1
|
Cruz Da Silva E, Gaki P, Flieg F, Messmer M, Gucciardi F, Markovska Y, Reisch A, Fafi-Kremer S, Pfeffer S, Klymchenko AS. Direct Zeptomole Detection of RNA Biomarkers by Ultrabright Fluorescent Nanoparticles on Magnetic Beads. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404167. [PMID: 39011971 DOI: 10.1002/smll.202404167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Nucleic acids are important biomarkers in cancer and viral diseases. However, their ultralow concentration in biological/clinical samples makes direct target detection challenging, because it leads to slow hybridization kinetics with the probe and its insufficient signal-to-noise ratio. Therefore, RNA target detection is done by molecular (target) amplification, notably by RT-PCR, which is a tedious multistep method that includes nucleic acid extraction and reverse transcription. Here, a direct method based on ultrabright dye-loaded polymeric nanoparticles in a sandwich-like hybridization assay with magnetic beads is reported. The ultrabright DNA-functionalized nanoparticle, equivalent to ≈10 000 strongly emissive rhodamine dyes, is hybridized with the magnetic bead to the RNA target, providing the signal amplification for the detection. This concept (magneto-fluorescent sandwich) enables high-throughput detection of DNA and RNA sequences of varied lengths from 48 to 1362 nt with the limit of detection down to 0.3 fm using a plate reader (15 zeptomoles), among the best reported for optical sandwich assays. Moreover, it allows semi-quantitative detection of SARS-CoV-2 viral RNA directly in clinical samples without a dedicated RNA extraction step. The developed technology, combining ultrabright nanoparticles with magnetic beads, addresses fundamental challenges in RNA detection; it is expected to accelerate molecular diagnostics of diseases.
Collapse
Affiliation(s)
- Elisabete Cruz Da Silva
- Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, UMR 7021 CNRS, Illkirch, 67401, France
- BrightSens Diagnostics SAS, 11 Rue de l'Académie, Strasbourg, 67000, France
| | - Paraskevi Gaki
- Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, UMR 7021 CNRS, Illkirch, 67401, France
- BrightSens Diagnostics SAS, 11 Rue de l'Académie, Strasbourg, 67000, France
| | - Fabien Flieg
- BrightSens Diagnostics SAS, 11 Rue de l'Académie, Strasbourg, 67000, France
| | - Melanie Messmer
- Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, UPR 9002, Strasbourg, 67084, France
| | - Floriane Gucciardi
- Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, UPR 9002, Strasbourg, 67084, France
| | | | - Andreas Reisch
- Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, UMR 7021 CNRS, Illkirch, 67401, France
| | - Samira Fafi-Kremer
- CHU de Strasbourg, Laboratoire de Virologie, Université de Strasbourg, INSERM, Strasbourg, IRM UMR-S 1109, France
| | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, UPR 9002, Strasbourg, 67084, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, UMR 7021 CNRS, Illkirch, 67401, France
| |
Collapse
|
2
|
Khandelwal G, Dahiya R. Self-Powered Active Sensing Based on Triboelectric Generators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200724. [PMID: 35445458 DOI: 10.1002/adma.202200724] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The demand for portable and wearable chemical or biosensors and their expeditious development in recent years has created a scientific challenge in terms of their continuous powering. As a result, mechanical energy harvesters such as piezoelectric and triboelectric generators (TEGs) have been explored recently either as sensors or harvesters to store charge in small, but long-life, energy-storage devices to power the sensors. The use of energy harvesters as sensors is particularly interesting, as with such multifunctional operations it is possible to reduce the number devices needed in a system, which also helps overcome the integration complexities. In this regard, TEGs are promising, particularly for energy autonomous chemical and biological sensors, as they can be developed with a wide variety of materials, and their mechanical energy to electricity conversion can be modulated by various analytes. This review focuses on this interesting dimension of TEGs and presents various self-powered active chemical and biological sensors. A brief discussion about the development of TEG-based physical, magnetic, and optical sensors is also included. The influence of environmental factors, various figures of merit, and the significance of TEG design are explained in context with the active sensing. Finally, the key applications, challenges, and future perspective of chemical and biological detection via TEGs are discussed with a view to drive further advances in the field of self-powered sensors.
Collapse
Affiliation(s)
- Gaurav Khandelwal
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt South Building, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt South Building, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
3
|
Zhang H, Liu X, Liu M, Gao T, Huang Y, Liu Y, Zeng W. Gene detection: An essential process to precision medicine. Biosens Bioelectron 2018; 99:625-636. [DOI: 10.1016/j.bios.2017.08.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/12/2017] [Indexed: 01/08/2023]
|
4
|
Lee YG, Han J, Kwon S, Kang S, Jang A. Development of a rotary disc voltammetric sensor system for semi-continuous and on-site measurements of Pb(II). CHEMOSPHERE 2016; 143:78-84. [PMID: 26058555 DOI: 10.1016/j.chemosphere.2015.05.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/13/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Atomic absorption spectrometry and inductively coupled plasma-mass spectrometry are widely used for determination of heavy metals due to their low detection limits. However, they are not applicable to on-site measurements of heavy metals as bulky equipment, and highly skilled laboratory staffs are needed as well. In this study, a novel analytical method using a rotary disc voltammetric (RDV) sensor has been successfully designed, fabricated and characterized for semi-continuous and on-site measurements of trace levels of Pb(II) in non-deoxygenating solutions. The square wave anodic stripping voltammetry was used to improve the sensitivity of the Pb(II) detection level with less than 10nM (2μgL(-1)). The RDV sensor has 24-sensing holes to measure concentrations of Pb(II) semi-continuously at sampling sites. Each sensing hole consists of a silver working electrode, an integrated silver counter, and a quasi-reference electrode, which requires only a small amount of samples (<30μL) for measurement of Pb(II) without disturbing and/or clogging the sensing environment. In addition, the RDV sensor showed a correlation coefficient of 0.998 for the Pb(II) concentration range of 10nM-10μM at the deposition time of 180s and its low detection limit was 6.19nM (1.3μgL(-1)). These results indicated that the advanced monitoring technique using a RDV sensor might provide environmental engineers with a reliable way for semi-continuous and on-site measurements of Pb(II).
