1
|
Samuelsson J, Leśko M, Thunberg L, Weinmann AL, Limé F, Enmark M, Fornstedt T. Fundamental investigation of impact of water and TFA additions in peptide sub/supercritical fluid separations. J Chromatogr A 2024; 1732:465203. [PMID: 39096781 DOI: 10.1016/j.chroma.2024.465203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/05/2024]
Abstract
The retention of three peptides was studied under analytical and overloaded conditions at different concentrations of trifluoroacetic acid (TFA) and water added to the co-solvent methanol (MeOH). Four columns with different stationary phase properties, i.e., silica, diol, 2-ethylpyridine and cyanopropyl (CN) columns, were evaluated in this investigation. The overall aim was to get a deeper understanding on how column chemistry as well as water and TFA in the co-solvent affect the analytical and overloaded elution profiles using multivariate design of experiments and adsorption measurements of co-solvent components. Multivariate experimental design modeling indicated that water had on average around five times higher effect on the retention than the addition of TFA. The results also showed that the retention increases with the addition of TFA and water to the co-solvent on all columns except the CN column, on which the retention decreased. When examining the effect of adding water to the co-solvent, evidence of a hydrophilic interaction liquid chromatography (HILIC)-like retention mechanism was found on the three other columns with more polar stationary phases. However, on the CN column water acted as an additive, decreasing the retention due to competition with the peptide for available adsorption surface. Adsorption isotherm measurements of the polar solvent MeOH showed that MeOH adsorbs much weaker on the CN column than on the other columns. Addition of TFA and water to the co-solvent substantially sharpened the elution profiles under both overloaded and analytical conditions. Adding a small amount of TFA (from 0 % to 0.05 %) to the co-solvent substantially improved the peak shape of the elution profiles, while further addition (from 0.05 % to 0.15 %) had only a minor effect on the elution profile shape. The reduced retention on the CN column could not be explained by TFA adsorption, which was very weak on all studied columns (retention factor, 0.05-0.15). One could therefore speculate that the ion-pairing complex formed between the peptide and TFA in the mobile phase, reduce the retention due to its reduced polarity. On the other columns displaying HILIC-like properties, the TFA probably just decreased the pH of the mobile phase, thereby promoting the partitioning of the peptide into the water-rich layer. Finally, peak deformation due to diluent-eluent mismatch was observed under overloaded conditions. This was most severe in the cases where MeOH adsorption to the stationary phase was strong and the peptides were only mildly retained. Adding 1,4-dioxan to the diluent resolved this issue.
Collapse
Affiliation(s)
- Jörgen Samuelsson
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad SE-651 88, Sweden.
| | - Marek Leśko
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad SE-651 88, Sweden
| | - Linda Thunberg
- Early Chemical Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Annika Langborg Weinmann
- Early Chemical Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Martin Enmark
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad SE-651 88, Sweden
| | - Torgny Fornstedt
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad SE-651 88, Sweden.
| |
Collapse
|
2
|
Saleh OA, Badawey AM, Aboul-Enein HY, Fouad MA. Enantioseparation, quantification, molecular docking and molecular dynamics study of five β-adrenergic blockers on Lux-Cellulose-2 column. BMC Chem 2023; 17:22. [PMID: 36927568 PMCID: PMC10018884 DOI: 10.1186/s13065-023-00925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023] Open
Abstract
Enantioseparation of five β-adrenergic blockers was studied using two mobile phases on a cellulose tris(3-chloro-4-methylphenylcarbamate) (Lux-Cellulose-2) chiral column in normal phase mode. The first mobile phase composed of n-hexane: ethanol: diethylamine 60: 40: 0.1 by volume has successfully resolved the chromatographic peaks of three pairs of β-adrenergic blockers namely, bisoprolol, carvedilol and atenolol. A mixture of n-hexane: ethanol: diethyl amine 75: 25: 0.1 by volume was used as the second mobile phase to separate the four pairs of enantiomers, metoprolol, carvedilol, nebivolol and atenolol with high resolution values. The mobile phases were pumped at a flow rate 1 mL/min with column temperature 25 °C using a UV detector at 230 nm. Molecular docking simulations of the five pairs of enantiomers was carried out in the cavities of the chiral stationary phase to gain a better understanding of the interaction between analyte enantiomers and chiral stationary phase and to better understand the mechanism of chiral recognition. According to the results, hydrogen bond interactions and π-π- interactions were the main types of interaction involved in the chiral recognition. Molecular dynamics simulation was performed to investigate the solvent effect on the interaction of the five pair of enantiomers in the chiral stationary phase cavity under dynamic conditions.
Collapse
Affiliation(s)
- Ola Ahmed Saleh
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), P.O. Box 12622, Giza, Egypt.
| | - Amr Mohamed Badawey
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Hassan Y Aboul-Enein
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), P.O. Box 12622, Giza, Egypt.
