1
|
Pence M, Rodríguez O, Lukhanin NG, Schroeder CM, Rodríguez-López J. Automated Measurement of Electrogenerated Redox Species Degradation Using Multiplexed Interdigitated Electrode Arrays. ACS MEASUREMENT SCIENCE AU 2023; 3:62-72. [PMID: 36817007 PMCID: PMC9936799 DOI: 10.1021/acsmeasuresciau.2c00054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 06/18/2023]
Abstract
Characterizing the decomposition of electrogenerated species in solution is essential for applications involving electrosynthesis, homogeneous electrocatalysis, and energy storage with redox flow batteries. In this work, we present an automated, multiplexed, and highly robust platform for determining the rate constant of chemical reaction steps following electron transfer, known as the EC mechanism. We developed a generation-collection methodology based on microfabricated interdigitated electrode arrays (IDAs) with variable gap widths on a single device. Using a combination of finite-element simulations and statistical analysis of experimental data, our results show that the natural logarithm of collection efficiency is linear with respect to gap width, and this quantitative analysis is used to determine the decomposition rate constant of the electrogenerated species (k c). The integrated IDA method is used in a series of experiments to measure k c values between ∼0.01 and 100 s-1 in aqueous and nonaqueous solvents and at concentrations as high as 0.5 M of the redox-active species, conditions that are challenging to address using standard methods based on conventional macroelectrodes. The versatility of our approach allows for characterization of a wide range of reactions including intermolecular cyclization, hydrolysis, and the decomposition of candidate molecules for redox flow batteries at variable concentration and water content. Overall, this new experimental platform presents a straightforward automated method to assess the degradation of redox species in solution with sufficient flexibility to enable high-throughput workflows.
Collapse
Affiliation(s)
- Michael
A. Pence
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois61801, United States
- Joint
Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Oliver Rodríguez
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois61801, United States
- Joint
Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Nikita G. Lukhanin
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois61801, United States
- Joint
Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Charles M. Schroeder
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana—Champaign, Urbana, Illinois61801, United States
- Department
of Materials Science and Engineering, University
of Illinois at Urbana—Champaign, Urbana, Illinois61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois61801, United States
- Joint
Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Joaquín Rodríguez-López
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois61801, United States
- Joint
Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
| |
Collapse
|
2
|
Li D, Batchelor-McAuley C, Chen L, Compton RG. Band Electrodes in Sensing Applications: Response Characteristics and Band Fabrication Methods. ACS Sens 2019; 4:2250-2266. [PMID: 31407573 DOI: 10.1021/acssensors.9b01172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This Review surveys the fabrication methods reported for both single microband electrodes and microband electrode arrays and their uses in sensing applications. A theoretical section on band electrodes provides background information on the structure of band electrodes, their diffusional profiles, and the types of voltammetric behavior observed. A short section summarizes the currently available commercial microband electrodes. A section describing recent (10 years) sensing applications using band electrode is also presented.