Collapse
Affiliation(s)
- Yong-Gu Lee
- Department of Water Resource, Graduate School of Water Resources, Sungkyunkwan University, 2066 Seobu-ro, Jangan-Gu, Suwon, Gyeonggi-Do 440-746, Republic of Korea
| | - Jungyoup Han
- Siloam Biosciences, 413 Northland Blvd, Cincinnati, OH 45240, USA
| | - Soondong Kwon
- Mine Reclamation Corp., Seoul 110-727, Republic of Korea
| | - Seoktae Kang
- Department of Civil Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-Gu, Yongin, Gyeonggi-Do 446-701, Republic of Korea
| | - Am Jang
- Department of Water Resource, Graduate School of Water Resources, Sungkyunkwan University, 2066 Seobu-ro, Jangan-Gu, Suwon, Gyeonggi-Do 440-746, Republic of Korea.
| |
Collapse
|
5
|
Shen J, Li Y, Gu H, Xia F, Zuo X. Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev 2014; 114:7631-77. [PMID: 25115973 DOI: 10.1021/cr300248x] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Juwen Shen
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) , Wuhan 430074, China
| | | | | | | | | |
Collapse
|
6
|
Yu HW, Kim IS, Niessner R, Knopp D. Multiplex competitive microbead-based flow cytometric immunoassay using quantum dot fluorescent labels. Anal Chim Acta 2012; 750:191-8. [PMID: 23062440 DOI: 10.1016/j.aca.2012.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/11/2012] [Accepted: 05/12/2012] [Indexed: 01/03/2023]
Abstract
In answer to the ever-increasing need to perform the simultaneous analysis of environmental hazards, microcarrier-based multiplex technologies show great promise. Further integration with biofunctionalized quantum dots (QDs) creates new opportunities to extend the capabilities of multicolor flow cytometry with their unique fluorescence properties. Here, we have developed a competitive microbead-based flow cytometric immunoassay using QDs fluorescent labels for simultaneous detection of two analytes, bringing the benefits of sensitive, rapid and easy-of-manipulation analytical tool for environmental contaminants. As model target compounds, the cyanobacterial toxin microcystin-LR and the polycyclic aromatic hydrocarbon compound benzo[a]pyrene were selected. The assay was carried out in two steps: the competitive immunological reaction of multiple targets using their exclusive sensing elements of QD/antibody detection probes and antigen-coated microsphere, and the subsequent flow cytometric analysis. The fluorescence of the QD-encoded microsphere was thus found to be inversely proportional to target analyte concentration. Under optimized conditions, the proposed assay performed well within 30 min for the identification and quantitative analysis of the two environmental contaminants. For microcystin-LR and benzo[a]pyrene, dose-response curves with IC(50) values of 5 μg L(-1) and 1.1 μg L(-1) and dynamic ranges of 0.52-30 μg L(-1) and 0.13-10 μg L(-1) were obtained, respectively. Recovery was 92.6-106.5% for 5 types of water samples like bottled water, tap water, surface water and seawater using only filtration as sample pretreatment.
Collapse
Affiliation(s)
- Hye-Weon Yu
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju, South Korea
| | | | | | | |
Collapse
|
7
|
Jahid IK, Ha SD. A review of microbial biofilms of produce: Future challenge to food safety. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0041-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
8
|
Yu HW, Jang A, Kim LH, Kim SJ, Kim IS. Bead-based competitive fluorescence immunoassay for sensitive and rapid diagnosis of cyanotoxin risk in drinking water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:7804-11. [PMID: 21851106 DOI: 10.1021/es201333f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Due to the increased occurrence of cyanobacterial blooms and their toxins in drinking water sources, effective management based on a sensitive and rapid analytical method is in high demand for security of safe water sources and environmental human health. Here, a competitive fluorescence immunoassay of microcystin-LR (MCYST-LR) is developed in an attempt to improve the sensitivity, analysis time, and ease-of-manipulation of analysis. To serve this aim, a bead-based suspension assay was introduced based on two major sensing elements: an antibody-conjugated quantum dot (QD) detection probe and an antigen-immobilized magnetic bead (MB) competitor. The assay was composed of three steps: the competitive immunological reaction of QD detection probes against analytes and MB competitors, magnetic separation and washing, and the optical signal generation of QDs. The fluorescence intensity was found to be inversely proportional to the MCYST-LR concentration. Under optimized conditions, the proposed assay performed well for the identification and quantitative analysis of MCYST-LR (within 30 min in the range of 0.42-25 μg/L, with a limit of detection of 0.03 μg/L). It is thus expected that this enhanced assay can contribute both to the sensitive and rapid diagnosis of cyanotoxin risk in drinking water and effective management procedures.
Collapse
Affiliation(s)
- Hye-Weon Yu
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea
| | | | | | | | | |
Collapse
|
9
|
Lin SW, Chang CH, Lin CH. High-throughput Fluorescence Detections in Microfluidic Systems. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s2211-4254(11)60005-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|