| | - Marwa Ahmed Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.,Pharmaceutical Chemistry Department, School of Pharmacy, NewGiza University, NewGiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| |
Collapse
|
3
|
Amziane A, Monteau F, El Djalil Lalaouna A, Alamir B, Le Bizec B, Dervilly G. Optimization and validation of a fast supercritical fluid chromatography tandem mass spectrometry method for the quantitative determination of a large set of PFASs in food matrices and human milk. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1210:123455. [PMID: 36115197 DOI: 10.1016/j.jchromb.2022.123455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022]
Abstract
An Ultra-High Performance Supercritical Fluid Chromatography coupled with tandem Mass Spectrometry analytical method (UHPSFC-MS/MS) was developed for the determination of 34 perfluoroalkylated substances (PFASs) in food-related matrices. Two parameters (i.e. stationary phase and co-solvent) were selected and optimized using a step-by-step method, while a design of experiment (DoE) method using a central composite design (CCD) was implemented to optimize column temperature, mobile phase flow rate, co-solvent concentration and automated back pressure regulator (ABPR). The Torus 2-PIC column was selected along with ammonium acetate AcoNH4 as additive in the co-solvent. DoE optimization of both peak width and resolution enabled validating an optimized model (desirability 0.613) and setting column temperature at 38.7 °C, AcoNH4 concentration at 8 mM, mobile phase flow rate of 1.9 mL/min and ABPR at 1654 psi. The validated resulting method enabled reaching limits of quantification below 0.2 ng/g (w.w.) for 97 % PFASs in accordance with current EU requirements. The strategy was successfully applied to the characterization of a range (n > 30) of food-related matrices (red meat, poultry meat, eggs, fish and breast milk) collected in Algeria in 2019. PFOA and PFBA were observed as the most frequently detected PFASs, i.e. in 96.96 % and 90.9 % of the samples respectively. The highest concentrations were determined in fishery products up to 4.42 ng/g (w.w.) for PFTeDA and 0.75 ng/g (w.w.) for PFOS.
Collapse
Affiliation(s)
- Ahmed Amziane
- Oniris, INRAE, LABERCA, F44300 Nantes, France; CNT, Centre National de Toxicologie, Alger, Algérie; Algiers University I Benyoucef Benkhedda, Faculty of Medicine, Department of Pharmacy, Alger, Algeria
| | | | - Abd El Djalil Lalaouna
- Laboratory of Analytical Chemistry, Salah Boubnider University, Constantine 3, Faculty of Medicine, Department of Pharmacy, Constantine, Algeria
| | - Barkahom Alamir
- CNT, Centre National de Toxicologie, Alger, Algérie; Algiers University I Benyoucef Benkhedda, Faculty of Medicine, Department of Pharmacy, Alger, Algeria
| | | | | |
Collapse
|
4
|
Roy D, Tarafder A, Miller L. Additives in chiral packed column super/subcritical fluid chromatography: A little goes a long way. J Chromatogr A 2022; 1676:463216. [DOI: 10.1016/j.chroma.2022.463216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
|
5
|
Erckes V, Steuer C. A story of peptides, lipophilicity and chromatography - back and forth in time. RSC Med Chem 2022; 13:676-687. [PMID: 35800203 PMCID: PMC9215158 DOI: 10.1039/d2md00027j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022] Open
Abstract
Peptides, as part of the beyond the rule of 5 (bRo5) chemical space, represent a unique class of pharmaceutical compounds. Because of their exceptional position in the chemical space between traditional small molecules (molecular weight (MW) < 500 Da) and large therapeutic proteins (MW > 5000 Da), peptides became promising candidates for targeting challenging binding sites, including even targets traditionally considered as undruggable - e.g. intracellular protein-protein interactions. However, basic knowledge about physicochemical properties that are important for a drug to be membrane permeable is missing but would enhance the drug discovery process of bRo5 molecules. Consequently, there is a demand for quick and simple lipophilicity determination methods for peptides. In comparison to the traditional lipophilicity determination methods via shake flask and in silico prediction, chromatography-based methods could have multiple benefits such as the requirement of low analyte amount, insensitivity to impurities and high throughput. Herein we elucidate the role of peptide lipophilicity and different lipophilicity values. Further, we summarize peptide analysis via common chromatographic techniques, in specific reversed phase liquid chromatography, hydrophilic interaction liquid chromatography and supercritical fluid chromatography and their role in drug discovery and development process.
Collapse
Affiliation(s)
- Vanessa Erckes
- Pharmaceutical Analytics, Institute of Pharmaceutical Sciences, Federal Institute of Technology Zurich 8093 Zurich Switzerland
| | - Christian Steuer
- Pharmaceutical Analytics, Institute of Pharmaceutical Sciences, Federal Institute of Technology Zurich 8093 Zurich Switzerland
| |
Collapse
|
6
|
Losacco GL, DaSilva JO, Haidar Ahmad IA, Mangion I, Berger TA, Regalado EL. Parallel chiral sub/supercritical fluid chromatography screening as a framework for accelerated purification of pharmaceutical targets. J Chromatogr A 2022; 1674:463094. [DOI: 10.1016/j.chroma.2022.463094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
|
7
|
Roy D, Miller L. Exploring the utility of natural deep eutectic solvents as additives in super/subcritical fluid chromatography- insights into chiral recognition mechanism. Anal Chim Acta 2022; 1200:339584. [DOI: 10.1016/j.aca.2022.339584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/29/2022]
|
8
|
Roskam G, van de Velde B, Gargano A, Kohler I. Supercritical Fluid Chromatography for Chiral Analysis, Part 1: Theoretical Background. LCGC EUROPE 2022. [DOI: 10.56530/lcgc.eu.ou1980m2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The quantification of the enantiomers of racemic substances is of great importance in the development and regulation of pharmaceutical compounds. Active ingredients are often chiral; typically, only one of the stereoisomers has the desired pharmacokinetic and/or pharmacodynamic properties. Therefore, the stereoisomer distribution of chiral drug products must be characterized and evaluated during the drug discovery and development pipeline. Moreover, various chiral drugs present a stereoselective metabolism, highlighting the need for appropriate analytical strategies for the stereoselective analysis of metabolites, for example, in clinical and environmental studies. Due to its ease of use, robustness, and transferability, chiral liquid chromatography (LC) is the most common approach used in pharmaceutical analysis. Compared with LC, supercritical fluid chromatography (SFC) allows higher linear flow velocities while maintaining high chromatographic efficiency, often enabling the reduction of analysis time. In addition, SFC provides enhanced or complementary chiral selectivity and avoids or reduces toxic solvents, such as those used in normal-phase LC. In the first part of this review article the theoretical advantages, technological developments, and common practices in chiral SFC are discussed. This will be followed by a contribution discussing recent applications in pharmaceutical, clinical, forensic, and environmental analysis.
