1
|
Wu Q, Wang Y, Wang L, Su Y, He G, Chen X, Hou L, Zhang W, Wang YY. A Portable Electrochemical Biosensor Based on an Amino-Modified Ionic Metal-Organic Framework for the One-Site Detection of Multiple Organophosphorus Pesticides. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39363450 DOI: 10.1021/acsami.4c13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Constructing stable, portable sensors and revealing their mechanisms is challenging. Ion metal-organic frameworks (IMOFs) are poised to serve as highly effective electrochemical sensors for detecting organophosphorus pesticides (OPs), leveraging their unique charge properties. In this work, an amino-modified IMOF was constructed and combined with near-field communication (NFC) technology to develop a portable, touchless, and battery-free electrochemical biosensor NH2-IMOF@CS@AChE. -NH2 in NH2-IMOF gives the framework a higher electropositivity compared to IMOF, enhancing the electrostatic attraction with acetylcholinesterase (AChE), which is beneficial for immobilizing AChE. Furthermore, the uncoordinated O atoms and the (CH3)2NH2+ groups in NH2-IMOF help to form stronger bonds with AChE through hydrogen bonds. The results showed a wide linear response range of 1 × 10-15 to 1 × 10-9 M and a low detection limit of 1.24 × 10-13 M for glyphosate (Gly) in the practical detection of OPs. Additionally, electrochemical biosensor arrays were constructed to effectively identify and distinguish multiple OPs on the basis of their unique differential pulse voltammetry (DPV) electrochemical signals. This work provides a simple and effective solution for on-site OP analysis and can be widely applied in food safety and water quality monitoring.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Yifei Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Linxia Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Yu Su
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Guorong He
- International Joint Research Centre for the Battery-Free Internet of Things, Advanced Battery-Free Sensing and Computing Technology International Science and Technology Cooperation Base, Northwest University, Xi'an 710127, PR China
| | - Xiaojiang Chen
- International Joint Research Centre for the Battery-Free Internet of Things, Advanced Battery-Free Sensing and Computing Technology International Science and Technology Cooperation Base, Northwest University, Xi'an 710127, PR China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Wenyan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| |
Collapse
|
2
|
Han J, Zhang Y, Lv X, Fan D, Dong S. A facile, low-cost bimetallic iron-nickel MOF nanozyme-propelled ratiometric fluorescent sensor for highly sensitive and selective uric acid detection and its smartphone application. NANOSCALE 2024; 16:1394-1405. [PMID: 38165141 DOI: 10.1039/d3nr05028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
As a kind of well-known disease biomarker, uric acid (UA) is closely associated with normal metabolism and health. Despite versatile nanozymes facilitating the analysis of UA, most previous works could only generate single-signal outputs with unsatisfactory detection performance. Exploring a novel ratiometric fluorescent UA sensor with high sensitivity, reliability and portable sensing ability based on facile, low-cost nanozymes is still challenging. Herein, we report the first metal-organic-framework (MOF) nanozyme-originated ratiometric fluorescent UA sensor based on Fe3Ni-MOF-NH2 propelled UA/uricase/o-phenylenediamine tandem catalytic reaction. Different from previous reports, the peroxidase-like property and fluorescence of Fe3Ni-MOF-NH2 were simultaneously employed. In the absence of UA, only the MOF's fluorescence at 430 nm (FI430) can be observed, while the addition of UA will initiate UA/uricase catalytic reaction, and the generated H2O2 could oxidize o-phenylenediamine into highly fluorescent 2,3-diaminophenazine (DAP) (emission at 565 nm, FI565) under the catalysis of the MOF nanozyme. Coincidently, MOF's fluorescence can be quenched by DAP via the inner filter effect, resulting in a low FI430 value and high FI565 value, respectively. Therefore, H2O2 and UA can be alternatively detected through monitoring the above contrary fluorescence changes. The limit of detection for UA is 24 nM, which is much lower than those in most previous works, and the lowest among nanozyme-based ratiometric fluorescent UA sensors reported to date. Moreover, the portable sensing of UA via smartphone-based RGB analysis was facilely achieved by virtue of the above nanozyme-propelled tandem catalytic system, and MOF nanozyme-based molecular contrary logic pairs were further implemented accordingly.
