1
|
Yan S, Napiwocki B, Xu Y, Zhang J, Zhang X, Wang X, Crone WC, Li Q, Turng LS. Wavy small-diameter vascular graft made of eggshell membrane and thermoplastic polyurethane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110311. [PMID: 31761197 PMCID: PMC6905500 DOI: 10.1016/j.msec.2019.110311] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/17/2019] [Accepted: 10/12/2019] [Indexed: 12/17/2022]
Abstract
In this study, a small-diameter, double-layered eggshell membrane/thermoplastic polyurethane (ESM/TPU) vascular graft with a wavy structure was developed. The avian eggshell membrane, a fibrous structure similar to the extracellular matrix (ECM), has the potential to yield rapid endothelialization in vitro. The dopamine and heparin modification of the ESM surface not only promoted human umbilical vein endothelial cell (HUVEC) proliferation via cytocompatibility assessment, but also improved its anticoagulation properties as verified in platelet adhesion tests. The biomimetic mechanical properties of the vascular graft were provided by the elastic TPU fibers via electrospinning using a wavy cross-section rotating collector. The advantage of combining these two materials is to make use of the bioactivity of ESM as the internal membrane and the tunable mechanical properties of TPU as the external layer. The circumferentially wavy structure of the vascular graft produced a toe region in the non-linear section of the stress-strain curve similar to that of natural blood vessels. The ESM/TPU graft's circumferential ultimate strength was 2.57 MPa, its strain was 339% mm/mm, and its toe region was found to be around 20% mm/mm. Cyclical tension tests showed that the vascular graft could maintain good mechanical properties and showed no structural damage under repeated extension tests.
Collapse
Affiliation(s)
- Shujie Yan
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, China; National Center for International Research of Micro-Nano Molding Technology Zhengzhou University, Zhengzhou, China; Polymer Engineering Center, Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery University of Wisconsin-Madison, Madison, WI, USA
| | - Brett Napiwocki
- Wisconsin Institute for Discovery University of Wisconsin-Madison, Madison, WI, USA
| | - Yiyang Xu
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, China; National Center for International Research of Micro-Nano Molding Technology Zhengzhou University, Zhengzhou, China; Polymer Engineering Center, Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery University of Wisconsin-Madison, Madison, WI, USA
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI, USA
| | - Xiang Zhang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, China; National Center for International Research of Micro-Nano Molding Technology Zhengzhou University, Zhengzhou, China
| | - Xiaofeng Wang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, China; National Center for International Research of Micro-Nano Molding Technology Zhengzhou University, Zhengzhou, China
| | - Wendy C Crone
- Wisconsin Institute for Discovery University of Wisconsin-Madison, Madison, WI, USA
| | - Qian Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, China; National Center for International Research of Micro-Nano Molding Technology Zhengzhou University, Zhengzhou, China.
| | - Lih-Sheng Turng
- Polymer Engineering Center, Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Wang D, Wang X, Li X, Jiang L, Chang Z, Li Q. Biologically responsive, long-term release nanocoating on an electrospun scaffold for vascular endothelialization and anticoagulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110212. [PMID: 31761208 DOI: 10.1016/j.msec.2019.110212] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/21/2019] [Accepted: 09/16/2019] [Indexed: 01/19/2023]
Abstract
A critical challenge to the development of tissue engineering small-diameter vascular grafts is to achieve rapid endothelialization and long-term anticoagulation. It is necessary to graft both adhesion and antithrombus factors onto the surface of polycaprolactone without burst release to promote endothelial cell affinity and antithrombogenicity. A bionic structure with a nanocoating that allows a biologically responsive, long-term release was employed in this work to enable the grafting of various bioactive molecules such as gelatin, polylysine, and heparin. This approach involved orienting the biomimetic vascular structures; the self-assembly grafting of gelatin, polylysine, and heparin nanoparticles; and genipin crosslinking to form a multiphase crosslinked nanocoating. In this biologically inspired design, vascular endothelialization and long-term anticoagulation were successfully induced through a matrix metallopeptidase 2 regulative mechanism by delivering both adhesion and antithrombus factors with a responsive, long-term release without burst release. The method provided a simple and effective approach for delivering dual factors for tissue engineering small-diameter vascular grafts.