Collapse
Affiliation(s)
- Gerry Roskam
- Centre for Analytical Sciences Amsterdam, Amsterdam, Netherlands; Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; van ‘t Hoff Institute for Molecular Science, University of Amsterdam, Amsterdam, Netherlands
| | - Bas van de Velde
- Centre for Analytical Sciences Amsterdam, Amsterdam, Netherlands; Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Andrea Gargano
- Centre for Analytical Sciences Amsterdam, Amsterdam, Netherlands; van ‘t Hoff Institute for Molecular Science, University of Amsterdam, Amsterdam, Netherlands
| | - Isabelle Kohler
- Centre for Analytical Sciences Amsterdam, Amsterdam, Netherlands; Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Application space for SFC in pharmaceutical drug discovery and development. SEP SCI TECHNOL 2022. [DOI: 10.1016/b978-0-323-88487-7.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
10
|
Ovchinnikov DV, Ul'yanovskii NV, Kosyakov DS, Pokrovskiy OI. Some Aspects of Additives Effects on Retention in Supercritical Fluid Chromatography Studied by Linear Free Energy Relationships Method. J Chromatogr A 2022; 1665:462820. [DOI: 10.1016/j.chroma.2022.462820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 01/08/2023]
|
11
|
Ali I, Raja R, Alam SD, Shirsath V, K. Jain A, Locatelli M, David V. A comparison of chiral separations by supercritical fluid chromatography and high-performance liquid chromatography. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1979037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Rupak Raja
- Department of Chemistry, School of Basic and Applied Sciences, Galgotias University, Greater Noida, India
- Jubilant Biosys Limited, Noida, India
| | | | | | - Arvind K. Jain
- Department of Chemistry, School of Basic and Applied Sciences, Galgotias University, Greater Noida, India
| | - Marcello Locatelli
- Department of Pharmacy, Analytical and Bioanalytical Chemistry, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Victor David
- Department of Analytical Chemistry, University of Bucharest, Romania
| |
Collapse
|
12
|
Folprechtová D, Kalíková K. Macrocyclic glycopeptide-based chiral selectors for enantioseparation in sub/supercritical fluid chromatography. ANALYTICAL SCIENCE ADVANCES 2021; 2:15-32. [PMID: 38715744 PMCID: PMC10989558 DOI: 10.1002/ansa.202000099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
Increasing number of reported works dealing with macrocyclic glycopeptide-based columns in sub/supercritical fluid chromatography (SFC) points to the growing interest in this area. With the development and production of sub 2 µm fully porous particles and superficially porous particles with bonded macrocyclic glycopeptides, significant improvements have been made in ultrafast high efficiency chiral SFC. This review article gives an overview of macrocyclic glycopeptide-based chiral selectors that were used in theoretical studies and/or applications in SFC. The review covers the period from 1997 when macrocyclic glycopeptides were first used in SFC till the end of July 2020 according to Web of Science. This work can also be helpful to analysts searching for an appropriate method for the separation/determination of enantiomers of their interest.
Collapse
Affiliation(s)
- Denisa Folprechtová
- Department of Physical and Macromolecular ChemistryFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular ChemistryFaculty of ScienceCharles UniversityPragueCzech Republic
| |
Collapse
|
13
|
Choppari T, Gunnam S, Chennuru LN, Boddala CSR, Murthy CP, Kumar Talluri MVN. Enantioselective Separation of Antiretroviral Drug Combinations on Immobilized Polysaccharide CSPs Under Subcritical Conditions Using Supercritical Fluid Chromatography Apparatus. Chromatographia 2021. [DOI: 10.1007/s10337-021-04004-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Lefebvre T, Destandau E, West C, Lesellier E. Supercritical Fluid Chromatography development of a predictive analytical tool to selectively extract bioactive compounds by supercritical fluid extraction and pressurised liquid extraction. J Chromatogr A 2020; 1632:461582. [PMID: 33035852 DOI: 10.1016/j.chroma.2020.461582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022]
Abstract
Selective extraction is a great concern in the field of natural products. The interest is to apply specific conditions favouring the solubility of targeted secondary metabolites and avoiding the simultaneous extraction of unwanted ones. Different ways exist to reach selective extractions with suited conditions. These conditions can be determined from experimental studies through experimental design, but a full experimental design takes time, energy, and uses plant samples. Prediction from varied solubility models can also be applied allowing a better understanding of the final selected conditions and eventually less experiments. The aim of this work was to develop and use a chromatographic model to determine optimal extraction conditions without the need for numerous extraction experiments. This model would be applied on the selective extraction of the desired antioxidant compounds in rosemary leaves (rosmarinic and carnosic acids) vs chlorophyll pigments to limit the green colour in extracts. This model was achieved with Supercritical Fluid Chromatography (SFC) and then applied to Supercritical Fluid Extraction (SFE) and Pressurised Liquid Extraction (PLE) assays. SFC models predicted low solubility of chlorophylls for low (5%) and high (100%) percentage of solvent in carbon dioxide. Also, low solubility was predicted with acetonitrile solvent compared to methanol or ethanol. This was confirmed with different extractions performed using SFE with different percentages of solvent (5, 30, and 70%) and with the three solvents used in the SFC models (acetonitrile, methanol and ethanol). Also extractions using PLE were carried out using the same neat solvents in order to confirm the SFC models obtained for 100% of solvent. Globally, extractions validated the SFC models. Only some differences were observed between ethanol and methanol showing the complexity of plant extraction due to matrix effect. For all these extracts, the content of carnosic acid and rosmarinic acid was also monitored and selective extraction conditions of bioactive compounds could be determined.