Collapse
Affiliation(s)
- Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Yuwei Zhang
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Xujuan Lv
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
3
|
Akyüz D, Demirbaş Ü. Sensor performances of novel piperidine substituted cobalt(II) and copper(II) phthalocyanines for detection of dopamine, ascorbic acid and uric acid. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Electrochemical enzyme-based blood uric acid biosensor: new insight into the enzyme immobilization on the surface of electrode via poly-histidine tag. Mikrochim Acta 2022; 189:326. [PMID: 35948696 DOI: 10.1007/s00604-022-05408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/06/2022] [Indexed: 10/15/2022]
Abstract
In a new approach, we considered the special affinity between Ni and poly-histidine tags of recombinant urate oxidase to utilize Ni-MOF for immobilizing the enzyme. In this study, a carbon paste electrode (CPE) was modified by histidine-tailed urate oxidase (H-UOX) and nickel-metal-organic framework (Ni-MOF) to construct H-UOX/Ni-MOF/CPE, which is a rapid, sensitive, and simple electrochemical biosensor for UA detection. The use of carboxy-terminal histidine-tailed urate oxidase in the construction of the electrode allows the urate oxidase enzyme to be positioned correctly in the electrode. This, in turn, enhances the efficiency of the biosensor. Characterization was carried out by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and field emission scanning electron microscopy (FE-SEM). At optimum conditions, the biosensor provided a short response time, linear response within 0.3-10 µM and 10-140 µM for UA with a detection limit of 0.084 µM, repeatability of 3.06%, and reproducibility of 4.9%. Furthermore, the biosensor revealed acceptable stability and selectivity of UA detection in the presence of the commonly coexisted ascorbic acid, dopamine, L-cysteine, urea, and glucose. The detection potential was at 0.4 V vs. Ag/AgCl.
Collapse
|
5
|
A biosensor based on the biomimetic oxidase Fe 3O 4@MnO 2 for colorimetric determination of uric acid. Colloids Surf B Biointerfaces 2022; 212:112347. [PMID: 35085939 DOI: 10.1016/j.colsurfb.2022.112347] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022]
Abstract
High plasma urate is closely related to gout, cardiovascular and other diseases. Therefore, monitoring the content of uric acid (UA) in plasma is of great significance for the treatment of gout and the prevention of other related diseases. Herein, a biosensor based on the biomimetic oxidase Fe3O4 nanoparticles (NPs) @MnO2 nanosheets (Fe3O4@MnO2 NS) was constructed for colorimetric determination of UA. MnO2 NS is an efficient biomimetic oxidase, and we found that the intrinsic oxidase activity of MnO2 NS doped with Fe3O4 NPs can be significantly enhanced. The chromogenic substrate TMB can be catalyzed by Fe3O4 @MnO2 NS to generate blue oxidized TMB, and UA can decompose the MnO2 NS to inhibit the color reaction of TMB selectively, thereby realizing the quantitative detection of UA. In addition, the UA biosensor can perform colorimetric analysis of UA level through three methods: naked eye, smartphone and ultraviolet-visible (UV-vis) spectrophotometer. The linear ranges of UV-vis spectrophotometry and colorimetry with smartphone were 1-70 μM and 200-650 μM, respectively, and the limits of detection (LOD) were 0.27 μM and 21 μM. The analysis results of human plasma samples showed that the method had good selectivity and practicability.
Collapse
|
6
|
Chai B, Xu H, Zheng T, Chen J, Liu S, Yu M, Wen H. A Highly Efficient Luminescent Metal–Organic Framework with Strong Conjugate Unit for Sensing Small Molecules. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bi‐Lian Chai
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 Jiangxi Province P.R. China
| | - Hui Xu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 Jiangxi Province P.R. China
| | - Teng‐Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 Jiangxi Province P.R. China
| | - Jing‐Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 Jiangxi Province P.R. China
| | - Sui‐Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 Jiangxi Province P.R. China
| | - Mei‐Hui Yu
- School of Materials Science and Engineering, TKL of Metal‐ and Molecule‐Based Material Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University Tianjin 300350 P.R. China
| | - He‐Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 Jiangxi Province P.R. China
| |
Collapse
|
7
|
Muniyasamy H, Chinnadurai C, Nelson M, Veeramanoharan A, Sepperumal M, Ayyanar S. Synthesis of C 3-Symmetric Triazine-Based Derivatives: Study of their AIEE, Mechanochromic Behaviors, and Detection of Picric Acid and Uric Acid in Aqueous Medium. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Harikrishnan Muniyasamy
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| | - Chithiraikumar Chinnadurai
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| | - Malini Nelson
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| | - Ashokkumar Veeramanoharan
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| | - Murugesan Sepperumal
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| | - Siva Ayyanar
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu 625 021, India