Collapse
Affiliation(s)
- Dongfang Wang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Xiaofeng Wang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Xuyan Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Lin Jiang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Zhonghua Chang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Qian Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
3
|
Wang D, Wang X, Zhang Z, Wang L, Li X, Xu Y, Ren C, Li Q, Turng LS. Programmed Release of Multimodal, Cross-Linked Vascular Endothelial Growth Factor and Heparin Layers on Electrospun Polycaprolactone Vascular Grafts. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32533-32542. [PMID: 31393107 DOI: 10.1021/acsami.9b10621] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Viable tissue-engineering small-diameter vascular grafts should support rapid growth of an endothelial cell layer and exhibit long-term antithrombogenic property. In this study, multiple layers of various bioactive molecules, such as vascular endothelial growth factor (VEGF) and heparin, on an electrospun polycaprolactone scaffold have been developed through repeated electrostatic adsorption self-assembly (up to 20 layers), followed by genipin cross-linking. Programmed and sustained release of biomolecules embedded within the multilayered structure can be triggered by matrix metallopeptidase 2 enzyme in vitro. The result is an early and full release of VEGF to promote rapid endothelialization on the intended vascular grafts, followed by a gradual but sustained release of heparin for long-term anticoagulation and antithrombogenicity. This method of forming a biologically responsive, multimodal delivery of VEGF and heparin is highly suitable for all hydrophobic surfaces and provides a promising way to meet the critical requirements of engineered small-diameter vascular grafts.
Collapse
|
4
|
A visualized colorimetric detection strategy for heparin in serum using a metal-free polymer nanozyme. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Mi HY, Jing X, Thomsom JA, Turng LS. Promoting Endothelial Cell Affinity and Antithrombogenicity of Polytetrafluoroethylene (PTFE) by Mussel-Inspired Modification and RGD/Heparin Grafting. J Mater Chem B 2018; 6:3475-3485. [PMID: 30455952 PMCID: PMC6238965 DOI: 10.1039/c8tb00654g] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
When used as small-diameter vascular grafts (SDVGs), synthetic biomedical materials like polytetrafluoroethylene (PTFE) may induce thrombosis and intimal hyperplasia due to the lack of an endothelial cell layer. Modification of the PTFE in an aqueous solution is difficult because of its hydrophobicity. Herein, aiming to simultaneously promote endothelial cell affinity and antithrombogenicity, a mussel-inspired modification approach was employed to enable the grafting of various bioactive molecules like RGD and heparin. This approach involves a series of pragmatic steps including oxygen plasma treatment, dopamine (DA) coating, polyethylenimine (PEI) grafting, and RGD or RGD/heparin immobilization. Successful modification in each step was verified via Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Plasma treatment increased the hydrophilicity of PTFE, thereby allowing it to be efficiently coated with dopamine. Grafting of dopamine, RGD, and heparin led to an increase in surface roughness and a decrease in water contact angle due to increased surface energy. Platelet adhesion increased after dopamine and RGD modification, but it dramatically decreased when heparin was introduced. All of these modifications, especially the incorporation of RGD, showed favorable effects on endothelial cell attachment, viability, and proliferation. Due to strong cell-substrate interactions between endothelial cells and RGD, the RGD/heparin-grafted PTFE demonstrated high endothelial cell affinity. This facile modification method is highly suitable for all hydrophobic surfaces and provides a promising technique for SDVG modification to stimulate fast endothelialization and effective antithrombosis.