Collapse
Affiliation(s)
- Thibault Lefebvre
- ICOA, CNRS UMR 7311, Université d'Orléans, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Emilie Destandau
- ICOA, CNRS UMR 7311, Université d'Orléans, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Caroline West
- ICOA, CNRS UMR 7311, Université d'Orléans, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Eric Lesellier
- ICOA, CNRS UMR 7311, Université d'Orléans, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France.
| |
Collapse
|
15
|
Molineau J, Hideux M, West C. Chromatographic analysis of biomolecules with pressurized carbon dioxide mobile phases - A review. J Pharm Biomed Anal 2020; 193:113736. [PMID: 33176241 DOI: 10.1016/j.jpba.2020.113736] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022]
Abstract
Biomolecules like proteins, peptides and nucleic acids widely emerge in pharmaceutical applications, either as synthetic active pharmaceutical ingredients, or from natural products as in traditional Chinese medicine. Liquid-phase chromatographic methods (LC) are widely employed for the analysis and/or purification of such molecules. On another hand, to answer the ever-increasing requests from scientists involved in biomolecules projects, other chromatographic methods emerge as useful complements to LC. In particular, there is a growing interest for chromatography with a mobile phase comprising pressurized carbon dioxide, which can be named either (i) supercritical (or subcritical) fluid chromatography (SFC) when CO2 is the major constituent of the mobile phase, or (ii) enhanced fluidity liquid chromatography (EFLC) when hydro-organic or purely organic solvents are the major constituents of the mobile phase. Despite the low polarity of CO2, supposedly inadequate to solubilize such biomolecules, SFC and EFLC were both employed in many occasions for this purpose. This paper specifically reviews the literature related to the SFC/EFLC analysis of free amino acids, peptides, proteins, nucleobases, nucleosides and nucleotides. The analytical conditions employed for specific molecular families are presented, with a focus on the nature of the stationary phase and the mobile phase composition. We also discuss the potential benefits of combining SFC/EFLC to LC in a single gradient elution, a method sometimes designated as unified chromatography (UC). Finally, detection issues are presented, and more particularly hyphenation to mass spectrometry.
Collapse
Affiliation(s)
- Jérémy Molineau
- University of Orleans, ICOA, CNRS UMR 7311, rue de Chartres, BP 6759, 45067 Orléans, France
| | - Maria Hideux
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, France
| | - Caroline West
- University of Orleans, ICOA, CNRS UMR 7311, rue de Chartres, BP 6759, 45067 Orléans, France.
| |
Collapse
|
16
|
Zajickova Z, Nováková L, Svec F. Monolithic Poly(styrene-co-divinylbenzene) Columns for Supercritical Fluid Chromatography–Mass Spectrometry Analysis of Polypeptide. Anal Chem 2020; 92:11525-11529. [DOI: 10.1021/acs.analchem.0c02874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zuzana Zajickova
- Department of Physical Sciences, Barry University, Miami Shores, Florida 33161, United States
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, CZ-500 05 Hradec Králové, Czech Republic
| | - Frantisek Svec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, CZ-500 05 Hradec Králové, Czech Republic
| |
Collapse
|
17
|
Kozlov O, Kadlecová Z, Tesařová E, Kalíková K. Evaluation of separation properties of stationary phases in supercritical fluid chromatography; deazapurine nucleosides case study. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Liu J, Makarov AA, Bennett R, Haidar Ahmad IA, DaSilva J, Reibarkh M, Mangion I, Mann BF, Regalado EL. Chaotropic Effects in Sub/Supercritical Fluid Chromatography via Ammonium Hydroxide in Water-Rich Modifiers: Enabling Separation of Peptides and Highly Polar Pharmaceuticals at the Preparative Scale. Anal Chem 2019; 91:13907-13915. [PMID: 31549812 DOI: 10.1021/acs.analchem.9b03408] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chromatographic separation, analysis and characterization of complex highly polar analyte mixtures can often be very challenging using conventional separation approaches. Analysis and purification of hydrophilic compounds have been dominated by liquid chromatography (LC) and ion-exchange chromatography (IC), with sub/supercritical fluid chromatography (SFC) moving toward these new applications beyond traditional chiral separations. However, the low polarity of supercritical carbon dioxide (CO2) has limited the use of SFC for separation and purification in the bioanalytical space, especially at the preparative scale. Reaction mixtures of highly polar species are strongly retained even using polar additives in alcohol modifier/CO2 based eluents. Herein, we overcome these problems by introducing chaotropic effects in SFC separations using a nontraditional mobile phase mixture consisting of ammonium hydroxide combined with high water concentration in the alcohol modifier and carbon dioxide. The separation mechanism was here elucidated based on extensive IC-CD (IC couple to conductivity detection) analysis of cyclic peptides subjected to the SFC conditions, indicating the in situ formation of a bicarbonate counterion (HCO3-). In contrast to other salts, HCO3- was found to play a crucial role acting as a chaotropic agent that disrupts undesired H-bonding interactions, which was demonstrated by size-exclusion chromatography coupled with differential hydrogen-deuterium exchange-mass spectrometry experiments (SEC-HDX-MS). In addition, the use of NH4OH in water-rich MeOH