| |
Collapse
|
8
|
Feng S, Yu L, Yan M, Ye J, Huang J, Yang X. Holey nitrogen-doped graphene aerogel for simultaneously electrochemical determination of ascorbic acid, dopamine and uric acid. Talanta 2020; 224:121851. [PMID: 33379067 DOI: 10.1016/j.talanta.2020.121851] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/27/2022]
Abstract
In this paper, holey nitrogen-doped graphene aerogel (HNGA) was synthesized and applied to the concurrently electrochemical determination of small biological molecules including ascorbic acid (AA), dopamine (DA) and uric acid (UA). Firstly, holey graphene hydrogel was synthesized by the hydrothermal reaction in the presence of H2O2, which subsequently was lyophilized and further annealed in the mixed gas of ammonia and argon to obtain HNGA. Electron microscopy characterization exhibited a great number of nanopores formed on the basal surface of graphene sheets, and HNGA possessed a hierarchically porous structure. The unique structure and composition of HNGA make it an ideal material for electroanalytical application through accelerating mass and electron transfer. HNGA modified glassy carbon electrode (HNGA/GCE) displayed significantly enhanced electrochemical response to AA, DA, and UA, namely reducing overpotential, increasing current density, and improving the reversibility. The oxidation peaks of these three biomolecules can be entirely separated with evident peak potential differences which are 0.216 V (AA-DA), 0.120 V (DA-UA), and 0.336 V (AA-UA), which it allowed the determination of the three substances at the same time. This sensor shows high sensitivity for the determination of AA, DA, and UA with the detection limit of 16.7 μM, 0.22 μM, and 0.12 μM (S/N = 3), respectively. The proposed sensor was applicable for the practical sample analysis as well and desirable recovery was obtained.
Collapse
Affiliation(s)
- Sinuo Feng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Linying Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mengxia Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jing Ye
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin, 130022, China.
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
9
|
Pang S, Kan X. One-pot synthesis of nitrogen doped graphene-thionine-gold nanoparticles composite for electrochemical sensing of diethylstilbestrol and H2O2. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
An electrochemical biosensor based on multi-wall carbon nanotube-modified screen-printed electrode immobilized by uricase for the detection of salivary uric acid. Anal Bioanal Chem 2020; 412:7275-7283. [PMID: 32794003 DOI: 10.1007/s00216-020-02860-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
The amounts of uric acid (UA) in non-invasive biological samples, such as saliva, are critical for diagnosis and therapy of gout, hyperuricemia, Lesch-Nyhan syndrome, and several other diseases. Here, disposable UA biosensors were fabricated with the screen printing technique on the substrate of flexible PET. The working electrode was modified with carbon nanotubes followed by uricase for UA detection with excellent selectivity. The biosensor showed good electrocatalytic activity toward UA with high sensitivity, low detection limit, and wide linear range, which covers the full range of UA levels in human saliva. We demonstrate that UA can be directly detected in human saliva with the biosensor and the experimental data were consistent with the clinical analysis. This study indicated that the non-invasive biosensor is an attractive and possible approach for the monitoring of salivary UA. Graphical abstract A disposable uric acid biosensor modified with carbon nanotubes followed by uricase was fabricated on flexible PET and applied for the monitoring of salivary uric acid in human saliva.
Collapse
|
11
|
Han LJ, Kong YJ, Hou GZ, Chen HC, Zhang XM, Zheng HG. A Europium-based MOF Fluorescent Probe for Efficiently Detecting Malachite Green and Uric Acid. Inorg Chem 2020; 59:7181-7187. [PMID: 32352295 DOI: 10.1021/acs.inorgchem.0c00620] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lanthanide (such as Tb and Eu) metal-organic frameworks (MOFs) have been widely used in fluorescent probes because of their multiple coordination modes and brilliant fluorescence characteristic. Many lanthanide MOFs were applied in detecting metal ions, inorganic anions, and small molecules. However, it's rarely reported that Ln-MOF was devoted to detecting malachite green (MG) and uric acid (UA). We prepared a europium-based metal-organic framework (Eu-TDA) (TDA = 2,5-thiophenedicarboxylic acid group). Luminescence studies demonstrated that Eu-TDA can rapidly detect MG and UA with excellent selectivity and sensitivity, where individual quenching efficiency Ksv (MG: 5.8 × 105 M-1; UA: 4.15 × 104 M-1) and detection limit (MG: 0.0221 μM; UA: 0.689 μM) were regarded as the excellent MOF sensors for detecting MG and UA. The quenching of Eu-TDA's fluorescence emission by MG and UA was likely due to the spectral overlap, energy transfer, and competition. Among 11 metal cations and 14 anions, Eu-TDA can quickly and effectively recognize MG and UA with highly selective and sensitive properties. Our method possesses potential application in detecting UA in human blood and MG in the fishpond.