Collapse
Affiliation(s)
- Danlei Li
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Christopher Batchelor-McAuley
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Lifu Chen
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Richard G. Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
3
|
Quantitative Analysis of Homogeneous Electrocatalytic Reactions at IDA Electrodes: The Example of [Ni(PPh2NBn2)2]2+. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.10.176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Zhou M, Yu Y, Hu K, Mirkin MV. Nanoelectrochemical Approach To Detecting Short-Lived Intermediates of Electrocatalytic Oxygen Reduction. J Am Chem Soc 2015; 137:6517-23. [DOI: 10.1021/ja512482n] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Min Zhou
- Department of Chemistry and
Biochemistry, Queens College, City University of New York, Flushing, New York 11367, United States
| | - Yun Yu
- Department of Chemistry and
Biochemistry, Queens College, City University of New York, Flushing, New York 11367, United States
| | - Keke Hu
- Department of Chemistry and
Biochemistry, Queens College, City University of New York, Flushing, New York 11367, United States
| | - Michael V. Mirkin
- Department of Chemistry and
Biochemistry, Queens College, City University of New York, Flushing, New York 11367, United States
| |
Collapse
|
5
|
Ma C, Contento NM, Gibson LR, Bohn PW. Redox cycling in nanoscale-recessed ring-disk electrode arrays for enhanced electrochemical sensitivity. ACS NANO 2013; 7:5483-90. [PMID: 23691968 DOI: 10.1021/nn401542x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
An array of nanoscale-recessed ring-disk electrodes was fabricated using layer-by-layer deposition, nanosphere lithography, and a multistep reactive ion etching process. The resulting device was operated in generator-collector mode by holding the ring electrodes at a constant potential and performing cyclic voltammetry by sweeping the disk potential in Fe(CN)6(3-/4-) solutions. Steady-state response and enhanced (~10×) limiting current were achieved by cycling the redox couple between ring and disk electrodes with high transfer/collection efficiency. The collector (ring) electrode, which is held at a constant potential, exhibits a much smaller charging current than the generator (disk), and it is relatively insensitive to scan rate. A characteristic feature of the nanoscale ring-disk geometry is that the electrochemical reaction occurring at the disk electrodes can be tuned by modulating the potential at the ring electrodes. Measured shifts in Fe(CN)6(3-/4-) concentration profiles were found to be in excellent agreement with finite element method simulations. The main performance metric, the amplification factor, was optimized for arrays containing small diameter pores (r < 250 nm) with minimum electrode spacing and high pore density. Finally, integration of the fabricated array within a nanochannel produced up to 50-fold current amplification as well as enhanced selectivity, demonstrating the compatibility of the device with lab-on-a-chip architectures.
Collapse
Affiliation(s)
- Chaoxiong Ma
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
6
|
Stubauer G, Seppi T, Lukas P, Obendorf D. Direct determination of oxygen by HPLC. 1. Basic principles of a sensitive and selective oxygen sensor. Anal Chem 2012; 69:4469-75. [PMID: 21639179 DOI: 10.1021/ac970363q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The basic principles of a novel, versatile, sensitive, and selective oxygen-sensing assay are presented in this paper. For the first time, liquid chromatography with electrochemical detection (at the hmde) has been used for the determination of oxygen. All factors concerning optimization of the chromatographic separation conditions and electrochemical detection with respect to direct determination of oxygen even in complex biological samples are discussed. Due to the combination of a chromatographic technique with amperometric detection, a high selectivity can be achieved. A direct and linear relationship between the oxygen concentration in the sample and the reduction current was verified in a large concentration range from saturation down to trace level oxygen concentrations. The novel oxygen-sensing assay provides a much higher sensitivity compared to conventional oxygen sensors. In principle, O(2) concentrations down to 4.5 × 10(-)(9) mol L(-)(1) O(2) (corresponding to a signal-to-noise ratio of 3) can be detected. Precision was determined by repeated measurements (n = 6) of air-saturated solutions (2.5 × 10(-)(4) mol L(-)(1) O(2), 20 °C, 920 mbar) which yielded relative standard deviations of lower than 0.2%.
