1
|
Füssl F, Carillo S, Millán-Martín S, Jakes C, Bora K, Liberatori S, Graham J, Bones J. Exploring proteoforms of the IgG2 monoclonal antibody panitumumab using microchip capillary electrophoresis-mass spectrometry. J Pharm Biomed Anal 2023; 234:115494. [PMID: 37300951 DOI: 10.1016/j.jpba.2023.115494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
The IgG2 type monoclonal antibody panitumumab is an anti-epidermal growth factor receptor (EGFR) drug used for the treatment of EGFR-expressing, chemotherapy resistant, metastatic colorectal carcinoma. In this study, panitumumab drug product was first analysed using size exclusion chromatography coupled to mass spectrometry for rapid identity testing. The experimental data led to the identification of two panitumumab isoforms with several prominent forms remaining unidentified, despite apparently low sample complexity. Microchip capillary electrophoresis-mass spectrometry (CE-MS) was subsequently utilised for a more detailed characterization. It was observed that panitumumab is subject to partial N-terminal pyroglutamate formation. Incomplete conversion is uncharacteristic for N-terminally exposed glutamines and in case of panitumumab gives rise to forms which show successive mass offsets of 17 Da, respectively. If not separated before mass spectrometric analysis, e.g. by capillary electrophoresis, such near isobaric species coalesce into single MS peaks, which subsequently hampers or prevents their assignment. With a total of 42 panitumumab isoforms assigned by CE-MS, these observations highlight a potential pitfall of commonly applied rapid identity testing workflows and demonstrate that even low complexity biopharmaceuticals can require separation strategies which offer high separation selectivity for species close in mass.
Collapse
Affiliation(s)
- Florian Füssl
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland
| | - Sara Carillo
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland
| | - Silvia Millán-Martín
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland
| | - Craig Jakes
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland
| | - Karina Bora
- Lonza Biologics, 224 Bath Road, Slough SL1 4DX, United Kingdom
| | | | - James Graham
- Lonza Biologics, 224 Bath Road, Slough SL1 4DX, United Kingdom
| | - Jonathan Bones
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4 D04 V1W8 Ireland.
| |
Collapse
|
2
|
Zhang X, Kwok T, Zhou M, Du M, Li V, Bo T, Huang T, Chen T. Imaged capillary isoelectric focusing (icIEF) tandem high resolution mass spectrometry for charged heterogeneity of protein drugs in biopharmaceutical discovery. J Pharm Biomed Anal 2023; 224:115178. [PMID: 36435084 DOI: 10.1016/j.jpba.2022.115178] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Since the first commercial imaged capillary isoelectric focusing (icIEF) instrument was developed twenty years ago, the technology has become the gold standard of quality and manufacturing process control in the biopharmaceutical industry. This is owing to its high-resolution and high-throughput characterization of protein charge heterogeneity. In addition to a charge variant profiling, mass spectrometry (MS) analyses are also desirable to obtain an in-tact molecular weight (MW) and further identification of these charged species. While offline fractionation technologies including isoelectric focusing (IEF) and free flow electrophoresis (FFE) followed by liquid chromatography (LC)-mass spectrometry (MS) coupling have been employed for this purpose, there have been much fewer reported applications of icIEF-based MS connection and fraction collection. Factors that have impeded the development of these icIEF applications include difficulties with a direct connection to the MS interface as well as high background signal of carrier ampholytes and incompatible coated capillary cartridges. In this work, we developed a robust and flexible icIEF-MS platform which overcomes these challenges to achieve both the rapid icIEF separation and high-resolution MS (HRMS) identification of protein charged variants simultaneously. We demonstrate how this methodology proves highly-sensitive and highly reliable for the characterization of commercial monoclonal antibodies (mAbs) and antibody-drug-conjugates (ADCs). The whole workflow of icIEF-MS for protein heterogeneity is straight forward and accurate and can be performed within 45 min. Furthermore, the developed icIEF-MS configuration can flexibly switch to icIEF-based fraction collection model allowing the user to perform additional in-depth characterization such as peptide mapping by high performance liquid chromatography (HPLC) tandem mass spectrometry (LC-MS/MS).
Collapse
Affiliation(s)
| | - Teresa Kwok
- Advanced Electrophoresis Solution LTD, Cambridge, Canada
| | - Mike Zhou
- Advanced Electrophoresis Solution LTD, Cambridge, Canada
| | - Min Du
- Themo Fisher Scientific, Massachusetts, USA.
| | - Victor Li
- Advanced Electrophoresis Solution LTD, Cambridge, Canada
| | - Tao Bo
- Advanced Electrophoresis Solution LTD, Cambridge, Canada
| | - Tiemin Huang
- Advanced Electrophoresis Solution LTD, Cambridge, Canada
| | - Tong Chen
- Advanced Electrophoresis Solution LTD, Cambridge, Canada.
| |
Collapse
|
3
|
Kwok T, Zhou M, Schaefer A, Bo T, Li V, Huang T, Chen T. Fractionation and online mass spectrometry based on imaged capillary isoelectric focusing (icIEF) for characterizing charge heterogeneity of therapeutic antibody. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:411-418. [PMID: 36537584 DOI: 10.1039/d2ay01670b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Imaged capillary isoelectric focusing (icIEF) technology has been proved to be robust for the characterization of protein charge heterogeneity due to its high-resolution pI discrimination and high-throughput. Although high performance liquid chromatography (HPLC) tandem mass spectrometry (MS) and offline fraction collection technologies including isoelectric focusing (IEF), ion exchange chromatography (IEX) and free flow electrophoresis (FFE) have been widely utilized for protein charge variant characterization, there are a few applications of MS coupling with icIEF as a front-separation technique and related fractionation technologies for protein charge heterogeneity. However, the application of icIEF-MS has been much less frequent due to difficulties in MS interface, compatible ampholyte and coated capillary cartridge designation, ultimately impeding the breadth of icIEF applications in protein charge heterogeneity. In this study, a therapeutic monoclonal antibody (mAb-M-AT) was used for its charge variant characterization on an integrated icIEF platform with functions including analytical profiling, MS online coupling and fraction collection for charge heterogeneities. The main protein component and its four charge variants were identified using direct icIEF-MS coupling. Additionally, the two major acidic and basic charge variants were collected using preparative fractionation after the protein focused in the separation capillary. The identity of the fractions was confirmed by LC-MS at intact protein level and the results were consistent with those using icIEF-MS online coupling. The multiple operation modes of the icIEF platform described above can be rapidly and flexibly switched just by changing customized capillary separation cartridges without drastically altering instrument configuration. The whole workflow of icIEF-based profiling, fractionation and MS online coupling for protein heterogeneity is straightforward, reliable, and accurate, thus providing comprehensive solutions for in-depth protein heterogeneity characterization.