Collapse
Affiliation(s)
- Li-Juan Han
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, P. R. China.,State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Ya-Jie Kong
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, P. R. China
| | - Guo-Zheng Hou
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, P. R. China
| | - Hua-Chong Chen
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, P. R. China
| | - Xing-Min Zhang
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, P. R. China
| | - He-Gen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
12
|
Fukuda T, Muguruma H, Iwasa H, Tanaka T, Hiratsuka A, Shimizu T, Tsuji K, Kishimoto T. Electrochemical determination of uric acid in urine and serum with uricase/carbon nanotube /carboxymethylcellulose electrode. Anal Biochem 2020; 590:113533. [DOI: 10.1016/j.ab.2019.113533] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/05/2023]
|
13
|
Carbon Biomaterials. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Liu X, Gao Y, Chandrawati R, Hosta-Rigau L. Therapeutic applications of multifunctional nanozymes. NANOSCALE 2019; 11:21046-21060. [PMID: 31686088 DOI: 10.1039/c9nr06596b] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanozymes, which are functional nanomaterials with enzyme-like characteristics, have emerged as a highly-stable and low-cost alternative to natural enzymes. Apart from overcoming the limitations of natural enzymes (e.g., high cost, low stability or complex production), nanozymes are also equipped with the unique intrinsic properties of nanomaterials such as magnetism, luminescence or near infrared absorbance. Therefore, the development of nanozymes exhibiting additional functions to their catalytic activity has opened up new opportunities and applications within the biomedical field. To highlight the progress in the field, this review summarizes the novel applications of multifunctional nanozymes in various biomedical-related fields ranging from cancer diagnosis, cancer and antibacterial therapy to regenerative medicine. Future challenges and perspectives that may advance nanozyme research are also discussed at the end of the review.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Health Technology, Centre for Nanomedicine and Theranostics, DTU Health Tech, Technical University of Denmark, 2800 Lyngby, Denmark.
| | - Yuan Gao
- School of Chemical Engineering and Australian Centre for Nanomedicine, The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine, The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Leticia Hosta-Rigau
- Department of Health Technology, Centre for Nanomedicine and Theranostics, DTU Health Tech, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|
15
|
Eggenberger OM, Ying C, Mayer M. Surface coatings for solid-state nanopores. NANOSCALE 2019; 11:19636-19657. [PMID: 31603455 DOI: 10.1039/c9nr05367k] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since their introduction in 2001, solid-state nanopores have been increasingly exploited for the detection and characterization of biomolecules ranging from single DNA strands to protein complexes. A major factor that enables the application of nanopores to the analysis and characterization of a broad range of macromolecules is the preparation of coatings on the pore wall to either prevent non-specific adhesion of molecules or to facilitate specific interactions of molecules of interest within the pore. Surface coatings can therefore be useful to minimize clogging of nanopores or to increase the residence time of target analytes in the pore. This review article describes various coatings and their utility for changing pore diameters, increasing the stability of nanopores, reducing non-specific interactions, manipulating surface charges, enabling interactions with specific target molecules, and reducing the noise of current recordings through nanopores. We compare the coating methods with respect to the ease of preparing the coating, the stability of the coating and the requirement for specialized equipment to prepare the coating.