Collapse
Affiliation(s)
- Hao-Yang Mi
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI, 53715, USA
- Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou, 510640, China
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, 53706, USA
| | - Xin Jing
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI, 53715, USA
- Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou, 510640, China
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, 53706, USA
| | - James A. Thomsom
- Morgridge Institute for Research, University of Wisconsin–Madison, WI, 53715, USA
| | - Lih-Sheng Turng
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI, 53715, USA
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, 53706, USA
| |
Collapse
|
6
|
Critical review of reports on impurity and degradation product profiling in the last decade. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
The effect of hirudin modification of silk fibroin on cell growth and antithrombogenicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:237-246. [DOI: 10.1016/j.msec.2017.02.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/15/2016] [Accepted: 02/08/2017] [Indexed: 01/14/2023]
|
8
|
Dhasaiyan P, Le Griel P, Roelants S, Redant E, Van Bogaert INA, Prevost S, Prasad BLV, Baccile N. Micelles versus Ribbons: How Congeners Drive the Self-Assembly of Acidic Sophorolipid Biosurfactants. Chemphyschem 2017; 18:643-652. [DOI: 10.1002/cphc.201601323] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/16/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Prabhu Dhasaiyan
- Physical and Materials Chemistry Division, CSIR-; National Chemical Laboratory; Dr. Homi Bhabha road Pune Maharashtra India
| | - Patrick Le Griel
- Sorbonne Universités; UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574; 4, Place Jussieu 75005 Paris France
| | - Sophie Roelants
- Bio Base Europe Pilot Plant; Rodenhuizekaai 1 9042 Ghent Belgium
- InBio, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering; Ghent University; Coupure Links 653 9000 Ghent Belgium
| | - Emile Redant
- Bio Base Europe Pilot Plant; Rodenhuizekaai 1 9042 Ghent Belgium
| | - Inge N. A. Van Bogaert
- InBio, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering; Ghent University; Coupure Links 653 9000 Ghent Belgium
| | - Sylvain Prevost
- ESRF-The European Synchrotron, High Brilliance Beam line ID02; 38043 Grenoble France
| | - B. L. V. Prasad
- Physical and Materials Chemistry Division, CSIR-; National Chemical Laboratory; Dr. Homi Bhabha road Pune Maharashtra India
| | - Niki Baccile
- Sorbonne Universités; UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574; 4, Place Jussieu 75005 Paris France
| |
Collapse
|
9
|
Study on quality control of sulfated polysaccharide drug, propylene glycol alginate sodium sulfate (PSS). Carbohydr Polym 2016; 144:330-7. [DOI: 10.1016/j.carbpol.2016.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 12/17/2022]
|
10
|
Fasciano JM, Danielson ND. Ion chromatography for the separation of heparin and structurally related glycoaminoglycans: A review. J Sep Sci 2016; 39:1118-29. [DOI: 10.1002/jssc.201500664] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/17/2022]
Affiliation(s)
| | - Neil D. Danielson
- Department of Chemistry and Biochemistry; Miami University; Oxford OH USA
| |
Collapse
|
11
|
Yao Y, Wang J, Cui Y, Xu R, Wang Z, Zhang J, Wang K, Li Y, Zhao Q, Kong D. Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomater 2014; 10:2739-49. [PMID: 24602806 DOI: 10.1016/j.actbio.2014.02.042] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 01/22/2023]
Abstract
Thrombus formation and subsequent occlusion are the main reasons for the failure of small-diameter vascular grafts. In this study, a hybrid small-diameter vascular graft was developed from synthetic polymer poly(ε-caprolactone) (PCL) and natural polymer chitosan (CS) by the co-electrospinning technique. Heparin was immobilized on the grafts through ionic bonding between heparin and CS fibers. The immobilization was relatively stable, and heparin could continuously release from the grafts for more than 1month. Heparin functionalization evidently improved the hemocompatibility of the PCL/CS vascular grafts, which was illustrated by the reduced platelet adhesion and prolonged coagulation time (activated partial thromboplastin time, prothrombin time and thromboplastin time) as shown in the human plasma assay, and was further confirmed by the ex vivo arteriovenous shunt experiment. In vitro cell proliferation assay showed that heparin can promote the growth of human umbilical vein endothelial cells, while moderately inhibiting the proliferation of vascular smooth muscle cells, a main factor for neointimal hyperplasia. Implantation in rat abdominal aorta was performed for 1month. Results indicate that sustained release of heparin provided optimal anti-thrombogenic effect by reducing thrombus formation and maintaining the patency. Furthermore, heparin functionalization also enhanced in situ endothelialization, thereby preventing the occurrence of restenosis. In conclusion, it provides a facile and useful technique for the development of heparinized medical devices, including vascular grafts.