Collapse
Affiliation(s)
- G Stubauer
- Institut für Analytische Chemie und Radiochemie, Universität Innsbruck, Innrain 52 a, A-6020 Innsbruck, Austria, and Universitätsklinik für Strahlentherapie und Radioonkologie, Universität Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
7
|
Lewis GEM, Dale SEC, Kasprzyk-Hordern B, Barnes EO, Compton RG, Marken F. Square Wave Electroanalysis at Generator-Collector Gold-Gold Double Hemisphere Junctions. ELECTROANAL 2012. [DOI: 10.1002/elan.201200242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Ghosh Dey S, Dey A. NO and O2 reactivities of synthetic functional models of nitric oxide reductase and cytochrome c oxidase. Dalton Trans 2011; 40:12633-47. [DOI: 10.1039/c1dt10451a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Vuorema A, Meadows H, Ibrahim NB, Del Campo J, Cortina-Puig M, Vagin MY, Karyakin AA, Sillanpää M, Marken F. Ion Transport Across Liquid|Liquid Interfacial Boundaries Monitored at Generator-Collector Electrodes. ELECTROANAL 2010. [DOI: 10.1002/elan.201000368] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Bazzu G, Puggioni GGM, Dedola S, Calia G, Rocchitta G, Migheli R, Desole MS, Lowry JP, O'Neill RD, Serra PA. Real-time monitoring of brain tissue oxygen using a miniaturized biotelemetric device implanted in freely moving rats. Anal Chem 2010; 81:2235-41. [PMID: 19222224 DOI: 10.1021/ac802390f] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A miniaturized biotelemetric device for the amperometric detection of brain tissue oxygen is presented. The new system, derived from a previous design, has been coupled with a carbon microsensor for the real-time detection of dissolved O(2) in the striatum of freely moving rats. The implantable device consists of a single-supply sensor driver, a current-to-voltage converter, a microcontroller, and a miniaturized data transmitter. The oxygen current is converted to a digital value by means of an analog-to-digital converter integrated in a peripheral interface controller (PIC). The digital data is sent to a personal computer using a six-byte packet protocol by means of a miniaturized 434 MHz amplitude modulation (AM) transmitter. The receiver unit is connected to a personal computer (PC) via a universal serial bus. Custom developed software allows the PC to store and plot received data. The electronics were calibrated and tested in vitro under different experimental conditions and exhibited high stability, low power consumption, and good linear response in the nanoampere current range. The in vivo results confirmed previously published observations on oxygen dynamics in the striatum of freely moving rats. The system serves as a rapid and reliable model for studying the effects of different drugs on brain oxygen and brain blood flow and it is suited to work with direct-reduction sensors or O(2)-consuming biosensors.
Collapse
Affiliation(s)
- Gianfranco Bazzu
- Department of Neuroscience, Medical School, University of Sassari, Viale S. Pietro 43/b, 07100 Sassari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Decréau RA, Collman JP, Hosseini A. Electrochemical applications. How click chemistry brought biomimetic models to the next level: electrocatalysis under controlled rate of electron transfer. Chem Soc Rev 2010; 39:1291-301. [DOI: 10.1039/b901972n] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
O2 reduction by a functional heme/nonheme bis-iron NOR model complex. Proc Natl Acad Sci U S A 2009; 106:10528-33. [PMID: 19541624 DOI: 10.1073/pnas.0904634106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
O(2) reactivity of a functional NOR model is investigated by using electrochemistry and spectroscopy. The electrochemical measurements using interdigitated electrodes show very high selectivity for 4e O(2) reduction with minimal production of partially reduced oxygen species (PROS) under both fast and slow electron flux. Intermediates trapped at cryogenic temperatures and characterized by using resonance Raman spectroscopy under single-turnover conditions indicate that an initial bridging peroxide intermediate undergoes homolytic O--O bond cleavage generating a trans heme/nonheme bis-ferryl intermediate. This bis ferryl species can oxygenate 2 equivalents of a reactive substrate.
Collapse
|
13
|
Collman JP, Hosseini A, Eberspacher TA, Chidsey CED. Selective anodic desorption for assembly of different thiol monolayers on the individual electrodes of an array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:6517-6521. [PMID: 19379005 PMCID: PMC2704236 DOI: 10.1021/la8043363] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The close proximity of two individually addressable electrodes in an interdigitated array provides a unique platform for electrochemical study of multicatalytic processes. Here, we report a "plug-and-play" approach to control the underlying self-assembled monolayer and the electroactive species on each individually addressable electrode of an interdigitated array. The method presented here uses selective anodic desorption of a monolayer from one of the individually addressable electrodes and rapid formation of a different self-assembled monolayer on the freshly cleaned electrode. We illustrate this strategy by introducing variations in the length of the linker to the electroactive species in the self-assembled monolayer, which determines the rate of electron transfer. In order to separate the assembly of the monolayer from the choice of the electroactive species, we use CuI-catalyzed triazole formation ("click" chemistry) to covalently attach an acetylene-terminated electroactive species to an azide-terminated thiol monolayer selectively on each electrode. The resulting variations in the electron-transfer rate to surface-attached ferrocene and in the rate of catalytic oxidation of ascorbate by the ferrocenium/ferrocene couple demonstrate an application of this approach.