Collapse
Affiliation(s)
- Teresa Kwok
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| | - Mike Zhou
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| | - Anna Schaefer
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| | - Tao Bo
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| | - Victor Li
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| | - Tiemin Huang
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| | - Tong Chen
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| |
Collapse
|
4
|
Cutting-edge mass spectrometry strategy based on imaged capillary isoelectric focusing (icIEF) technology for characterizing charge heterogeneity of monoclonal antibody. Anal Biochem 2023; 660:114961. [PMID: 36341769 DOI: 10.1016/j.ab.2022.114961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 12/14/2022]
Abstract
Imaging capillary isoelectric focusing (icIEF) technology has been becoming the gold criteria of monitoring monoclonal antibody (mAb) charge heterogeneity that is one of the major product-related variants in recombinant biopharmaceuticals, since the first commercial instrument developed twenty years ago. However, the protein identification in icIEF separation is just based on isoelectric point (pI) measurement of protein. Although high resolution mass spectrometry (HRMS) is currently the most powerful means of qualitative protein analysis, traditional icIEF cannot compatibly be used in conjunction with MS due to the use of less volatile reagents. In addition, protein heterogeneity characterization in depth such as peptide mapping by high performance liquid chromatography (HPLC) requires the focused protein bands to be collected as fractions after the icIEF separation, which is a great challenge in biopharmaceutical discovery. In this work, pembrolizumab was employed as targeting mAb (a highly selective anti-PD-1 humanized mAb), an integrated icIEF platform was developed including analytical profiling, MS coupling and fraction collections for charged variant preparation. Multiple operation modes can be rapidly and flexibly switched just by changing customized capillary separation cartridges without more configurations. Main component, four acidic variants (A1-A4) and three basic variants (B1-B3) were baseline separated then directly detected by icIEF-HRMS online coupling for rapid screening of intact protein heterogeneity where reliable and accurate molecular weight of protein charged variants were obtained. Next, by installing preparative capillary separation cartridge, fractions of major charge variants (A2-3 and B1-2) and main component were collected for following LC-MS peptide mapping characterization. The whole workflow of icIEF-based MS strategy for protein heterogeneity is straight forward, reliable and accurate, which provides a comprehensive and revolutionary technology for protein drug quality control (QC) monitoring, MS coupling for fingerprinting intact protein and HPLC-MS peptide mapping in depth.
Collapse
|
5
|
Beck A, Nowak C, Meshulam D, Reynolds K, Chen D, Pacardo DB, Nicholls SB, Carven GJ, Gu Z, Fang J, Wang D, Katiyar A, Xiang T, Liu H. Risk-Based Control Strategies of Recombinant Monoclonal Antibody Charge Variants. Antibodies (Basel) 2022; 11:73. [PMID: 36412839 PMCID: PMC9703962 DOI: 10.3390/antib11040073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 09/28/2023] Open
Abstract
Since the first approval of the anti-CD3 recombinant monoclonal antibody (mAb), muromonab-CD3, a mouse antibody for the prevention of transplant rejection, by the US Food and Drug Administration (FDA) in 1986, mAb therapeutics have become increasingly important to medical care. A wealth of information about mAbs regarding their structure, stability, post-translation modifications, and the relationship between modification and function has been reported. Yet, substantial resources are still required throughout development and commercialization to have appropriate control strategies to maintain consistent product quality, safety, and efficacy. A typical feature of mAbs is charge heterogeneity, which stems from a variety of modifications, including modifications that are common to many mAbs or unique to a specific molecule or process. Charge heterogeneity is highly sensitive to process changes and thus a good indicator of a robust process. It is a high-risk quality attribute that could potentially fail the specification and comparability required for batch disposition. Failure to meet product specifications or comparability can substantially affect clinical development timelines. To mitigate these risks, the general rule is to maintain a comparable charge profile when process changes are inevitably introduced during development and even after commercialization. Otherwise, new peaks or varied levels of acidic and basic species must be justified based on scientific knowledge and clinical experience for a specific molecule. Here, we summarize the current understanding of mAb charge variants and outline risk-based control strategies to support process development and ultimately commercialization.
Collapse
Affiliation(s)
- Alain Beck
- Centre d’Immunologie Pierre-Fabre (CIPF), 5 Avenue Napoléon III, 74160 Saint-Julien-en-Genevois, France
| | - Christine Nowak
- Protein Characterization, Alexion AstraZeneca Rare Disease, 100 College St., New Haven, CT 06510, USA
| | - Deborah Meshulam
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Kristina Reynolds
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - David Chen
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Dennis B. Pacardo
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Samantha B. Nicholls
- Protein Sciences, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Gregory J. Carven
- Research, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Zhenyu Gu
- Jasper Therapeutics, Inc., 2200 Bridge Pkwy Suite 102, Redwood City, CA 94065, USA
| | - Jing Fang
- Biological Drug Discovery, Biogen, 225 Binney St., Cambridge, MA 02142, USA
| | - Dongdong Wang
- Global Biologics, Takeda Pharmaceuticals, 300 Shire Way, Lexington, MA 02421, USA
| | - Amit Katiyar
- CMC Technical Operations, Magenta Therapeutics, 100 Technology Square, Cambridge, MA 02139, USA
| | - Tao Xiang
- Downstream Process and Analytical Development, Boston Institute of Biotechnology, 225 Turnpike Rd., Southborough, MA 01772, USA
| | - Hongcheng Liu
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| |
Collapse
|
6
|
Beyond PTMs: Novel Charge Variants Discovered in icIEF Profiling of PEGylated Proteins. Chromatographia 2022. [DOI: 10.1007/s10337-022-04215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Madren S, McElroy W, Schultz‐Kuszak K, Boumajny B, Shu Y, Sautter S, Zhao HC, Schadock‐Hewitt A, Chumsae C, Ball N, Zhang X, Rish K, Zhang S, Wurm C, Cai S, Bauer SP, Stella C, Zheng L, Roper B, Michels DA, Wu G, Kocjan B, Birk M, Erdmann SE, He X, Whittaker B, Song Y, Barrett H, Strozyk K, Jing Y, Huang L, Mhatre V, McLean P, Yu T, Yang H, Mattila M. Global intercompany assessment of ICIEF platform comparability for the characterization of therapeutic proteins. Electrophoresis 2022; 43:1050-1058. [DOI: 10.1002/elps.202100348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Seth Madren
- Technical Development Biogen Research Triangle Park Durham NC USA
| | | | | | | | - Yao Shu
- Bio Process + Analytical Development Boehringer Ingelheim Pharma GmbH & Co. KG Biberach an der Riss Germany
| | - Sabine Sautter
- Quality Control/Clinical Supply Transfer Boehringer Ingelheim Pharma GmbH & Co. KG Biberach an der Riss Germany
| | - Helen C. Zhao
- Global Process Development Analytics, Biologics Development Bristol Myers Squibb Devens MA USA
| | - Abby Schadock‐Hewitt
- Global Process Development Analytics, Biologics Development Bristol Myers Squibb Devens MA USA
| | - Chris Chumsae
- Global Process Development Analytics, Biologics Development Bristol Myers Squibb Devens MA USA
| | - Nancy Ball
- Biologics, Catalent Pharma Solutions Kansas City MO USA
| | | | - Kimberly Rish
- Biologics, Catalent Pharma Solutions Kansas City MO USA
| | - Shukui Zhang
- Institute of Biologics Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Jiangsu P. R. China
| | | | - Sumin Cai
- BioTechnology Discovery Research Lead Optimization Eli Lilly and Company Indianapolis IN USA
| | - Scott P. Bauer
- BioTechnology Discovery Research Lead Optimization Eli Lilly and Company Indianapolis IN USA
| | - Cinzia Stella
- Department of Protein Analytical Chemistry Genentech South San Francisco CA USA
| | - Laura Zheng
- Department of Protein Analytical Chemistry Genentech South San Francisco CA USA
| | - Brian Roper
- Department of Protein Analytical Chemistry Genentech South San Francisco CA USA
| | - David A. Michels
- Department of Protein Analytical Chemistry Genentech South San Francisco CA USA
| | - Gang Wu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products National Institutes for Food and Drug Control Beijing P. R. China
| | | | - Matej Birk
- Process Analytical Sciences, Novartis Mengeš Slovenia
| | | | - Xiaoping He
- Analytical R&D Biotherapeutics Pharmaceutical Sciences Pfizer Chesterfield MO USA
| | | | - Yvonne Song
- BioProcess Analytics Sanofi Genzyme Framingham MA USA
| | | | | | - Ye Jing
- Analytical Science and Development Shanghai Henlius Biotech Inc. Shanghai P. R. China
| | - Long Huang
- Quality Research Department and Quality Control Department Sichuan Kelun‐Biotech Biopharmaceutical Co., Ltd. Sichuan P. R. China
| | | | - Paul McLean
- Analytical Development Takeda Lexington MA USA
| | - Tiantian Yu
- Shanghai Analytical Sciences WuXi Biologics Shanghai P. R. China
| | - Huijuan Yang
- Shanghai Analytical Sciences WuXi Biologics Shanghai P. R. China
| | - Minna Mattila
- Immunodiagnostic Reagents Business Unit Medix Biochemica Espoo Finland
| |