Collapse
|
12
|
Liu L, Linhardt RJ, Zhang Z. Quantitative analysis of anions in glycosaminoglycans and application in heparin stability studies. Carbohydr Polym 2014; 106:343-50. [PMID: 24721088 DOI: 10.1016/j.carbpol.2014.02.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/22/2014] [Accepted: 02/22/2014] [Indexed: 10/25/2022]
Abstract
The sulfo groups of glycosaminoglycans contribute to their high charge densities, and are critical for the role they play in various physiological and pathophysiological processes. Unfortunately, the sulfo groups can be hydrolyzed to inorganic sulfate. Thus, it is important to monitor the presence of these sulfo groups. In addition, free anions, including chloride, sulfate and acetate, are often present in glycosaminoglycans as a result of multiple purification steps, and their presence also needs to be monitored. In this report, ion chromatography with conductivity detection is used to analyze the anions present in glycosaminoglycans, including heparin, heparan sulfate, chondroitin sulfate and dermatan sulfate. This method allows quantitation over a wide range of concentrations, affording a limit of quantitation of 0.1 ppm and a limit of detection of 0.05 ppm for most anions of interest. The stability of heparin was also studied, providing data on the formation of both sulfate and acetate anions.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China.
| |
Collapse
|
13
|
Affiliation(s)
- Vitor H. Pomin
- Program of
Glycobiology, Institute of Medical Biochemistry,
and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-913,
Brazil
| |
Collapse
|
14
|
Volpi N, Maccari F, Suwan J, Linhardt RJ. Electrophoresis for the analysis of heparin purity and quality. Electrophoresis 2012; 33:1531-7. [PMID: 22736353 DOI: 10.1002/elps.201100479] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adulteration of raw heparin with oversulfated chondroitin sulfate (OSCS) in 2007-2008 produced a global crisis resulting in extensive revisions to the pharmacopeia monographs and prompting the FDA to recommend the development of additional methods for the analysis of heparin purity. As a consequence, a wide variety of innovative analytical approaches have been developed for the quality assurance and purity of unfractionated and low-molecular-weight heparins. This review discusses recent developments in electrophoresis techniques available for the sensitive separation, detection, and partial structural characterization of heparin contaminants. In particular, this review summarizes recent publications on heparin quality and related impurity analysis using electrophoretic separations such as capillary electrophoresis (CE) of intact polysaccharides and hexosamines derived from their acidic hydrolysis, and polyacrylamide gel electrophoresis (PAGE) for the separation of heparin samples without and in the presence of its relatively specific depolymerization process with nitrous acid treatment.
Collapse
Affiliation(s)
- Nicola Volpi
- Department of Biology, University of Modena and Reggio Emilia, Italy.