Collapse
Affiliation(s)
- James P. Collman
- To whom correspondence should be addressed: E-mail , , fax, (+1) 650 725-0259
| | | | | | | |
Collapse
|
14
|
Role of a distal pocket in the catalytic O2 reduction by cytochrome c oxidase models immobilized on interdigitated array electrodes. Proc Natl Acad Sci U S A 2009; 106:7320-3. [PMID: 19380725 DOI: 10.1073/pnas.0902285106] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five iron porphyrins with different superstructures were immobilized on self-assembled-monolayer (SAM)-coated interdigitated-array (IDAs) gold-platinum electrodes. The selectivity of the catalysts i.e., limited formation of partially reduced oxygen species (PROS) in the electrocatalytic reduction of dioxygen, is a function of 2 rates: (i) the rate of electron transfer from the electrode to the catalyst, which is controlled by the length, and conjugation of the linker from the catalyst to the electrode and (ii) the rate of bound oxygen (superoxide) hydrolysis, which correlates with the presence of a water cluster in the gas-binding pocket influencing the rate of oxygen binding; these factors are controlled by the nature of the porphyrin superstructure. The structurally biomimetic Tris-imidazole model is the most selective.
Collapse
|
15
|
Varshney M, Li Y. Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells. Biosens Bioelectron 2008; 24:2951-60. [PMID: 19041235 DOI: 10.1016/j.bios.2008.10.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 10/02/2008] [Accepted: 10/03/2008] [Indexed: 11/16/2022]
Abstract
Impedance spectroscopy is a sensitive technique to characterize the chemical and physical properties of solid, liquid, and gas phase materials. In recent years this technique has gained widespread use in developing biosensors for monitoring the catalyzed reaction of enzymes; the bio-molecular recognition events of specific proteins, nucleic acids, whole cells, antibodies or antibody-related substances; growth of bacterial cells; or the presence of bacterial cells in the aqueous medium. Interdigitated array microelectrodes (IDAM) have been integrated with impedance detection in order to miniaturize the conventional electrodes, enhance the sensitivity, and use the flexibility of electrode fabrication to suit the conventional electrochemical cell format or microfluidic devices for variety of applications in chemistry and life sciences. This article limits its discussion to IDAM based impedance biosensors for their applications in the detection of bacterial cells. It elaborates on different IDAM geometries their fabrication materials and design parameters, and types of detection techniques. Additionally, the shortcomings of the current techniques and some upcoming trends in this area are also mentioned.
Collapse
Affiliation(s)
- Madhukar Varshney
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
16
|
Shen Y, Träuble M, Wittstock G. Detection of Hydrogen Peroxide Produced during Electrochemical Oxygen Reduction Using Scanning Electrochemical Microscopy. Anal Chem 2008; 80:750-9. [DOI: 10.1021/ac0711889] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Shen
- University of Oldenburg, School of Mathematics and Natural Sciences, Center of Interface Science (CIS), Institute of Pure and Applied Chemistry and Institute of Chemistry and Biology of the Marine Environment, D-26111 Oldenburg, Germany
| | - Markus Träuble
- University of Oldenburg, School of Mathematics and Natural Sciences, Center of Interface Science (CIS), Institute of Pure and Applied Chemistry and Institute of Chemistry and Biology of the Marine Environment, D-26111 Oldenburg, Germany
| | - Gunther Wittstock
- University of Oldenburg, School of Mathematics and Natural Sciences, Center of Interface Science (CIS), Institute of Pure and Applied Chemistry and Institute of Chemistry and Biology of the Marine Environment, D-26111 Oldenburg, Germany
| |
Collapse
|
17
|
|
18
|