modifiers was compared to other commonly used basic additives (diethylamine, triethylamine, and isobutylamine) showing unmatched chromatographic and MS detection performance in terms of peak shape, retention, selectivity, and ionization as well as a completely different selectivity and retention behavior. Moreover, relative to ammonium formate and ammonium acetate in water-rich methanol modifier, the ammonium hydroxide in water additive showed better chromatographic performance with enhanced sensitivity. Further optimization of NH4OH and H2O levels in conjunction with MeOH/CO2 served to furnish a generic modifier (0.2% NH4OH, 5% H2O in MeOH) that enables the widespread transition of SFC to domains that were previously considered out of its scope. This approach is extensively applied to the separation, analysis, and purification of multicomponent reaction mixtures of closely related polar pharmaceuticals using readily available SFC instrumentation. The examples described here cover a broad spectrum of bioanalytical and pharmaceutical applications including analytical and preparative chromatography of organohalogenated species, nucleobases, nucleosides, nucleotides, sulfonamides, and cyclic peptides among other highly polar species.
Collapse
Affiliation(s)
- Jinchu Liu
- Analytical Research and Development , MRL, Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Alexey A Makarov
- Analytical Research and Development , MRL, Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Raffeal Bennett
- Analytical Research and Development , MRL, Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Imad A Haidar Ahmad
- Analytical Research and Development , MRL, Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Jimmy DaSilva
- Analytical Research and Development , MRL, Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Mikhail Reibarkh
- Analytical Research and Development , MRL, Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Ian Mangion
- Analytical Research and Development , MRL, Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Benjamin F Mann
- Analytical Research and Development , MRL, Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Erik L Regalado
- Analytical Research and Development , MRL, Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| |
Collapse
|
19
|
Raimbault A, West C. Effects of high concentrations of mobile phase additives on retention and separation mechanisms on a teicoplanin aglycone stationary phase in supercritical fluid chromatography. J Chromatogr A 2019; 1604:460494. [DOI: 10.1016/j.chroma.2019.460494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/29/2022]
|
20
|
Zoccali M, Donato P, Mondello L. Recent advances in the coupling of carbon dioxide-based extraction and separation techniques. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Zhao Y, Li S, Wang X, Yu J, Song Y, Guo X. Enantioseparation and molecular modeling study of five β‐adrenergic blockers on
C
hiralpak
IC
column. Chirality 2019; 31:502-512. [DOI: 10.1002/chir.23074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Yu Zhao
- Department Pharmaceutical AnalysisInstitution Shenyang Pharmaceutical University Shenyang Liaoning Province P.R. China
| | - Shuang Li
- Department Pharmaceutical AnalysisInstitution Shenyang Pharmaceutical University Shenyang Liaoning Province P.R. China
| | - Xia Wang
- Department Pharmaceutical AnalysisInstitution Shenyang Pharmaceutical University Shenyang Liaoning Province P.R. China
| | - Jia Yu
- Department Pharmaceutical AnalysisInstitution Shenyang Pharmaceutical University Shenyang Liaoning Province P.R. China
| | - Yongbo Song
- Department Life Science and Bio‐pharmaceuticsInstitution Shenyang Pharmaceutical University Shenyang Liaoning Province P.R. China
| | - Xingjie Guo
- Department Pharmaceutical AnalysisInstitution Shenyang Pharmaceutical University Shenyang Liaoning Province P.R. China
| |
Collapse
|
22
|
Unravelling the effects of mobile phase additives in supercritical fluid chromatography—Part II: Adsorption on the stationary phase. J Chromatogr A 2019; 1593:135-146. [DOI: 10.1016/j.chroma.2019.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 01/02/2023]
|
23
|
Zajickova Z, Špánik I. Applications of monolithic columns in gas chromatography and supercritical fluid chromatography. J Sep Sci 2019; 42:999-1011. [DOI: 10.1002/jssc.201801071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Zuzana Zajickova
- Department of Physical Sciences; Barry University; Miami Shores FL USA
| | - Ivan Špánik
- Institute of Analytical Chemistry; Faculty of Chemical and Food Technology; Slovak University of Technology; Bratislava Slovakia
| |
Collapse
|
24
|
Li Y, Zhang X, Bai X, Li X, Jiang Q, Zhang T. A sensitive, high-throughput, and eco-friendly analysis of daidzein and its valine carbamate prodrug in rat plasma by supercritical fluid chromatography with tandem mass spectrometry. J Sep Sci 2018; 41:3250-3257. [DOI: 10.1002/jssc.201800430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Yingchao Li
- Department of Pharmaceutical Analysis, School of Pharmacy; Shenyang Pharmaceutical University; Shenyang P. R. China
| | - Xingxing Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy; Shenyang Pharmaceutical University; Shenyang P. R. China
| | - Xiaochen Bai
- Department of Pharmaceutical Analysis, School of Pharmacy; Shenyang Pharmaceutical University; Shenyang P. R. China
| | - Xiaoting Li
- Department of Pharmaceutical Analysis, School of Pharmacy; Shenyang Pharmaceutical University; Shenyang P. R. China
| | - Qikun Jiang
- Wuya College of Innovation; Shenyang Pharmaceutical University; Shenyang P. R. China