Collapse
|
8
|
Ma F, Raoufi F, Bailly MA, Fayadat-Dilman L, Tomazela D. Hyphenation of strong cation exchange chromatography to native mass spectrometry for high throughput online characterization of charge heterogeneity of therapeutic monoclonal antibodies. MAbs 2021; 12:1763762. [PMID: 32370592 PMCID: PMC7299211 DOI: 10.1080/19420862.2020.1763762] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Characterization of charge heterogeneity in monoclonal antibodies (mAbs) is needed during developability assessment and downstream development of drug candidates. Charge heterogeneity can come from post-translational modifications like deamidation, isomerization, and sialylation. Elucidation of charge variants with mass spectrometry (MS) has historically been challenging. Due to the nonvolatility and high ionic strength of conventional buffer systems, labor-intensive offline fractionation followed by MS analysis is routinely used. Here, we describe an alternative strategy that directly couples strong cation exchange (SCX) chromatography to high-resolution Orbitrap MS for online native MS analysis (SCX-MS). A combined pH and salt gradient was used for universal separation of mAbs from a wide range of pI values (6.38 ~ 9.2), including infliximab (Remicade®, chimeric IgG1/kappa), NISTmab (humanized IgG1/kappa) and trastuzumab (Herceptin®, humanized IgG1/kappa), without tailoring of chromatographic profiles. Liquid chromatography and MS parameters were optimized to achieve high-quality spectra and enhanced detection of low abundant species under high flow rate conditions. Genedata Expressionist, a vendor agnostic software, was used for data processing. This integrated strategy allows unbiased characterization of numerous charge variant species and low molecular weight fragments (<0.05%) without post-column flow splitting. The application was further expanded with middle-up approaches for subdomain analysis, which demonstrated the versatility of the strategy for analysis of various construct types. With our analysis of mAbs during developability assessment and forced degradation studies, which aimed at assessing potential critical quality attributes in antibody drug molecules, we provide, for the first time, direct visualization of molecular alterations of mAbs at intact level. Furthermore, strong correlation was observed between this novel MS approach and analysis by capillary isoelectric focusing.
Collapse
Affiliation(s)
- Fengfei Ma
- Protein Sciences, Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
| | - Fahimeh Raoufi
- Protein Sciences, Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
| | - Marc Andre Bailly
- Protein Sciences, Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
| | | | - Daniela Tomazela
- Protein Sciences, Discovery Biologics, Merck & Co., Inc., South San Francisco, CA, USA
| |
Collapse
|
9
|
Brechmann NA, Schwarz H, Eriksson PO, Eriksson K, Shokri A, Chotteau V. Antibody capture process based on magnetic beads from very high cell density suspension. Biotechnol Bioeng 2021; 118:3499-3510. [PMID: 33811659 DOI: 10.1002/bit.27776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/03/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022]
Abstract
Cell clarification represents a major challenge for the intensification through very high cell density in the production of biopharmaceuticals such as monoclonal antibodies (mAbs). The present report proposes a solution to this challenge in a streamlined process where cell clarification and mAb capture are performed in a single step using magnetic beads coupled with protein A. Capture of mAb from non-clarified CHO cell suspension showed promising results; however, it has not been demonstrated that it can handle the challenge of very high cell density as observed in intensified fed-batch cultures. The performances of magnetic bead-based mAb capture on non-clarified cell suspension from intensified fed-batch culture were studied. Capture from a culture at density larger than 100 × 106 cells/ml provided an adsorption efficiency of 99% and an overall yield of 93% with a logarithmic host cell protein (HCP) clearance of ≈2-3 and a resulting HCP concentration ≤≈5 ppm. These results show that direct capture from very high cell density cell suspension is possible without prior processing. This technology, which brings significant benefits in terms of operational cost reduction and performance improvements such as low HCP, can be a powerful tool alleviating the challenge of process intensification.
Collapse
Affiliation(s)
- Nils A Brechmann
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Stockholm, Sweden.,Cell Technology Group (CETEG), Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hubert Schwarz
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Stockholm, Sweden.,Cell Technology Group (CETEG), Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Kristofer Eriksson
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Stockholm, Sweden.,R&D, MAGic Bioprocessing, Uppsala, Sweden
| | - Atefeh Shokri
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Stockholm, Sweden.,Cell Technology Group (CETEG), Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Véronique Chotteau
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Stockholm, Sweden.,Cell Technology Group (CETEG), Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
10
|
Yüce M, Sert F, Torabfam M, Parlar A, Gürel B, Çakır N, Dağlıkoca DE, Khan MA, Çapan Y. Fractionated charge variants of biosimilars: A review of separation methods, structural and functional analysis. Anal Chim Acta 2021; 1152:238189. [PMID: 33648647 DOI: 10.1016/j.aca.2020.12.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022]
Abstract
The similarity between originator and biosimilar monoclonal antibody candidates are rigorously assessed based on primary, secondary, tertiary, quaternary structures, and biological functions. Minor differences in such parameters may alter target-binding, potency, efficacy, or half-life of the molecule. The charge heterogeneity analysis is a prerequisite for all biotherapeutics. Monoclonal antibodies are prone to enzymatic or non-enzymatic structural modifications during or after the production processes, leading to the formation of fragments or aggregates, various glycoforms, oxidized, deamidated, and other degraded residues, reduced Fab region binding activity or altered FcR binding activity. Therefore, the charge variant profiles of the monoclonal antibodies must be regularly and thoroughly evaluated. Comparative structural and functional analysis of physically separated or fractioned charged variants of monoclonal antibodies has gained significant attention in the last few years. The fraction-based charge variant analysis has proved very useful for the biosimilar candidates comprising of unexpected charge isoforms. In this report, the key methods for the physical separation of monoclonal antibody charge variants, structural and functional analyses by liquid chromatography-mass spectrometry, and surface plasmon resonance techniques were reviewed.
Collapse
Affiliation(s)
- Meral Yüce
- Sabanci University, SUNUM Nanotechnology Research and Application Center, 34956, Istanbul, Turkey.
| | - Fatma Sert
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey; ILKO ARGEM Biotechnology R&D Center, 34906, Pendik, Istanbul, Turkey
| | - Milad Torabfam
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey
| | - Ayhan Parlar
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey
| | - Büşra Gürel
- Sabanci University, SUNUM Nanotechnology Research and Application Center, 34956, Istanbul, Turkey
| | - Nilüfer Çakır
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey; ILKO ARGEM Biotechnology R&D Center, 34906, Pendik, Istanbul, Turkey
| | - Duygu E Dağlıkoca
- ILKO ARGEM Biotechnology R&D Center, 34906, Pendik, Istanbul, Turkey
| | - Mansoor A Khan
- Texas A&M Health Sciences Centre, Irma Lerma Rangel College of Pharmacy, TX, 77843, USA
| | - Yılmaz Çapan
- ILKO ARGEM Biotechnology R&D Center, 34906, Pendik, Istanbul, Turkey; Hacettepe University, Faculty of Pharmacy, 06100, Ankara, Turkey.
| |
Collapse
|
11
|
Characterization of the acidic species of a monoclonal antibody using free flow electrophoresis fractionation and mass spectrometry. J Pharm Biomed Anal 2020; 185:113217. [DOI: 10.1016/j.jpba.2020.113217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022]
|
12
|
Beck A, Liu H. Macro- and Micro-Heterogeneity of Natural and Recombinant IgG Antibodies. Antibodies (Basel) 2019; 8:antib8010018. [PMID: 31544824 PMCID: PMC6640695 DOI: 10.3390/antib8010018] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/19/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Recombinant monoclonal antibodies (mAbs) intended for therapeutic usage are required to be thoroughly characterized, which has promoted an extensive effort towards the understanding of the structures and heterogeneity of this major class of molecules. Batch consistency and comparability are highly relevant to the successful pharmaceutical development of mAbs and related products. Small structural modifications that contribute to molecule variants (or proteoforms) differing in size, charge or hydrophobicity have been identified. These modifications may impact (or not) the stability, pharmacokinetics, and efficacy of mAbs. The presence of the same type of modifications as found in endogenous immunoglobulin G (IgG) can substantially lower the safety risks of mAbs. The knowledge of modifications is also critical to the ranking of critical quality attributes (CQAs) of the drug and define the Quality Target Product Profile (QTPP). This review provides a summary of the current understanding of post-translational and physico-chemical modifications identified in recombinant mAbs and endogenous IgGs at physiological conditions.