Collapse
Affiliation(s)
- Olivia M Eggenberger
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| | - Cuifeng Ying
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| | - Michael Mayer
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
16
|
Ghanbari-Ardestani S, Khojasteh-Band S, Zaboli M, Hassani Z, Mortezavi M, Mahani M, Torkzadeh-Mahani M. The effect of different percentages of triethanolammonium butyrate ionic liquid on the structure and activity of urate oxidase: Molecular docking, molecular dynamics simulation, and experimental study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111318] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Mounesh, Jilani BS, Pari M, Reddy KV, Lokesh K. Simultaneous and sensitive detection of ascorbic acid in presence of dopamine using MWCNTs-decorated cobalt (II) phthalocyanine modified GCE. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Dalapati R, Biswas S. A Pyrene-Functionalized Metal–Organic Framework for Nonenzymatic and Ratiometric Detection of Uric Acid in Biological Fluid via Conformational Change. Inorg Chem 2019; 58:5654-5663. [DOI: 10.1021/acs.inorgchem.8b03629] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rana Dalapati
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shyam Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
19
|
Hudari FF, Bessegato GG, Bedatty Fernandes FC, Zanoni MVB, Bueno PR. Reagentless Detection of Low-Molecular-Weight Triamterene Using Self-Doped TiO2 Nanotubes. Anal Chem 2018; 90:7651-7658. [DOI: 10.1021/acs.analchem.8b01501] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Felipe F. Hudari
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Guilherme G. Bessegato
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | | | - Maria V. B. Zanoni
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Paulo R. Bueno
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| |
Collapse
|
20
|
Peng B, Cui J, Wang Y, Liu J, Zheng H, Jin L, Zhang X, Zhang Y, Wu Y. CeO 2-x/C/rGO nanocomposites derived from Ce-MOF and graphene oxide as a robust platform for highly sensitive uric acid detection. NANOSCALE 2018; 10:1939-1945. [PMID: 29319098 DOI: 10.1039/c7nr08858b] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Developing suitable substrate materials is of significance in constructing electrochemical biosensors for fast and reliable quantification of molecules of chemical and biomedical interest. For practical applications, biosensors working at low negative potentials have the advantage of high selectivity and sensitivity. In this work, CeO2-x/C/rGO nanocomposites have been synthesized through the pyrolysis of metal organic frameworks with graphene oxide. The CeO2-x/C/rGO nanocomposites exhibit excellent catalytic properties towards H2O2, which is one of the uricase catalyzed intermediates at low working potentials due to the coexistence of Ce3+ and reduced graphene oxide (rGO). A novel biosensor based on the CeO2-x/C/rGO nanocomposites has been developed and utilized for the detection of uric acid, an important molecule in the biological and medical fields. The biosensor based on the CeO2-x/C/rGO nanocomposites presents a high sensitivity of 284.5 μA cm-2 mM-1 at -0.4 V (vs. SCE), a wide linear range between 49.8 and 1050.0 μM and a low detection limit of 2.0 μM. Moreover, it is found that the amperometric responses are free from interference of ascorbic acid and urea, which shows a great potential for practical applications.
Collapse
Affiliation(s)
- Bangguo Peng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang J, Huang Z, Hu Y, Ge J, Li J, Li Z. A facile fluorescence assay for rapid and sensitive detection of uric acid based on carbon dots and MnO2nanosheets. NEW J CHEM 2018. [DOI: 10.1039/c8nj02607f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A sensitive turn-on fluorescence method for uric acid detection is proposed based on FRET between carbon dots and MnO2nanosheets.
Collapse
Affiliation(s)
- Jie Yang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Zhongming Huang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yalei Hu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Jia Ge
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Jianjun Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Zhaohui Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
22
|
Dey N, Bhattacharya S. Nanomolar Level Detection of Uric Acid in Blood Serum and Pest-Infested Grain Samples by an Amphiphilic Probe. Anal Chem 2017; 89:10376-10383. [PMID: 28795801 DOI: 10.1021/acs.analchem.7b02344] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A pyrene based amphiphilic receptor has been utilized in the nanomolar detection of uric acid at physiological pH in water. The compound shows a unique concentration-dependent modulation in optical response toward uric acid. In intramolecular/static excimer form (low concentration range), it displays a ratiometric response, while a "turn-off" sensing is observed specifically in the presence of intermolecular/dynamic excimer (high concentration range). The present protocol is then employed for the estimation of uric acid in blood serum samples of healthy individuals. Bland-Altman analysis in comparison to clinically approved uricase assay indicated the high accuracy of the present method. Additionally, the extent of insect infestation in stored grain samples was determined by measuring the uric acid content of their aqueous extracts. Low-cost color strips were developed for on-site detection of uric acid without involving any sophisticated instrument or trained personnel.
Collapse
Affiliation(s)
- Nilanjan Dey
- Department of Organic Chemistry, Indian Institute of Science , Bangalore 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
23
|
Pasinszki T, Krebsz M, Tung TT, Losic D. Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1919. [PMID: 28825646 PMCID: PMC5579959 DOI: 10.3390/s17081919] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
The early diagnosis of diseases, e.g., Parkinson's and Alzheimer's disease, diabetes, and various types of cancer, and monitoring the response of patients to the therapy plays a critical role in clinical treatment; therefore, there is an intensive research for the determination of many clinical analytes. In order to achieve point-of-care sensing in clinical practice, sensitive, selective, cost-effective, simple, reliable, and rapid analytical methods are required. Biosensors have become essential tools in biomarker sensing, in which electrode material and architecture play critical roles in achieving sensitive and stable detection. Carbon nanomaterials in the form of particle/dots, tube/wires, and sheets have recently become indispensable elements of biosensor platforms due to their excellent mechanical, electronic, and optical properties. This review summarizes developments in this lucrative field by presenting major biosensor types and variability of sensor platforms in biomedical applications.