| | - Tianhong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy; Shenyang Pharmaceutical University; Shenyang P. R. China
| |
Collapse
|
25
|
Jiang H, Yang L, Xing X, Yan M, Guo X, Yang B, Wang QH, Kuang HX. Development of an analytical method for separation of phenolic acids by ultra-performance convergence chromatography (UPC 2 ) using a column packed with a sub-2-μm particle. J Pharm Biomed Anal 2018; 153:117-125. [DOI: 10.1016/j.jpba.2018.02.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 11/16/2022]
|
26
|
Huang Y, Tang G, Zhang T, Fillet M, Crommen J, Jiang Z. Supercritical fluid chromatography in traditional Chinese medicine analysis. J Pharm Biomed Anal 2018; 147:65-80. [DOI: 10.1016/j.jpba.2017.08.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 02/08/2023]
|
27
|
Asokan K, Naidu H, Madam R, Shaikh KM, Reddy M, Kumar H, Shirude PS, Rajendran M, Sarabu R, Wu DR, Bajpai L, Zhang Y. Impact of carbon dioxide solvent separators on the degradation of benzyl-2,3-dihydroxypiperidine-1-carboxylate during preparative supercritical fluid chromatographic purification. J Chromatogr A 2017; 1530:176-184. [DOI: 10.1016/j.chroma.2017.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
|
28
|
Wolrab D, Frühauf P, Gerner C, Kohout M, Lindner W. Consequences of transition from liquid chromatography to supercritical fluid chromatography on the overall performance of a chiral zwitterionic ion-exchanger. J Chromatogr A 2017; 1517:165-175. [DOI: 10.1016/j.chroma.2017.08.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 01/30/2023]
|
29
|
Integrating a post-column makeup pump into preparative supercritical fluid chromatography systems to address stability and recovery issues during purifications. J Chromatogr A 2017; 1511:101-106. [DOI: 10.1016/j.chroma.2017.06.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 11/22/2022]
|
30
|
Speybrouck D, Doublet C, Cardinael P, Fiol-Petit C, Corens D. The effect of high concentration additive on chiral separations in supercritical fluid chromatography. J Chromatogr A 2017; 1510:89-99. [DOI: 10.1016/j.chroma.2017.06.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 11/17/2022]
|
31
|
Comparing the selectivity and chiral separation of d- and l- fluorenylmethyloxycarbonyl chloride protected amino acids in analytical high performance liquid chromatography and supercritical fluid chromatography; evaluating throughput, economic and environmental impact. J Chromatogr A 2017; 1493:10-18. [DOI: 10.1016/j.chroma.2017.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 11/21/2022]
|
32
|
Supercritical fluid chromatography for separation and preparation of tautomeric 7-epimeric spiro oxindole alkaloids from Uncaria macrophylla. J Pharm Biomed Anal 2017; 134:352-360. [DOI: 10.1016/j.jpba.2016.10.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/25/2016] [Indexed: 12/19/2022]
|
33
|
Cao ZY, Sun LH, Mou RX, Zhang LP, Lin XY, Zhu ZW, Chen MX. Profiling of phytohormones and their major metabolites in rice using binary solid-phase extraction and liquid chromatography-triple quadrupole mass spectrometry. J Chromatogr A 2016; 1451:67-74. [DOI: 10.1016/j.chroma.2016.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/27/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
|
34
|
Sen A, Knappy C, Lewis MR, Plumb RS, Wilson ID, Nicholson JK, Smith NW. Analysis of polar urinary metabolites for metabolic phenotyping using supercritical fluid chromatography and mass spectrometry. J Chromatogr A 2016; 1449:141-55. [PMID: 27143232 PMCID: PMC4927693 DOI: 10.1016/j.chroma.2016.04.040] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 10/27/2022]
Abstract
Supercritical fluid chromatography (SFC) is frequently used for the analysis and separation of non-polar metabolites, but remains relatively underutilised for the study of polar molecules, even those which pose difficulties with established reversed-phase (RP) or hydrophilic interaction liquid chromatographic (HILIC) methodologies. Here, we present a fast SFC-MS method for the analysis of medium and high-polarity (-7≤cLogP≤2) compounds, designed for implementation in a high-throughput metabonomics setting. Sixty polar analytes were first screened to identify those most suitable for inclusion in chromatographic test mixtures; then, a multi-dimensional method development study was conducted to determine the optimal choice of stationary phase, modifier additive and temperature for the separation of such analytes using SFC. The test mixtures were separated on a total of twelve different column chemistries at three different temperatures, using CO2-methanol-based mobile phases containing a variety of polar additives. Chromatographic performance was evaluated with a particular emphasis on peak capacity, overall resolution, peak distribution and repeatability. The results suggest that a new generation of stationary phases, specifically designed for improved robustness in mixed CO2-methanol mobile phases, can improve peak shape, peak capacity and resolution for all classes of polar analytes. A significant enhancement in chromatographic performance was observed for these urinary metabolites on the majority of the stationary phases when polar additives such as ammonium salts (formate, acetate and hydroxide) were included in the organic modifier, and the use of water or alkylamine additives was found to be beneficial for specific subsets of polar analytes. The utility of these findings was confirmed by the separation of a mixture of polar metabolites in human urine using an optimised 7min gradient SFC method, where the use of the recommended column and co-solvent combination resulted in a significant improvement in chromatographic performance.