Collapse
Affiliation(s)
- Alain Beck
- Biologics CMC and developability, IRPF, Center d'immunologie Pierre Fabre, St Julien-en-Genevois CEDEX, 74160 Saint-Julien en Genevois, France.
| | - Hongcheng Liu
- Anokion, 50 Hampshire Street, Suite 402, Cambridge, MA 02139, USA.
| |
Collapse
|
13
|
A porous layer open-tubular capillary column with immobilized pH gradient (PLOT-IPG) for isoelectric focusing of amino acids and proteins. Anal Chim Acta 2019; 1048:204-211. [DOI: 10.1016/j.aca.2018.10.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/06/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022]
|
14
|
Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, Nowak C, Xiang T, Dong DD, Sun J, Beck A, Liu H. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 2018; 11:239-264. [PMID: 30543482 DOI: 10.1080/19420862.2018.1553476] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing attention has been paid to developability assessment with the understanding that thorough evaluation of monoclonal antibody lead candidates at an early stage can avoid delays during late-stage development. The concept of developability is based on the knowledge gained from the successful development of approximately 80 marketed antibody and Fc-fusion protein drug products and from the lessons learned from many failed development programs over the last three decades. Here, we reviewed antibody quality attributes that are critical to development and traditional and state-of-the-art analytical methods to monitor those attributes. Based on our collective experiences, a practical workflow is proposed as a best practice for developability assessment including in silico evaluation, extended characterization and forced degradation using appropriate analytical methods that allow characterization with limited material consumption and fast turnaround time.
Collapse
Affiliation(s)
- Yingda Xu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| | - Dongdong Wang
- b Analytical Department , Bioanalytix, Inc ., Cambridge , MA , USA
| | - Bruce Mason
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tony Rossomando
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Ning Li
- d Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Dingjiang Liu
- e Formulation Development , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Jason K Cheung
- f Pharmaceutical Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Wei Xu
- g Analytical Method Development , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Smita Raghava
- h Sterile Formulation Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Amit Katiyar
- i Analytical Development , Bristol-Myers Squibb , Pennington , NJ , USA
| | - Christine Nowak
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tao Xiang
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Diane D Dong
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Joanne Sun
- k Product development , Innovent Biologics , Suzhou Industrial Park , China
| | - Alain Beck
- l Analytical chemistry , NBEs, Center d'immunologie Pierre Fabre , St Julien-en-Genevois Cedex , France
| | - Hongcheng Liu
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| |
Collapse
|
15
|
Characterization of recombinant monoclonal antibody charge variants using WCX chromatography, icIEF and LC-MS/MS. Anal Biochem 2018; 564-565:1-12. [PMID: 30291836 DOI: 10.1016/j.ab.2018.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022]
Abstract
Charge heterogeneity is an important aspect of research into the development of monoclonal antibody drugs. In the present study, charge variants were separated into four fractions using weak cation exchange chromatography and were thoroughly analyzed using liquid chromatography-mass spectrometry at multiple levels. Molecular weight analysis of intact antibody and subunits confirmed the presence of heavy-chain leader sequences, light-chain leader sequences, dehydration, and cysteinylation. Peptide mapping of the fractions using different enzymes further localized the modified sites. Modified proportions identified at peptide level were compared with the purity detected by imaged capillary isoelectric focusing, the results showed that basic variant 1 consisted of cysteinylation and dehydration of asparagine, and basic variant 2 fully accounted for the N-terminal leader sequence of the heavy chain. About 14.8% of the acidic variant can be explained by N-terminal leader sequences in the light chain, and 18% of the acidic variant was demonstrated to be deamidation of asparagine in the heavy chain. There was approximately 54.2% of the acidic variant still cannot be explained. It was hypothesized that those acidic variants that have not yet been identified are an ensemble of molecules with slight molecular weight differences or the same molecular weight but different structures.
Collapse
|
16
|
King C, Patel R, Ponniah G, Nowak C, Neill A, Gu Z, Liu H. Characterization of recombinant monoclonal antibody variants detected by hydrophobic interaction chromatography and imaged capillary isoelectric focusing electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1085:96-103. [PMID: 29649755 DOI: 10.1016/j.jchromb.2018.03.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 12/21/2022]
Abstract
In-depth characterization of the commonly observed variants is critical to the successful development of recombinant monoclonal antibody therapeutics. Multiple peaks of a recombinant monoclonal antibody were observed when analyzed by hydrophobic interaction chromatography and imaged capillary isoelectric focusing. The potential modification causing the heterogeneity was localized to F(ab')2 region by analyzing the antibody after IdeS digestion using hydrophobic interaction chromatography. LC-MS analysis identified asparagine deamidation as the root cause of the observed multiple variants. While the isoelectric focusing method is expected to separate deamidated species, the similar profile observed in hydrophobic interaction chromatography indicates that the single site deamidation caused differences in hydrophobicity. Forced degradation demonstrated that the susceptible asparagine residue is highly exposed, which is expected as it is located in the light chain complementarity determining region. Deamidation of this single site decreased the mAb binding affinity to its specific antigen.
Collapse
Affiliation(s)
- Cory King
- Product Characterization, Alexion Pharmaceuticals, 100 College Street, New Haven CT 06510, United States
| | - Rekha Patel
- Product Characterization, Alexion Pharmaceuticals, 100 College Street, New Haven CT 06510, United States
| | - Gomathinayagam Ponniah
- Product Characterization, Alexion Pharmaceuticals, 100 College Street, New Haven CT 06510, United States
| | - Christine Nowak
- Product Characterization, Alexion Pharmaceuticals, 100 College Street, New Haven CT 06510, United States
| | - Alyssa Neill
- Product Characterization, Alexion Pharmaceuticals, 100 College Street, New Haven CT 06510, United States
| | - Zhenyu Gu
- Product Characterization, Alexion Pharmaceuticals, 100 College Street, New Haven CT 06510, United States
| | - Hongcheng Liu
- Product Characterization, Alexion Pharmaceuticals, 100 College Street, New Haven CT 06510, United States.
| |
Collapse
|
17
|
Shimazaki Y, Ochi Y, Fujimura K. Microscale isolation of native forms of lysozyme from chicken egg white by gel isoelectric focusing. Electrophoresis 2018; 39:1054-1061. [DOI: 10.1002/elps.201700445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Youji Shimazaki
- Department of Chemistry and biology; Graduate School of Science and Engineering; Ehime University; Matsuyama Japan
- Faculty of Science; Ehime University; Matsuyama Japan
| | - Yoshiko Ochi
- Faculty of Science; Ehime University; Matsuyama Japan
| | | |
Collapse
|
18
|
Parekh BS, Srivastava A, Sundaram S, Ching-Heish M, Goldstein J, Barry M, Zhou Q. Correlating charge heterogeneity data generated by agarose gel isoelectric focusing and ion exchange chromatography methods. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1073:1-9. [PMID: 29232605 DOI: 10.1016/j.jchromb.2017.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
Abstract
An isoelectric focusing method (IEF) has been used to assess the charge heterogeneity profile of a monoclonal antibody during the early stages of product development. A more precise and sensitive ion exchange chromatography (IEC/CEX) method was developed and implemented as development progressed and was used concurrently with IEF for lot release and to monitor charge heterogeneity. Charge variants resolved by both methods (IEC and IEF) were purified and characterized. Tryptic peptide mapping and N- linked oligosaccharide profile analyses of the IEC and IEF fractions indicated a structural correlation between the charge variants separated by these two methods. The major sources of molecular heterogeneity were due to the variation in the sialyated carbohydrate structure and heavy chain C-terminal lysine truncation. By monitoring the rates of change in the charge heterogeneity profiles of the monoclonal antibody stored at elevated temperatures by the IEC and IEF methods, a positive correlation between the two methods was established. This approach enabled replacement of the IEF method with the more precise IEC method.