Electrochemical time-of-flight responses at double-band generator-collector devices under pulsed conditions. J Electroanal Chem (Lausanne) 2006. [DOI: 10.1016/j.jelechem.2006.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Strutwolf J, Williams D. Electrochemical Sensor Design Using Coplanar and Elevated Interdigitated Array Electrodes. A Computational Study. ELECTROANAL 2005. [DOI: 10.1002/elan.200403112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Diffusion within nanometric and micrometric spherical-type domains limited by nanometric ring or pore active interfaces. Part 1: conformal mapping approach. J Electroanal Chem (Lausanne) 2005. [DOI: 10.1016/j.jelechem.2004.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Amatore C, Sella C, Thouin L. Diffusional Cross-Talk between Paired Microband Electrodes Operating within a Thin Film: Theory for Redox Couples with Unequal Diffusion Coefficients. J Phys Chem B 2002. [DOI: 10.1021/jp026455n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christian Amatore
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS 8640 “PASTEUR”, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Catherine Sella
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS 8640 “PASTEUR”, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Laurent Thouin
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS 8640 “PASTEUR”, 24 rue Lhomond, 75231 Paris Cedex 05, France
| |
Collapse
|
22
|
Amatore C, Combellas C, Kanoufi F, Sella C, Thiebault A, Thouin L. Micrometrically controlled surface modification of Teflon by redox catalysis: electrochemical coupling between Teflon and a gold band ultramicroelectrode. Chemistry 2000; 6:820-35. [PMID: 10826604 DOI: 10.1002/(sici)1521-3765(20000303)6:5<820::aid-chem820>3.0.co;2-#] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Carbon-fluorine bonds of Teflon (polytetrafluoroethylene, PTFE) can be reduced electrochemically with the purpose of modifying its adhesive and wetting surface properties by micrometrically controlled surface carbonization of the material. This can be performed adequately by redox catalysis provided that the redox mediator couple has a sufficiently negative reduction potential. The process is investigated kinetically with benzonitrile as the mediator and a gold-band ultramicroelectrode mounted adjacent to a PTFE block, though separated from it by an insulating micrometric mylar gap. For moderate fluxes of reduced mediator, the whole device behaves as a generator-collector double-band assembly with a constant current amplification factor. This is maintained over long periods of time, during which the carbonized PTFE zones extends over distances that are much wider than the slowly expanding cylindrical diffusion layer generated at the gold-microband electrode. This establishes that the overall redox catalysis proceeds through electronic conduction in the n-doped carbonized material. Thus, carbonization progresses at the external edge of the freshly carbonized surface in a diffusion-like fashion (dependence on the square root of time), while the redox-mediator oxidized form is regenerated at the carbonized PTFE edge facing to the gold ultramicroelectrode, so that the overall rate of carbonization is controlled by solution diffusion only. For larger fluxes of mediator, the heterogeneous rate of reduction and doping of PTFE becomes limiting, and the situation is more complex. A conceptually simple model is developed which predicts and explains all the main dynamic features of the system under these circumstances and allows the determination of the heterogeneous rate constant of carbon-fluorine bonds at the interface between the carbonized zone and the fresh PTFE. This model can be further refined to account for the effect of ohmic drop inside the carbonized zone on the heterogeneous reduction rate constants and henceforth gives an extremely satisfactory quantitative agreement with the experimental data.
Collapse
Affiliation(s)
- C Amatore
- Ecole Normale Superieure, Departement de Chimie UMR CNRS 8640 PASTEUR, Paris, France
| | | | | | | | | | | |
Collapse
|
23
|
Ferrigno R, Josserand J, F. Brevet P, H. Girault H. Coplanar interdigitated band electrodes for electrosynthesis. Part 5: finite element simulation of paired reactions. Electrochim Acta 1998. [DOI: 10.1016/s0013-4686(98)00187-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Mimicking neuronal synaptic behavior: Processing of information with ‘AND’ or ‘OR’ Boolean logic via paired-band microelectrode assemblies. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1387-1609(98)80004-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Williams DE, Ellis K, Colville A, Dennison SJ, Laguillo G, Larsen J. Hydrodynamic modulation using vibrating electrodes: Application to electroanalysis. J Electroanal Chem (Lausanne) 1997. [DOI: 10.1016/s0022-0728(97)00214-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|