002/btpr.1534] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/23/2012] [Indexed: 11/07/2022]
|