Collapse
Affiliation(s)
- Tibor Pasinszki
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.
| | - Melinda Krebsz
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| | - Thanh Tran Tung
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
- ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| |
Collapse
|
24
|
Wang J, Yang B, Zhong J, Yan B, Zhang K, Zhai C, Shiraishi Y, Du Y, Yang P. Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite. J Colloid Interface Sci 2017; 497:172-180. [DOI: 10.1016/j.jcis.2017.03.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/21/2017] [Accepted: 03/01/2017] [Indexed: 02/04/2023]
|
25
|
Prasad BB, Fatma S. One MoNomer doubly imprinted dendrimer nanofilm modified pencil graphite electrode for simultaneous electrochemical determination of norepinephrine and uric acid. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.165] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Three-dimensional graphene-like carbon frameworks as a new electrode material for electrochemical determination of small biomolecules. Biosens Bioelectron 2016; 85:618-624. [DOI: 10.1016/j.bios.2016.05.065] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/13/2016] [Accepted: 05/21/2016] [Indexed: 11/30/2022]
|
27
|
Highly sensitive d-alanine electrochemical biosensor based on functionalized multi-walled carbon nanotubes and d-amino acid oxidase. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Zhai Q, Zhang X, Li J, Wang E. Molybdenum carbide nanotubes: a novel multifunctional material for label-free electrochemical immunosensing. NANOSCALE 2016; 8:15303-15308. [PMID: 27502840 DOI: 10.1039/c6nr03608b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein, a multifunctional nanoarchitecture has been developed by integrating well-crystalline molybdenum carbide (Mo2C) nanotubes and an electrochemical indicator - thionin (TH). The Mo2C nanotubes were synthesized through the self-degradable template method and high-temperature calcination, and their structure and morphology were characterized through scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Due to the high electrocatalytic properties, excellent conductivity and highly active surface area of Mo2C nanotubes, the Mo2C-based material was used as a nanocarrier to load TH molecules for the development of a label-free electrochemical immunosensor for α-fetoprotein (AFP) detection. The decorated TH probe on the Mo2C nanotubes not only acted as a bridging molecule to effectively capture and immobilize primary anti-AFP on the Mo2C nanotubes, but also acted as a signal indicator for the detection of AFP. The proposed immunosensor exhibited excellent selectivity (with a detection limit of 3 pg mL(-1)), high stability and good reproducibility by combining the unique structure and features of the Mo2C nanotubes. Furthermore, this sensing platform was finally used for the detection of AFP in human serum with satisfactory results. Therefore, the Mo2C nanotubes can be considered as a candidate carbon material for fabrication of simple, label-free and ultrasensitive electrochemical sensors, broadening the application of this material.
Collapse
Affiliation(s)
- Qingfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China. and University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiaowei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China. and University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China. and University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China. and University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
29
|
Electrochemical DNA sensor-based strategy for sensitive detection of DNA demethylation and DNA demethylase activity. Anal Chim Acta 2016; 934:66-71. [DOI: 10.1016/j.aca.2016.06.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/11/2016] [Accepted: 06/21/2016] [Indexed: 11/19/2022]
|
30
|
Xu T, Liu N, Yuan J, Ma Z. Triple tumor markers assay based on carbon–gold nanocomposite. Biosens Bioelectron 2015; 70:161-6. [DOI: 10.1016/j.bios.2015.03.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/15/2015] [Accepted: 03/16/2015] [Indexed: 11/16/2022]
|
31
|
Selva Sharma A, Ilanchelian M. Comprehensive Multispectroscopic Analysis on the Interaction and Corona Formation of Human Serum Albumin with Gold/Silver Alloy Nanoparticles. J Phys Chem B 2015; 119:9461-76. [DOI: 10.1021/acs.jpcb.5b00436] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Xu W, He J, Gao L, Zhang J, Yu C. Immunoassay for netrin 1 via a glassy carbon electrode modified with multi-walled carbon nanotubes, thionine and gold nanoparticles. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1551-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Fluorescence quenching of graphene oxide combined with the site-specific cleavage of restriction endonuclease for deoxyribonucleic acid demethylase activity assay. Anal Chim Acta 2015; 869:74-80. [DOI: 10.1016/j.aca.2015.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/04/2015] [Accepted: 02/10/2015] [Indexed: 11/21/2022]
|
34
|
He H, Xu X, Wang P, Chen L, Jin Y. The facile surface chemical modification of a single glass nanopore and its use in the nonenzymatic detection of uric acid. Chem Commun (Camb) 2015; 51:1914-7. [DOI: 10.1039/c4cc09185j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A single glass nanopore was modified with gold through a facile chemical method and used for the non-enzymatic detection of uric acid.