| | | | | | | |
Collapse
|
15
|
Lamb JD, Li N. Ion Chromatography and Membrane Separations Using Macrocyclic Ligands. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Teisseyre TZ, Urban J, Halpern-Manners NW, Chambers SD, Bajaj VS, Svec F, Pines A. Remotely Detected NMR for the Characterization of Flow and Fast Chromatographic Separations Using Organic Polymer Monoliths. Anal Chem 2011; 83:6004-10. [DOI: 10.1021/ac2010108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Z. Teisseyre
- Program in Bioengineering, University of California—Berkeley and University of California—San Francisco, California 94133, United States
| | - Jiri Urban
- Department of Chemistry, University of California—Berkeley, Berkeley, California 94720, United States
| | | | - Stuart D. Chambers
- Department of Chemistry, University of California—Berkeley, Berkeley, California 94720, United States
| | - Vikram S. Bajaj
- Department of Chemistry, University of California—Berkeley, Berkeley, California 94720, United States
| | | | - Alexander Pines
- Department of Chemistry, University of California—Berkeley, Berkeley, California 94720, United States
- Program in Bioengineering, University of California—Berkeley and University of California—San Francisco, California 94133, United States
| |
Collapse
|
17
|
Recent advances in the analysis of carbohydrates for biomedical use. J Pharm Biomed Anal 2011; 55:702-27. [DOI: 10.1016/j.jpba.2011.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 02/06/2023]
|
18
|
Jones CJ, Beni S, Limtiaco JFK, Langeslay DJ, Larive CK. Heparin characterization: challenges and solutions. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:439-465. [PMID: 21469955 DOI: 10.1146/annurev-anchem-061010-113911] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Although heparin is an important and widely prescribed pharmaceutical anticoagulant, its high degree of sequence microheterogeneity and size polydispersity make molecular-level characterization challenging. Unlike nucleic acids and proteins that are biosynthesized through template-driven assembly processes, heparin and the related glycosaminoglycan heparan sulfate are actively remodeled during biosynthesis through a series of enzymatic reactions that lead to variable levels of O- and N-sulfonation and uronic acid epimers. As summarized in this review, heparin sequence information is determined through a bottom-up approach that relies on depolymerization reactions, size- and charge-based separations, and sensitive mass spectrometric and nuclear magnetic resonance experiments to determine the structural identity of component oligosaccharides. The structure-elucidation process, along with its challenges and opportunities for future analytical improvements, is reviewed and illustrated for a heparin-derived hexasaccharide.
Collapse
Affiliation(s)
- Christopher J Jones
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | | | | | | | | |
Collapse
|
19
|
Yang B, Solakyildirim K, Chang Y, Linhardt RJ. Hyphenated techniques for the analysis of heparin and heparan sulfate. Anal Bioanal Chem 2011; 399:541-57. [PMID: 20853165 PMCID: PMC3235348 DOI: 10.1007/s00216-010-4117-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/06/2010] [Accepted: 08/09/2010] [Indexed: 12/11/2022]
Abstract
The elucidation of the structure of glycosaminoglycan has proven to be challenging for analytical chemists. Molecules of glycosaminoglycan have a high negative charge and are polydisperse and microheterogeneous, thus requiring the application of multiple analytical techniques and methods. Heparin and heparan sulfate are the most structurally complex of the glycosaminoglycans and are widely distributed in nature. They play critical roles in physiological and pathophysiological processes through their interaction with heparin-binding proteins. Moreover, heparin and low-molecular weight heparin are currently used as pharmaceutical drugs to control blood coagulation. In 2008, the health crisis resulting from the contamination of pharmaceutical heparin led to considerable attention regarding their analysis and structural characterization. Modern analytical techniques, including high-performance liquid chromatography, capillary electrophoresis, mass spectrometry, and nuclear magnetic resonance spectroscopy, played critical roles in this effort. A successful combination of separation and spectral techniques will clearly provide a critical advantage in the future analysis of heparin and heparan sulfate. This review focuses on recent efforts to develop hyphenated techniques for the analysis of heparin and heparan sulfate.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kemal Solakyildirim
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Yuqing Chang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
20
|
The use of circular dichroism as a simple heparin-screening strategy. Anal Bioanal Chem 2010; 399:701-6. [DOI: 10.1007/s00216-010-4272-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/13/2010] [Accepted: 09/18/2010] [Indexed: 10/18/2022]
|
21
|
Determination of galactosamine impurities in heparin samples by multivariate regression analysis of their 1H NMR spectra. Anal Bioanal Chem 2010; 399:635-49. [DOI: 10.1007/s00216-010-4268-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/26/2010] [Accepted: 09/28/2010] [Indexed: 11/27/2022]
|
22
|
Liu Z, Xiao Z, Masuko S, Zhao W, Sterner E, Bansal V, Fareed J, Dordick J, Zhang F, Linhardt RJ. Mass balance analysis of contaminated heparin product. Anal Biochem 2010; 408:147-56. [PMID: 20850409 DOI: 10.1016/j.ab.2010.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/05/2010] [Accepted: 09/09/2010] [Indexed: 11/29/2022]
Abstract
A quantitative analysis of a recalled contaminated lot of heparin sodium injection U.S. Pharmacopeia (USP) was undertaken in response to the controversy regarding the exact nature of the contaminant involved in the heparin (HP) crisis. A mass balance analysis of the formulated drug product was performed. After freeze-drying, a 1-ml vial for injection afforded 54.8±0.3 mg of dry solids. The excipients, sodium chloride and residual benzyl alcohol, accounted for 11.4±0.5 and 0.9±0.5 mg, respectively. Active pharmaceutical ingredient (API) represented 41.5±1.0 mg, corresponding to 75.7 wt% of dry mass. Exhaustive treatment of API with specific enzymes, heparin lyases, and/or chondroitin lyases was used to close mass balance. HP represented 30.5±0.5 mg, corresponding to 73.5 wt% of the API. Dermatan sulfate (DS) impurity represented 1.7±0.3 mg, corresponding to 4.1 wt% of API. Contaminant, representing 9.3±0.1 mg corresponding to 22.4 wt% of API, was found in the contaminated formulated drug product. The recovery of contaminant was close to quantitative (95.6-100 wt%). A single contaminant was unambiguously identified as oversulfated chondroitin sulfate (OSCS).