Collapse
Affiliation(s)
- Babita Saxena Parekh
- BioAnalytical Sciences, Eli Lilly and Company, Branchburg, NJ 08876, United States
| | - Arvind Srivastava
- BioAnalytical Sciences, Eli Lilly and Company, Branchburg, NJ 08876, United States
| | - Shanmuuga Sundaram
- BioAnalytical Sciences, Eli Lilly and Company, Branchburg, NJ 08876, United States.
| | - Ming Ching-Heish
- BioAnalytical Sciences, Eli Lilly and Company, Branchburg, NJ 08876, United States
| | - Joel Goldstein
- BioAnalytical Sciences, Eli Lilly and Company, Branchburg, NJ 08876, United States
| | - Michael Barry
- BioAnalytical Sciences, Eli Lilly and Company, Branchburg, NJ 08876, United States
| | - Qinwei Zhou
- BioAnalytical Sciences, Eli Lilly and Company, Branchburg, NJ 08876, United States
| |
Collapse
|
19
|
Sadavarte R, Madadkar P, Filipe CDM, Ghosh R. Rapid preparative separation of monoclonal antibody charge variants using laterally-fed membrane chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1073:27-33. [DOI: 10.1016/j.jchromb.2017.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/25/2017] [Accepted: 12/02/2017] [Indexed: 11/17/2022]
|
20
|
Kraiem H, Zouari F, Abderrazek RB, Manon Y, Ayeb ME, Fillaudeau L, Bedoui J, Bouhaouala-Zahar B. Two-Dimensional Isoelectric Focusing OFFGEL, Micro-Fluidic Lab-on-Chip Electrophoresis and FTIR for Assessment of Long-Term Stability of rhG-CSF Formulation. IEEE Trans Nanobioscience 2017; 16:694-702. [PMID: 29053450 DOI: 10.1109/tnb.2017.2763779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recombinant human granulocyte colony-stimulating factor (rhG-CSF) has been increasingly recognized from among one of the most abundant families of biosimilars. Upon long-term storage, the rhG-CSF is subject to subtle chemical modifications that rapidly occur and, in particular, produce deaminated variants with divergent charge. Indeed, changes in charge from glutamine deamination may alter the way rhG-SCF will refold and the structure of resulting molecule. To assess this charge heterogeneity, 2-D gel electrophoresis has limited application. Recent micro-fluidic- based technical advances offer a great alternative method to better control liquid volumes on a minute scale. Here, we used IEF OFFGEL-lab-on-chip electrophoresis for 2-D separation of the rhG-CSF peptides according to their isoelectric point (pI) and molecular weight (kDa). We used an rhG-CSF commercial therapeutic formulation, kept refrigerated 24 months after expiry. The samples were analyzed for particulate matter and charge variants. Subsequently, the secondary structure was assessed by FTIR spectroscopy and residual biological activity was recorded. Interestingly, we showed an additional band in the acidic gel area above and below the most intense protein band (fractions 10, 11, and 12 at 22.84s). This observation reveals the presence of the rhG-CSF variant charges without any additional high molecular weight impurity or biological activity decrease. We conclude that after two years of storage, the rhG-CSF solution maintained its native secondary structure with little -sheet deviation, as reflected in the 1622 cm-1 and 1695 cm-1. These data demonstrated that a combined strategy is a more suitable and accurate analytical assessment of the rhG-CSF and recombinant protein-based biosimilars.
Collapse
|
21
|
Charge variant analysis of proposed biosimilar to Trastuzumab. Biologicals 2017; 46:46-56. [DOI: 10.1016/j.biologicals.2016.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 11/04/2016] [Accepted: 12/20/2016] [Indexed: 12/21/2022] Open
|
22
|
Ponniah G, Nowak C, Neill A, Liu H. Characterization of charge variants of a monoclonal antibody using weak anion exchange chromatography at subunit levels. Anal Biochem 2017; 520:49-57. [DOI: 10.1016/j.ab.2016.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 11/28/2022]
|
23
|
Liu H, Nowak C, Shao M, Ponniah G, Neill A. Impact of cell culture on recombinant monoclonal antibody product heterogeneity. Biotechnol Prog 2016; 32:1103-1112. [DOI: 10.1002/btpr.2327] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/19/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Hongcheng Liu
- Product Characterization, Global Analytical and Pharmaceutical Development; Alexion Pharmaceuticals; CT06410 Cheshire
| | - Christine Nowak
- Product Characterization, Global Analytical and Pharmaceutical Development; Alexion Pharmaceuticals; CT06410 Cheshire
| | - Mei Shao
- Late Stage Upstream Development, Global Process Development; Alexion Pharmaceuticals; CT06410 Cheshire
| | - Gomathinayagam Ponniah
- Product Characterization, Global Analytical and Pharmaceutical Development; Alexion Pharmaceuticals; CT06410 Cheshire
| | - Alyssa Neill
- Product Characterization, Global Analytical and Pharmaceutical Development; Alexion Pharmaceuticals; CT06410 Cheshire
| |
Collapse
|
24
|
Hosken BD, Li C, Mullappally B, Co C, Zhang B. Isolation and Characterization of Monoclonal Antibody Charge Variants by Free Flow Isoelectric Focusing. Anal Chem 2016; 88:5662-9. [DOI: 10.1021/acs.analchem.5b03946] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brian D. Hosken
- Department of Protein Analytical Chemistry, ‡Department of Biological Technologies, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Charlene Li
- Department of Protein Analytical Chemistry, ‡Department of Biological Technologies, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Berny Mullappally
- Department of Protein Analytical Chemistry, ‡Department of Biological Technologies, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Carl Co
- Department of Protein Analytical Chemistry, ‡Department of Biological Technologies, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Boyan Zhang
- Department of Protein Analytical Chemistry, ‡Department of Biological Technologies, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
25
|
Cutting-edge capillary electrophoresis characterization of monoclonal antibodies and related products. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:61-78. [PMID: 27265157 DOI: 10.1016/j.jchromb.2016.05.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023]
Abstract
Out of all categories, monoclonal antibodies (mAbs), biosimilar, antibody-drug conjugates (ADCs) and Fc-fusion proteins attract the most interest due to their strong therapeutic potency and specificity. Because of their intrinsic complexity due to a large number of micro-heterogeneities, there is a crucial need of analytical methods to provide comprehensive in-depth characterization of these molecules. CE presents some obvious benefits as high resolution separation and miniaturized format to be widely applied to the analysis of biopharmaceuticals. CE is an effective method for the separation of proteins at different levels. capillary gel electrophoresis (CGE), capillary isoelectric focusing (cIEF) and capillary zone electrophoresis (CZE) have been particularly relevant for the characterization of size and charge variants of intact and reduced mAbs, while CE-MS appears to be a promising analytical tool to assess the primary structure of mAbs and related products. This review will be dedicated to detail the current and state-of-the-art CE-based methods for the characterization of mAbs and related products.