Collapse
Affiliation(s)
- Haili He
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiaolong Xu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Ping Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Lizhen Chen
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
35
|
Facet dependent binding and etching: Ultra-sensitive colorimetric visualization of blood uric acid by unmodified silver nanoprisms. Biosens Bioelectron 2014; 59:227-32. [DOI: 10.1016/j.bios.2014.03.048] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 11/18/2022]
|
36
|
Ghica ME, Brett CMA. Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors. Talanta 2014; 130:198-206. [PMID: 25159399 DOI: 10.1016/j.talanta.2014.06.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/25/2014] [Accepted: 06/28/2014] [Indexed: 11/30/2022]
Abstract
Poly(brilliant green) (PBG) and poly(thionine) (PTH) films have been formed on carbon film electrodes (CFEs) modified with carbon nanotubes (CNT) by electropolymerisation using potential cycling. Voltammetric and electrochemical impedance characterisation were performed. Glucose oxidase and uricase, as model enzymes, were immobilised on top of PBG/CNT/CFE and PTH/CNT/CFE for glucose and uric acid (UA) biosensing. Amperometric determination of glucose and UA was carried out in phosphate buffer pH 7.0 at -0.20 and +0.30 V vs. SCE, respectively, and the results were compared with other similarly modified electrodes existing in the literature. An interference study and recovery measurements in natural samples were successfully performed, indicating these architectures to be good and promising biosensor platforms.
Collapse
Affiliation(s)
- M Emilia Ghica
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Christopher M A Brett
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
37
|
Roushani M, Karami E. Electrochemical Detection of Persulfate at the Modified Glassy Carbon Electrode with Nanocomposite Containing Nano-Ruthenium Oxide/Thionine and Nano-Ruthenium Oxide/Celestine Blue. ELECTROANAL 2014. [DOI: 10.1002/elan.201400125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Enhancing Performance of Uricase Using Multiwalled Carbon Nanotube Doped Polyaniline. Appl Biochem Biotechnol 2014; 174:1174-87. [DOI: 10.1007/s12010-014-0996-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
|
39
|
A novel bimediator amperometric sensor for electrocatalytic oxidation of gallic acid and reduction of hydrogen peroxide. Anal Chim Acta 2014; 828:34-45. [DOI: 10.1016/j.aca.2014.04.041] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/19/2014] [Accepted: 04/22/2014] [Indexed: 01/06/2023]
|
40
|
Suresh R, Giribabu K, Manigandan R, Stephen A, Narayanan V. Fabrication of Ni–Fe2O3 magnetic nanorods and application to the detection of uric acid. RSC Adv 2014. [DOI: 10.1039/c4ra00725e] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Wang W, Qin C, Xie Q, Qin X, Chao L, Huang Y, Dai M, Chen C, Huang J, Hu J. Rapid electrodeposition of a gold–Prussian blue nanocomposite with ultrahigh electroactivity for dual-potential amperometric biosensing of uric acid. Analyst 2014; 139:2904-11. [DOI: 10.1039/c3an02390g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
42
|
Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1098-0] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Ma W, Jiang Q, Yu P, Yang L, Mao L. Zeolitic Imidazolate Framework-Based Electrochemical Biosensor for in Vivo Electrochemical Measurements. Anal Chem 2013; 85:7550-7. [DOI: 10.1021/ac401576u] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wenjie Ma
- Beijing National Laboratory for Molecular Sciences,
Key Laboratory of Analytical Chemistry for Living Biosystems, Institute
of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Qin Jiang
- Beijing National Laboratory for Molecular Sciences,
Key Laboratory of Analytical Chemistry for Living Biosystems, Institute
of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences,
Key Laboratory of Analytical Chemistry for Living Biosystems, Institute
of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Lifen Yang
- Beijing National Laboratory for Molecular Sciences,
Key Laboratory of Analytical Chemistry for Living Biosystems, Institute
of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences,
Key Laboratory of Analytical Chemistry for Living Biosystems, Institute
of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| |
Collapse
|
44
|
Dey RS, Raj CR. Redox-functionalized graphene oxide architecture for the development of amperometric biosensing platform. ACS APPLIED MATERIALS & INTERFACES 2013; 5:4791-4798. [PMID: 23721306 DOI: 10.1021/am400280u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We describe the redox functionalization of graphene oxide (GO) and the development of versatile amperometric biosensing platforms for clinically important analytes such as cholesterol ester, uric acid and glucose. Ferrocene (Fc) redox units were covalently tethered onto the GO backbone using diamine sigma spacers of different chain lengths (C3-, C6-, and C9-diamines). The functionalized GO (Fc-GO) displays a pair of redox peak corresponding to Fc/Fc(+) redox couple at ~0.225 V. The surface coverage and heterogeneous electron transfer rate constant of Fc-GO depends on the length of sigma spacer. Amperometric biosensors for cholesterol (total), uric acid and glucose have been developed by integrating Fc-GO and the respective redox enzymes with screen printed electrode. Fc-GO efficiently mediates the bioelectrocatalytic oxidation of the substrates in the presence of the redox enzymes. The spacer length of Fc-GO controls the bioelectrocatalytic response of the biosensing platforms. The sensitivity of the biosensors based on C9 sigma spacer is significantly higher than the others. The detection limit (S/N = 3) of the biosensors for cholesterol and uric acid was 0.1 μM and for glucose it was 1 μM. Excellent stability, reproducibility, selectivity and fast response time were achieved. Biosensing of cholesterol, uric acid and glucose in human serum sample is successfully demonstrated with the biosensors, and the results are validated with the clinical laboratory measurement.