Collapse
|
23
|
Beni S, Limtiaco JFK, Larive CK. Analysis and characterization of heparin impurities. Anal Bioanal Chem 2010; 399:527-39. [PMID: 20814668 PMCID: PMC3015169 DOI: 10.1007/s00216-010-4121-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 12/16/2022]
Abstract
This review discusses recent developments in analytical methods available for the sensitive separation, detection and structural characterization of heparin contaminants. The adulteration of raw heparin with oversulfated chondroitin sulfate (OSCS) in 2007–2008 spawned a global crisis resulting in extensive revisions to the pharmacopeia monographs on heparin and prompting the FDA to recommend the development of additional physicochemical methods for the analysis of heparin purity. The analytical chemistry community quickly responded to this challenge, developing a wide variety of innovative approaches, several of which are reported in this special issue. This review provides an overview of methods of heparin isolation and digestion, discusses known heparin contaminants, including OSCS, and summarizes recent publications on heparin impurity analysis using sensors, near-IR, Raman, and NMR spectroscopy, as well as electrophoretic and chromatographic separations. Schematic illustrating the process for heparin impurity characterization ![]()
Collapse
Affiliation(s)
- Szabolcs Beni
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
24
|
Keire DA, Mans DJ, Ye H, Kolinski RE, Buhse LF. Assay of possible economically motivated additives or native impurities levels in heparin by 1H NMR, SAX-HPLC, and anticoagulation time approaches. J Pharm Biomed Anal 2010; 52:656-64. [DOI: 10.1016/j.jpba.2010.02.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/05/2010] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
|
25
|
Feng X, Cheng Y, Yang K, Zhang J, Wu Q, Xu T. Host−Guest Chemistry of Dendrimer−Drug Complexes. 5. Insights into the Design of Formulations for Noninvasive Delivery of Heparin Revealed by Isothermal Titration Calorimetry and NMR Studies. J Phys Chem B 2010; 114:11017-26. [DOI: 10.1021/jp105958j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xueyan Feng
- School of Life Sciences, East China Normal University, Shanghai, 200062, People’s Republic of China, CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China, and Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People’s Republic of China
| | - Yiyun Cheng
- School of Life Sciences, East China Normal University, Shanghai, 200062, People’s Republic of China, CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China, and Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People’s Republic of China
| | - Kun Yang
- School of Life Sciences, East China Normal University, Shanghai, 200062, People’s Republic of China, CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China, and Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People’s Republic of China
| | - Jiahai Zhang
- School of Life Sciences, East China Normal University, Shanghai, 200062, People’s Republic of China, CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China, and Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People’s Republic of China
| | - Qinglin Wu
- School of Life Sciences, East China Normal University, Shanghai, 200062, People’s Republic of China, CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China, and Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People’s Republic of China
| | - Tongwen Xu
- School of Life Sciences, East China Normal University, Shanghai, 200062, People’s Republic of China, CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China, and Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People’s Republic of China
| |
Collapse
|