Collapse
Affiliation(s)
- Arundhuti Sen
- Analytical and Environmental Sciences Division, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, London SE1 9NH, United Kingdom; MRC-NIHR National Phenome Centre, Division of Computational and Systems Medicine, Department of Surgery and Cancer, IRDB Building, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Christopher Knappy
- Analytical and Environmental Sciences Division, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, London SE1 9NH, United Kingdom; Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2DD, United Kingdom; MRC-NIHR National Phenome Centre, Division of Computational and Systems Medicine, Department of Surgery and Cancer, IRDB Building, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Matthew R Lewis
- MRC-NIHR National Phenome Centre, Division of Computational and Systems Medicine, Department of Surgery and Cancer, IRDB Building, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Robert S Plumb
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2DD, United Kingdom; Waters Corporation, Milford, MA, USA
| | - Ian D Wilson
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2DD, United Kingdom
| | - Jeremy K Nicholson
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2DD, United Kingdom; MRC-NIHR National Phenome Centre, Division of Computational and Systems Medicine, Department of Surgery and Cancer, IRDB Building, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Norman W Smith
- Analytical and Environmental Sciences Division, Faculty of Life Sciences & Medicine, Franklin-Wilkins Building, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
35
|
Gao W, Dong X, Wang R, Liu XG, Li P, Yang H. The use of ionic liquid as a mobile phase modifier in analytical supercritical fluid chromatography for the separation of flavonoids. RSC Adv 2016. [DOI: 10.1039/c6ra10975f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper presents a method that the uses ionic liquids (ILs) as a mobile phase modifier in supercritical fluid chromatography (SFC) for flavonoid aglycone analysis, significantly improving the resolution and changing the selectivity.
Collapse
Affiliation(s)
- Wen Gao
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People’s Republic of China
| | - Xin Dong
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People’s Republic of China
| | - Rui Wang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People’s Republic of China
| | - Xin-Guang Liu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People’s Republic of China
| | - Ping Li
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People’s Republic of China
| | - Hua Yang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People’s Republic of China
| |
Collapse
|
36
|
Klink D, Schmitz OJ. SFC-APLI-(TOF)MS: Hyphenation of Supercritical Fluid Chromatography to Atmospheric Pressure Laser Ionization Mass Spectrometry. Anal Chem 2015; 88:1058-64. [DOI: 10.1021/acs.analchem.5b04402] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dennis Klink
- Institute
for Pure and Applied Mass Spectrometry, University of Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany
| | - Oliver Johannes Schmitz
- Institute
for Pure and Applied Mass Spectrometry, University of Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany
- Applied
Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5-7, 45141 Essen, Germany
| |
Collapse
|
37
|
Supercritical fluid chromatography in pharmaceutical analysis. J Pharm Biomed Anal 2015; 113:56-71. [DOI: 10.1016/j.jpba.2015.03.007] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
|
38
|
Berg T, Kaur L, Risnes A, Havig SM, Karinen R. Determination of a selection of synthetic cannabinoids and metabolites in urine by UHPSFC-MS/MS and by UHPLC-MS/MS. Drug Test Anal 2015; 8:708-22. [PMID: 26304456 DOI: 10.1002/dta.1844] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 11/06/2022]
Abstract
Two different analytical techniques, ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) and reversed phase ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), were used for the determination of two synthetic cannabinoids and eleven metabolites in urine; AM-2201 N-4-OH-pentyl, AM-2233, JWH-018 N-5-OH-pentyl, JWH-018 N-pentanoic acid, JWH-073 N-4-OH-butyl, JWH-073 N-butanoic acid, JWH-122 N-5-OH-pentyl, MAM-2201, MAM-2201 N-4-OH-pentyl, RCS-4 N-5-OH-pentyl, UR-144 degradant N-pentanoic acid, UR-144 N-4-OH-pentyl, and UR-144 N-pentanoic acid. Sample preparation included a liquid-liquid extraction after deconjugation with ß-glucuronidase. The UHPSFC-MS/MS method used an Acquity UPC(2 TM) BEH column with a mobile phase consisting of CO2 and 0.3% ammonia in methanol, while the UHPLC-MS/MS method used an Acquity UPLC® BEH C18 column with a mobile phase consisting of 5 mM ammonium formate (pH 10.2) and methanol. MS/MS detection was performed with positive electrospray ionization and two multiple reaction monitoring transitions. Deuterated internal standards were used for six of the compounds. Limits of quantification (LOQs) were between 0.04 and 0.4 µg/L. Between-day relative standard deviations at concentrations ≥ LOQ were ≤20%, with biases within ±19%. Recoveries ranged from 40 to 90%. Corrected matrix effects were within 100 ± 10%, except for MAM-2201 with UHPSFC-MS/MS, and for UR-144 N-pentanoic acid and MAM-2201 N-4-OH-pentyl with UHPLC-MS/MS. Elution order obtained by UHPSFC-MS/MS was almost opposite to that obtained by UHPLC-MS/MS, making this instrument setup an interesting combination for screening and confirmation analyses in forensic cases. The UHPLC-MS/MS method has, since August 2014, been successfully used for confirmation of synthetic cannabinoids in urine samples revealing a positive immunoassay screening result. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Thomas Berg