Collapse
Affiliation(s)
- Ramendra Sundar Dey
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | | |
Collapse
|
45
|
Feng R, Zhang Y, Yu H, Wu D, Ma H, Zhu B, Xu C, Li H, Du B, Wei Q. Nanoporous PtCo-based ultrasensitive enzyme-free immunosensor for zeranoldetection. Biosens Bioelectron 2013; 42:367-72. [DOI: 10.1016/j.bios.2012.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
|
46
|
Salimi A, Rahmatpanah R, Hallaj R, Roushani M. Covalent attachment of thionine onto gold electrode modified with cadmium sulfide nanoparticles: Improvement of electrocatalytic and photelectrocatalytic reduction of hydrogen peroxide. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.01.154] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Caves MS, Derham BK, Jezek J, Freedman RB. Thermal inactivation of uricase (urate oxidase): mechanism and effects of additives. Biochemistry 2013; 52:497-507. [PMID: 23237426 DOI: 10.1021/bi301334w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Uricase (Urc) is an oxidoreductase enzyme of both general and commercial interest, the former because of its lack of a cofactor and the latter because of its use in the treatment of hyperuricemic disorders. Results of fluorometry and circular dichroism (CD) spectroscopy indicate that the main phase of thermal Urc inactivation follows an irreversible two-state mechanism, with loss of ~20% of the helical structure, loss of the majority of the tertiary structure, and partial exposure of tryptophan residues to solution being approximately concurrent with activity loss. Results of size exclusion chromatography and 8-anilinonaphthalene-1-sulfonate binding studies confirm that this process results in the formation of aggregated molten globules. In addition to this process, CD studies indicate the presence of a rapid reversible denaturation phase that is not completely coupled to the main phase. Urc inactivation is inhibited by the presence of glycerol and trimethylamine oxide, stabilizers of hydrophobic interactions and backbone structure respectively, confirming that loss of hydrophobic bonding and loss of helical structure are key events in the loss of Urc activity. NaCl, however, destabilizes the enzyme at elevated temperature, emphasizing the importance of ionic interactions to Urc stability. A model is developed in which interfacial disruption, involving local loss of hydrophobic interactions, ionic bonds, and helical structure, leads to Urc inactivation and aggregation. Additional studies of Urc inactivation at a more ambient temperature indicate that the inactivation process followed under such conditions is different from that followed at higher temperatures, highlighting the limitations of high-temperature enzyme stability studies.
Collapse
Affiliation(s)
- Michael S Caves
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | | | | | |
Collapse
|
48
|
Redox-active thionine–graphene oxide hybrid nanosheet: One-pot, rapid synthesis, and application as a sensing platform for uric acid. Anal Chim Acta 2013; 761:84-91. [DOI: 10.1016/j.aca.2012.11.057] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 11/19/2022]
|
49
|
Nanomaterial-based functional scaffolds for amperometric sensing of bioanalytes. Anal Bioanal Chem 2012; 405:3431-48. [DOI: 10.1007/s00216-012-6606-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 11/15/2012] [Accepted: 11/23/2012] [Indexed: 11/25/2022]
|
50
|
Ultrasensitive detection of kanamycin in animal derived foods by label-free electrochemical immunosensor. Food Chem 2012; 134:1601-6. [DOI: 10.1016/j.foodchem.2012.02.126] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/28/2011] [Accepted: 02/19/2012] [Indexed: 02/03/2023]
|