Collapse
|
26
|
Beneito-Cambra M, Anres P, Vial J, Gareil P, Delaunay N. Stability and effectiveness of linear polyacrylamide capillary coating to suppress EOF in acidic media in the presence of surfactants, ionic liquids and organic modifiers. Talanta 2016; 150:546-52. [DOI: 10.1016/j.talanta.2015.12.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/22/2015] [Accepted: 12/26/2015] [Indexed: 11/25/2022]
|
27
|
Dada OO, Jaya N, Valliere-Douglass J, Salas-Solano O. Characterization of acidic and basic variants of IgG1 therapeutic monoclonal antibodies based on non-denaturing IEF fractionation. Electrophoresis 2015; 36:2695-2702. [DOI: 10.1002/elps.201500219] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/17/2015] [Accepted: 07/28/2015] [Indexed: 01/17/2023]
Affiliation(s)
| | - Nomalie Jaya
- Department of Analytical Sciences; Seattle Genetics Inc; Bothell WA USA
| | | | | |
Collapse
|
28
|
Scott RA, Rogers R, Balland A, Brady LJ. Rapid identification of an antibody DNA construct rearrangement sequence variant by mass spectrometry. MAbs 2015; 6:1453-63. [PMID: 25484040 DOI: 10.4161/mabs.36222] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During cell line development for an IgG1 antibody candidate (mAb1), a C-terminal extension was identified in 2 product candidate clones expressed in CHO-K1 cell line. The extension was initially observed as the presence of anomalous new peaks in these clones after analysis by cation exchange chromatography (CEX-HPLC) and reduced capillary electrophoresis (rCE-SDS). Reduced mass analysis of these CHO-K1 clones revealed that a larger than expected mass was present on a sub-population of the heavy chain species, which could not be explained by any known chemical or post-translational modifications. It was suspected that this additional mass on the heavy chain was due to the presence of an additional amino acid sequence. To identify the suspected additional sequence, de novo sequencing in combination with proteomic searching was performed against translated DNA vectors for the heavy chain and light chain. Peptides unique to the clones containing the extension were identified matching short sequences (corresponding to 9 and 35 amino acids, respectively) from 2 non-coding sections of the light chain vector construct. After investigation, this extension was observed to be due to the re-arrangement of the DNA construct, with the addition of amino acids derived from the light chain vector non-translated sequence to the C-terminus of the heavy chain. This observation showed the power of proteomic mass spectrometric techniques to identify an unexpected antibody sequence variant using de novo sequencing combined with database searching, and allowed for rapid identification of the root cause for new peaks in the cation exchange and rCE-SDS assays.
Collapse
Key Words
- C-terminal extension
- CAN, acetonitrile
- CEX, cation exchange
- CHO, Chinese hamster ovary
- DNA, deoxyribonucleic acid
- DTT, dithiothreitol
- Da, Dalton
- FDR, false discovery rate
- HC, heavy chain
- HPLC, high performance liquid chromatography
- LC, light chain
- MS, mass spectrometer
- MS/MS, tandem mass spectrometry
- MW, molecular weight
- NCBI, National Center for Biotechnology Information
- NCG, non-concensus glycosylation
- PSM, peptide-spectrum matches
- RP-UPLC, reversed phase ultra-high pressure liquid chromatography
- SEC, size exclusion chromatography
- TFA, trifluoracetic acid
- TOF, time of flight mass spectrometer
- UV, ultraviolet
- aa, amino acids
- mass spectrometry
- ppm, parts per million
- rCE-SDS, reduced capillary electrophoresis-sodium dodecyl sulfate
- sequence variant
Collapse
|
29
|
Ponniah G, Kita A, Nowak C, Neill A, Kori Y, Rajendran S, Liu H. Characterization of the Acidic Species of a Monoclonal Antibody Using Weak Cation Exchange Chromatography and LC-MS. Anal Chem 2015. [DOI: 10.1021/acs.analchem.5b02385] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gomathinayagam Ponniah
- Product
Characterization and ‡Biochemical Process Development, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut, 06410, United States
| | - Adriana Kita
- Product
Characterization and ‡Biochemical Process Development, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut, 06410, United States
| | - Christine Nowak
- Product
Characterization and ‡Biochemical Process Development, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut, 06410, United States
| | - Alyssa Neill
- Product
Characterization and ‡Biochemical Process Development, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut, 06410, United States
| | - Yekaterina Kori
- Product
Characterization and ‡Biochemical Process Development, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut, 06410, United States
| | - Saravanamoorthy Rajendran
- Product
Characterization and ‡Biochemical Process Development, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut, 06410, United States
| | - Hongcheng Liu
- Product
Characterization and ‡Biochemical Process Development, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut, 06410, United States
| |
Collapse
|
30
|
Neill A, Nowak C, Patel R, Ponniah G, Gonzalez N, Miano D, Liu H. Characterization of Recombinant Monoclonal Antibody Charge Variants Using OFFGEL Fractionation, Weak Anion Exchange Chromatography, and Mass Spectrometry. Anal Chem 2015; 87:6204-11. [DOI: 10.1021/acs.analchem.5b01452] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Alyssa Neill
- Product Characterization, Alexion Pharmaceuticals Inc, 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| | - Christine Nowak
- Product Characterization, Alexion Pharmaceuticals Inc, 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| | - Rekha Patel
- Product Characterization, Alexion Pharmaceuticals Inc, 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| | - Gomathinayagam Ponniah
- Product Characterization, Alexion Pharmaceuticals Inc, 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| | - Nidia Gonzalez
- Product Characterization, Alexion Pharmaceuticals Inc, 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| | - Dino Miano
- Product Characterization, Alexion Pharmaceuticals Inc, 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| | - Hongcheng Liu
- Product Characterization, Alexion Pharmaceuticals Inc, 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| |
Collapse
|
31
|
Ayoub D, Bertaccini D, Diemer H, Wagner-Rousset E, Colas O, Cianférani S, Van Dorsselaer A, Beck A, Schaeffer-Reiss C. Characterization of the N-Terminal Heterogeneities of Monoclonal Antibodies Using In-Gel Charge Derivatization of α-Amines and LC-MS/MS. Anal Chem 2015; 87:3784-90. [DOI: 10.1021/ac504427k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Daniel Ayoub
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Diego Bertaccini
- BioOrganic
Mass
Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS,
UMR7178, 67087 Strasbourg, France
| | - Hélène Diemer
- BioOrganic
Mass
Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS,
UMR7178, 67087 Strasbourg, France
| | - Elsa Wagner-Rousset
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Olivier Colas
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- BioOrganic
Mass
Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS,
UMR7178, 67087 Strasbourg, France
| | - Alain Van Dorsselaer
- BioOrganic
Mass
Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS,
UMR7178, 67087 Strasbourg, France
| | - Alain Beck
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Christine Schaeffer-Reiss
- BioOrganic
Mass
Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS,
UMR7178, 67087 Strasbourg, France
| |
Collapse
|
32
|
An optimized approach to the rapid assessment and detection of sequence variants in recombinant protein products. Anal Bioanal Chem 2015; 407:3851-60. [PMID: 25795027 DOI: 10.1007/s00216-015-8618-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 01/01/2023]
Abstract
The development of sensitive techniques to detect sequence variants (SVs), which naturally arise due to DNA mutations and errors in transcription/translation (amino acid misincorporations), has resulted in increased attention to their potential presence in protein-based biologic drugs in recent years. Often, these SVs may be below 0.1%, adding challenges for consistent and accurate detection. Furthermore, the presence of false-positive (FP) signals, a hallmark of SV analysis, requires time-consuming analyst inspection of the data to sort true from erroneous signal. Consequently, gaps in information about the prevalence, type, and impact of SVs in marketed and in-development products are significant. Here, we report the results of a simple, straightforward, and sensitive approach to sequence variant analysis. This strategy employs mixing of two samples of an antibody or protein with the same amino acid sequence in a dilution series followed by subsequent sequence variant analysis. Using automated peptide map analysis software, a quantitative assessment of the levels of SVs in each sample can be made based on the signal derived from the mass spectrometric data. We used this strategy to rapidly detect differences in sequence variants in a monoclonal antibody after a change in process scale, and in a comparison of three mAbs as part of a biosimilar program. This approach is powerful, as true signals can be readily distinguished from FP signal, even at a level well below 0.1%, by using a simple linear regression analysis across the data set with none to minimal inspection of the MS/MS data. Additionally, the data produced from these studies can also be used to make a quantitative assessment of relative levels of product quality attributes. The information provided here extends the published knowledge about SVs and provides context for the discussion around the potential impact of these SVs on product heterogeneity and immunogenicity.