- Norwegian Institute of Public Health, Division of Forensic Sciences, PO Box 4404 Nydalen, 0403, Oslo, Norway
| | - Lakhwinder Kaur
- Norwegian Institute of Public Health, Division of Forensic Sciences, PO Box 4404 Nydalen, 0403, Oslo, Norway
| | - Anna Risnes
- Norwegian Institute of Public Health, Division of Forensic Sciences, PO Box 4404 Nydalen, 0403, Oslo, Norway
| | - Stine Marie Havig
- Norwegian Institute of Public Health, Division of Forensic Sciences, PO Box 4404 Nydalen, 0403, Oslo, Norway
| | - Ritva Karinen
- Norwegian Institute of Public Health, Division of Forensic Sciences, PO Box 4404 Nydalen, 0403, Oslo, Norway
| |
Collapse
|
39
|
Lemasson E, Bertin S, Hennig P, Boiteux H, Lesellier E, West C. Development of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates. Part I: Optimization of mobile phase composition. J Chromatogr A 2015. [DOI: 10.1016/j.chroma.2015.07.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Zacharis CK, Vastardi E. A Validated LC Method for the Determination of Enantiomeric Purity of Clopidogrel Intermediate Using Amylose-Based Stationary Phase. Chromatographia 2015. [DOI: 10.1007/s10337-015-2892-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Analysis of glucuronide and sulfate steroids in urine by ultra-high-performance supercritical-fluid chromatography hyphenated tandem mass spectrometry. Anal Bioanal Chem 2015; 407:4473-84. [DOI: 10.1007/s00216-015-8573-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 01/18/2023]
|
42
|
Sciascera L, Ismail O, Ciogli A, Kotoni D, Cavazzini A, Botta L, Szczerba T, Kocergin J, Villani C, Gasparrini F. Expanding the potential of chiral chromatography for high-throughput screening of large compound libraries by means of sub–2μm Whelk-O 1 stationary phase in supercritical fluid conditions. J Chromatogr A 2015; 1383:160-8. [DOI: 10.1016/j.chroma.2015.01.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 10/24/2022]
|
43
|
The many faces of packed column supercritical fluid chromatography – A critical review. J Chromatogr A 2015; 1382:2-46. [DOI: 10.1016/j.chroma.2014.12.083] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 12/15/2014] [Accepted: 12/30/2014] [Indexed: 01/01/2023]
|
44
|
Wu Y, Deng X, Mao Y, Zhang Y, Liu J, Rong L, Xu Z. Retention mechanism of phenolic compounds in subcritical water chromatography. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-4360-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Properties of water as a novel stationary phase in capillary gas chromatography. J Chromatogr A 2014; 1359:247-54. [DOI: 10.1016/j.chroma.2014.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/30/2014] [Accepted: 07/07/2014] [Indexed: 11/22/2022]
|
46
|
Nováková L, Grand-Guillaume Perrenoud A, Francois I, West C, Lesellier E, Guillarme D. Modern analytical supercritical fluid chromatography using columns packed with sub-2μm particles: A tutorial. Anal Chim Acta 2014; 824:18-35. [DOI: 10.1016/j.aca.2014.03.034] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 11/16/2022]
|
47
|
Xia B, Feng M, Ding L, Zhou Y. Fast Separation Method Development for Supercritical Fluid Chromatography Using an Autoblending Protocol. Chromatographia 2014. [DOI: 10.1007/s10337-014-2684-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Samimi R, Xu WZ, Alsharari Q, Charpentier PA. Supercritical fluid chromatography of North American ginseng extract. J Supercrit Fluids 2014. [DOI: 10.1016/j.supflu.2013.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
De Klerck K, Vander Heyden Y, Mangelings D. Pharmaceutical-enantiomers resolution using immobilized polysaccharide-based chiral stationary phases in supercritical fluid chromatography. J Chromatogr A 2014; 1328:85-97. [DOI: 10.1016/j.chroma.2013.12.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/10/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
|
50
|
Carry JC, Brohan E, Perron S, Bardouillet PE. Chiral Supercritical Fluid Chromatography in the Preparation of Enantiomerically Pure (S)-(+)-tert-Butyl-3-hydroxyazepane-1-carboxylate. Org Process Res Dev 2013. [DOI: 10.1021/op400274b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jean-Christophe Carry
- Oncology Drug Discovery, ‡LGCR-Analytical Sciences, Sanofi, 13 quai Jules
Guesde, 94403 Vitry-sur-Seine, France
| | - Eric Brohan
- Oncology Drug Discovery, ‡LGCR-Analytical Sciences, Sanofi, 13 quai Jules
Guesde, 94403 Vitry-sur-Seine, France
| | - Sébastien Perron
- Oncology Drug Discovery, ‡LGCR-Analytical Sciences, Sanofi, 13 quai Jules
Guesde, 94403 Vitry-sur-Seine, France
| | - Pierre-Eric Bardouillet
- Oncology Drug Discovery, ‡LGCR-Analytical Sciences, Sanofi, 13 quai Jules
Guesde, 94403 Vitry-sur-Seine, France
| |
Collapse
|