Collapse
|
33
|
Brorson K, Jia AY. Therapeutic monoclonal antibodies and consistent ends: terminal heterogeneity, detection, and impact on quality. Curr Opin Biotechnol 2014; 30:140-6. [DOI: 10.1016/j.copbio.2014.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 06/04/2014] [Accepted: 06/15/2014] [Indexed: 01/16/2023]
|
34
|
Talebi M, Shellie RA, Hilder EF, Lacher NA, Haddad PR. Semiautomated pH Gradient Ion-Exchange Chromatography of Monoclonal Antibody Charge Variants. Anal Chem 2014; 86:9794-9. [DOI: 10.1021/ac502372r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohammad Talebi
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Robert A. Shellie
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Emily F. Hilder
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Nathan A. Lacher
- Analytical R&D, Pfizer BioTherapeutics Pharmaceutical Sciences, Chesterfield, Missouri 63017, United States
| | - Paul R. Haddad
- Australian
Centre for Research on Separation Science (ACROSS), School of Physical
Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| |
Collapse
|
35
|
Barton C, Spencer D, Levitskaya S, Feng J, Harris R, Schenerman MA. Heterogeneity of IgGs: Role of Production, Processing, and Storage on Structure and Function. ACS SYMPOSIUM SERIES 2014. [DOI: 10.1021/bk-2014-1176.ch003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Chris Barton
- Analytical Biotechnology, MedImmune, Gaithersburg, Maryland 20878, United States
- Genentech, Inc., South San Francisco, California 94080, United States
| | - David Spencer
- Analytical Biotechnology, MedImmune, Gaithersburg, Maryland 20878, United States
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Sophia Levitskaya
- Analytical Biotechnology, MedImmune, Gaithersburg, Maryland 20878, United States
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Jinhua Feng
- Analytical Biotechnology, MedImmune, Gaithersburg, Maryland 20878, United States
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Reed Harris
- Analytical Biotechnology, MedImmune, Gaithersburg, Maryland 20878, United States
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Mark A. Schenerman
- Analytical Biotechnology, MedImmune, Gaithersburg, Maryland 20878, United States
- Genentech, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
36
|
Yang X, Li L, Song J, Palmer LC, Li X, Zhang Z. Peptide prefractionation is essential for proteomic approaches employing multiple-reaction monitoring of fruit proteomic research. J Sep Sci 2013; 37:77-84. [DOI: 10.1002/jssc.201301041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 11/09/2022]
Affiliation(s)
- XiaoTang Yang
- College of Horticulture; South China Agriculture University; Guangzhou P. R. China
| | - Li Li
- Key Laboratory of Food Nutrition and Safety; Tianjin University of Science and Technology; Ministry of Education; Tianjin P. R. China
| | - Jun Song
- Atlantic Food and Horticulture Research Centre; Agriculture and Agri-Food Canada Kentville; Nova Scotia Canada
| | - Leslie Campbell Palmer
- Atlantic Food and Horticulture Research Centre; Agriculture and Agri-Food Canada Kentville; Nova Scotia Canada
| | - XiHong Li
- Key Laboratory of Food Nutrition and Safety; Tianjin University of Science and Technology; Ministry of Education; Tianjin P. R. China
| | - ZhaoQi Zhang
- College of Horticulture; South China Agriculture University; Guangzhou P. R. China
| |
Collapse
|
37
|
Zhao SS, Chen DDY. Applications of capillary electrophoresis in characterizing recombinant protein therapeutics. Electrophoresis 2013; 35:96-108. [PMID: 24123141 DOI: 10.1002/elps.201300372] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 12/15/2022]
Abstract
The use of recombinant protein for therapeutic applications has increased significantly in the last three decades. The heterogeneity of these proteins, often caused by the complex biosynthesis pathways and the subsequent PTMs, poses a challenge for drug characterization to ensure its safety, quality, integrity, and efficacy. CE, with its simple instrumentation, superior separation efficiency, small sample consumption, and short analysis time, is a well-suited analytical tool for therapeutic protein characterization. Different separation modes, including CIEF, SDS-CGE, CZE, and CE-MS, provide complementary information of the proteins. The CE applications for recombinant therapeutic proteins from the year 2000 to June 2013 are reviewed and technical concerns are discussed in this article.
Collapse
Affiliation(s)
- Shuai Sherry Zhao
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
38
|
Lingg N, Tan E, Hintersteiner B, Bardor M, Jungbauer A. Highly linear pH gradients for analyzing monoclonal antibody charge heterogeneity in the alkaline range. J Chromatogr A 2013; 1319:65-71. [PMID: 24183595 DOI: 10.1016/j.chroma.2013.10.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/25/2022]
Abstract
Recombinant antibodies with high isoelectric point are frequent since most of them are constructed from the same framework. Classically, cation exchange chromatography is used as a standard method for the determination of antibody charge heterogeneity. In contrast, in this study highly linear pH gradients were achieved by keeping the buffering capacity over the length of the gradient constant. The buffering compounds were selected to be unretained on the column and their respective concentration was adjusted in the start and end buffer of the pH gradient to achieve constant buffering capacity. This helps conserve linearity and stability of the gradient. The method allows quantification of charge variant distribution and the determination of chromatographic isoelectric point. To demonstrate the effectiveness of this novel method, a ProPac WCX-10 column was used to separate isoforms of trastuzumab biosimilar antibodies. Effects of pH gradient linearity and of varying the analytical amount of sample on the separation are shown.
Collapse
Affiliation(s)
- Nico Lingg
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, No. 06-01 Centros, 138668 Singapore, Singapore
| | | | | | | | | |
Collapse
|
39
|
Xu W, Peng Y, Wang F, Paporello B, Richardson D, Liu H. Method to convert N-terminal glutamine to pyroglutamate for characterization of recombinant monoclonal antibodies. Anal Biochem 2013; 436:10-2. [DOI: 10.1016/j.ab.2013.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 11/28/2022]
|
40
|
Markuszewski MJ, Bujak R, Daghir E. Capillary Isoelectric Focusing. SPRINGER SERIES IN CHEMICAL PHYSICS 2013. [DOI: 10.1007/978-3-642-35043-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
41
|
Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of Therapeutic Antibodies and Related Products. Anal Chem 2012; 85:715-36. [DOI: 10.1021/ac3032355] [Citation(s) in RCA: 445] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alain Beck
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Elsa Wagner-Rousset
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Daniel Ayoub
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| | - Sarah Sanglier-Cianférani
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| |
Collapse
|
42
|
Salas-Solano O, Kennel B, Park SS, Roby K, Sosic Z, Boumajny B, Free S, Reed-Bogan A, Michels D, McElroy W, Bonasia P, Hong M, He X, Ruesch M, Moffatt F, Kiessig S, Nunnally B. Robustness of iCIEF methodology for the analysis of monoclonal antibodies: An interlaboratory study. J Sep Sci 2012; 35:3124-9. [DOI: 10.1002/jssc.201200633] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/30/2012] [Accepted: 07/30/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Oscar Salas-Solano
- Analytical Biochemistry Department; Seattle Genetics Inc.; Bothell WA USA
| | - Babu Kennel
- Technical Analytical Services; Bristol Myers Squibb; East Syracuse NY USA
| | - SungAe Suhr Park
- Drug Product Development; P&PD, Amgen Inc.; Thousand Oaks CA USA
| | | | - Zoran Sosic
- Analytical Development; Biogen Idec; Cambridge MA USA
| | | | - Sarah Free
- Analytical Technology Department; Biogen Idec; NC USA
| | - Angelia Reed-Bogan
- Bioproduct Pharmaceutical Research and Development; Eli Lilly and Company; Indianapolis IN USA
| | - David Michels
- Protein Analytical Chemistry Department; Genentech, Inc.; South San Francisco CA USA
| | - Will McElroy
- Protein Analytical Chemistry Department; Genentech, Inc.; South San Francisco CA USA
| | - Pauline Bonasia
- Quality Control Technical Services; Genzyme; Framingham MA USA
| | - Mingfang Hong
- Pharmaceutical Development and Manufacturing Sciences; Johnson and Johnson; Radnor PA USA
| | - Xiaoping He
- Analytical Research and Development; Global Biologics; Pfizer Global Research and Development, Pfizer; Chesterfield MO USA
| | - Margaret Ruesch
- Analytical Research and Development; Global Biologics; Pfizer Global Research and Development, Pfizer; Chesterfield MO USA
| | - Frank Moffatt
- Protein Analytics Development; Solvias AG; Kaiseraugst Switzerland
| | | | - Brian Nunnally
- Regulatory Affairs; Biogen Idec; Research Triangle Park; NC USA
| |
Collapse
|
43
|
Michels DA, Tu AW, McElroy W, Voehringer D, Salas-Solano O. Charge Heterogeneity of Monoclonal Antibodies by Multiplexed Imaged Capillary Isoelectric Focusing Immunoassay with Chemiluminescence Detection. Anal Chem 2012; 84:5380-6. [DOI: 10.1021/ac3008847] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David A. Michels
- Department of Protein
Analytical
Chemistry, Genentech, a Member of the Roche
Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Andrea W. Tu
- ProteinSimple, 3040 Oakmead Village Drive, Santa Clara, California 95051, United
States
| | - Will McElroy
- Department of Protein
Analytical
Chemistry, Genentech, a Member of the Roche
Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - David Voehringer
- ProteinSimple, 3040 Oakmead Village Drive, Santa Clara, California 95051, United
States
| | - Oscar Salas-Solano
- Department of Analytical
Biochemistry, Seattle Genetics, Inc., 21823
30th Drive SE, Bothell,
Washington 98021, United States
| |
Collapse
|
44
|
Wang F, Peklansky B, Anderson C, Wang Y, Rustandi RR. IMPROVED ION-EXCHANGED HPLC METHOD IN mAb USING pH GRADIENT AND ITS COMPARISON WITH cIEF. J LIQ CHROMATOGR R T 2012. [DOI: 10.1080/10826076.2011.619035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Feng Wang
- a Department of Bioanalytical and Bioprocess Research , Merck Research Laboratories , West Point , Pennsylvania , USA
| | - Brian Peklansky
- a Department of Bioanalytical and Bioprocess Research , Merck Research Laboratories , West Point , Pennsylvania , USA
| | - Carrie Anderson
- a Department of Bioanalytical and Bioprocess Research , Merck Research Laboratories , West Point , Pennsylvania , USA
| | - Yang Wang
- a Department of Bioanalytical and Bioprocess Research , Merck Research Laboratories , West Point , Pennsylvania , USA
| | - Richard R. Rustandi
- a Department of Bioanalytical and Bioprocess Research , Merck Research Laboratories , West Point , Pennsylvania , USA
| |
Collapse
|
45
|
Sundaram S, Matathia A, Qian J, Zhang J, Hsieh MC, Liu T, Crowley R, Parekh B, Zhou Q. An innovative approach for the characterization of the isoforms of a monoclonal antibody product. MAbs 2011; 3:505-12. [PMID: 22123057 PMCID: PMC3242836 DOI: 10.4161/mabs.3.6.18090] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 11/19/2022] Open
Abstract
Protein biopharmaceuticals, such as monoclonal antibodies (mAbs) are widely used for the prevention and treatment of various diseases. The complex and lengthy upstream and downstream production methods of the antibodies make them susceptible to physical and chemical modifications. Several IgG1 immunoglobulins are used as medical agents for the treatment of colon, breast, and head and neck cancers, and at least four to eight isoforms exist in the products. The regulatory agencies understand the complex nature of the antibody molecules and allow the manufactures to set their own specifications for lot release, provided the safety and efficacy of the products are established in animal models prior to clinical trials. During the manufacture of a mAb product, we observed lot-to-lot variability in the isoform content and, although the variability is within the set specifications for lot release, made attempts to gain mechanistic insight by isolating and characterizing the individual isoforms. Matrix-assisted laser desorption/ionization (MALDI) and liquid chromatography (LC)/mass spectrometry (MS)/MS analyses of the isolated isoforms indicate that this variability is caused by sialic acid content, as well as truncation of C-terminal lysine of the individual isoforms. Sialidase and carboxypeptidase treatment of the product confirm the observations made by MALDI and LC/MS/MS.
Collapse
|
46
|
Han H, Livingston E, Chen X. High Throughput Profiling of Charge Heterogeneity in Antibodies by Microchip Electrophoresis. Anal Chem 2011; 83:8184-91. [DOI: 10.1021/ac201741w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongling Han
- Integrated Biologics Profiling, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Eliza Livingston
- Integrated Biologics Profiling, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Xiaoyu Chen
- Integrated Biologics Profiling, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
47
|
Ren D, Zhang J, Pritchett R, Liu H, Kyauk J, Luo J, Amanullah A. Detection and identification of a serine to arginine sequence variant in a therapeutic monoclonal antibody. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2877-84. [PMID: 21900054 DOI: 10.1016/j.jchromb.2011.08.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/11/2011] [Accepted: 08/14/2011] [Indexed: 01/03/2023]
Abstract
Sequence variants, also known as unintended amino acid substitutions in the protein primary structure, are one of the critical quality attributes needed to be monitored during process development of monoclonal antibodies (mAbs). Here we report on analytical methods for detection and identification of a sequence variant in an IgG1 mAb expressed in Chinese hamster ovary (CHO) cells. The presence of the sequence variant was detected by an imaged capillary isoelectric focusing (ICIEF) assay, showing a new basic species in mAb charge variant profile. The new basic variant was fractionated and enriched by ion-exchange chromatography, analyzed by reduced light and heavy chain mass determination, and characterized by HPLC-UV/MS/MS of tryptic and endoproteinase Lys-C peptide maps. A Serine to Arginine sequence variant was identified at the heavy chain 441 position (S441R), and confirmed by using synthetic peptides. The relative level of the S441R variant was estimated to be in the range of 0.3-0.6% for several mAb batches analyzed via extracted ion chromatogram (EIC). This work demonstrates the effectiveness of using integrated analytical methods to detect and identify protein heterogeneity and the importance of monitoring product quality during mAb bioprocess development.
Collapse
Affiliation(s)
- Diya Ren
- Oceanside Pharma Technical Development, Genentech, Oceanside, CA 92056, United States.
| | | | | | | | | | | | | |
Collapse
|
48
|
Miller AK, Hambly DM, Kerwin BA, Treuheit MJ, Gadgil HS. Characterization of Site-Specific Glycation During Process Development of a Human Therapeutic Monoclonal Antibody. J Pharm Sci 2011; 100:2543-50. [DOI: 10.1002/jps.22504] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/11/2010] [Accepted: 12/14/2010] [Indexed: 01/27/2023]
|
49
|
Intercompany Study to Evaluate the Robustness of Capillary Isoelectric Focusing Technology for the Analysis of Monoclonal Antibodies. Chromatographia 2011. [DOI: 10.1007/s10337-011-2017-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|