1
|
Sensitive, microliter PCR with consensus degenerate primers for Epstein Barr virus amplification. Biomed Microdevices 2013; 15:221-31. [PMID: 23080522 DOI: 10.1007/s10544-012-9720-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sensitive identification of the etiology of viral diseases is key to implementing appropriate prevention and treatment. The gold standard for virus identification is the polymerase chain reaction (PCR), a technique that allows for highly specific and sensitive detection of pathogens by exponentially amplifying a specific region of DNA from as little as a single copy through thermocycling a biochemical cocktail. Today, molecular biology laboratories use commercial instruments that operate in 0.5-2 h/analysis using reaction volumes of 5-50 μL contained within polymer tubes or chambers. Towards reducing this volume and maintaining performance, we present a semi-quantitative, systematic experimental study of how PCR yield is affected by tube/chamber substrate, surface-area-to-volume ratio (SA:V), and passivation methods. We perform PCR experiments using traditional PCR tubes as well as using disposable polymer microchips with 1 μL reaction volumes thermocycled using water baths. We report the first oil encapsulation microfluidic PCR method without fluid flow and its application to the first microfluidic amplification of Epstein Barr virus using consensus degenerate primers, a powerful and broad PCR method to screen for both known and novel members of a viral family. The limit of detection is measured as 140 starting copies of DNA from a starting concentration of 3 × 10(5) copies/mL, regarded as an accepted sensitivity threshold for diagnostic purposes, and reaction specificity was improved as compared to conventional methods. Also notable, these experiments were conducted with conventional reagent concentrations, rather than commonly spiked enzyme and/or template mixtures. This experimental study of the effects of substrate, SA:V, and passivation, together with sensitive and specific microfluidic PCR with consensus degenerate primers represent advances towards lower cost and higher throughput pathogen screening.
Collapse
|
2
|
Cost-Effective Paramagnetic Bead Technique for Purification of Cycle Sequencing Products. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/767959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The quality of sequencing results depends greatly upon the quality and purity of the template as well as the purity of the fluorescently labeled products generated by cycle sequencing. Numerous approaches have been used for purification of cycle sequencing products, including alcohol precipitation, affinity-based chromatography, size exclusion chromatography, commercially-available proprietary methods, and paramagnetic bead technology. In this paper, we describe an affordable paramagnetic technology method using BioMag Carboxyl beads. Compared to other well-established, proprietary methods for purification of cycle sequencing products, this method produced consistently good results, with a very low reagent cost and short procedure time.
Collapse
|
3
|
Njoroge SK, Witek MA, Battle KN, Immethun VE, Hupert ML, Soper SA. Integrated continuous flow polymerase chain reaction and micro-capillary electrophoresis system with bioaffinity preconcentration. Electrophoresis 2011; 32:3221-32. [PMID: 22038569 DOI: 10.1002/elps.201100274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/01/2011] [Accepted: 07/04/2011] [Indexed: 12/18/2022]
Abstract
An integrated and modular DNA analysis system is reported that consists of two modules: (i) A continuous flow polymerase chain reaction (CFPCR) module fabricated in a high T(g) (150°C) polycarbonate substrate in which selected gene fragments were amplified using biotin and fluorescently labeled primers accomplished by continuously shuttling small packets of PCR reagents and template through isothermal zones as opposed to heating and cooling large thermal masses typically performed in batch-type thermal reactors. (ii) μCE (micro-capillary electrophoresis) module fabricated in poly(methylmethacrylate) (PMMA), which utilized a bioaffinity selection and purification bed (2.9 μL) to preconcentrate and purify the PCR products generated from the CFPCR module prior to electrophoretic sorting. Biotin-labeled CFPCR products were hydrostatically pumped through the streptavidin-modified bed, where they were extracted onto the surface of micropillars. The affinity bed was also fabricated in PMMA and was populated with an array of microposts (50 μm width; 100 μm height) yielding a total surface area of ∼117 mm(2). This solid-phase extraction (SPE) process demonstrated high selectivity for biotinylated amplicons and utilized the strong streptavidin/biotin interaction (K(d) = 10(-15) M) to generate high recoveries. The SPE selected CFPCR products were thermally denatured and single-stranded DNA released for injection into a 7-cm-long μCE channel for size-based separations and fluorescence detection. The utility of the system was demonstrated using Alu DNA typing for gender and ethnicity determinations as a model. Compared with the traditional cross-T injection procedure typically used for μCE, the affinity pre-concentration and injection procedure generated signal enhancements of 17- to 40-fold, critical for CFPCR thermal cyclers due to Taylor dispersion associated with their operation.
Collapse
Affiliation(s)
- Samuel K Njoroge
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | | | | | | | | | | |
Collapse
|
4
|
Yeung SHI, Liu P, Del Bueno N, Greenspoon SA, Mathies RA. Integrated Sample Cleanup−Capillary Electrophoresis Microchip for High-Performance Short Tandem Repeat Genetic Analysis. Anal Chem 2008; 81:210-7. [DOI: 10.1021/ac8018685] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stephanie H. I. Yeung
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Peng Liu
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Nadia Del Bueno
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Susan A. Greenspoon
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Richard A. Mathies
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley, California 94720, Virginia Department of Forensic Science, Richmond, Virginia 23219, and Department of Chemistry, University of California, Berkeley, California 94720
| |
Collapse
|
5
|
Wei H, Qi C, Xu X, Zhang Z, Zhou Y, Cui Z, Zhang XE, Zhang C. Glycerol-salt Mediated Stacking of Nucleic Acids in CZE. Chromatographia 2008. [DOI: 10.1365/s10337-008-0523-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
N.N. Sulta G, H. Khan A. Optimization of the Sample Preparation Method for DNA Sequencing. ACTA ACUST UNITED AC 2006. [DOI: 10.3923/jbs.2007.194.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Fredlake CP, Hert DG, Mardis ER, Barron AE. What is the future of electrophoresis in large-scale genomic sequencing? Electrophoresis 2006; 27:3689-702. [PMID: 17031784 DOI: 10.1002/elps.200600408] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although a finished human genome reference sequence is now available, the ability to sequence large, complex genomes remains critically important for researchers in the biological sciences, and in particular, continued human genomic sequence determination will ultimately help to realize the promise of medical care tailored to an individual's unique genetic identity. Many new technologies are being developed to decrease the costs and to dramatically increase the data acquisition rate of such sequencing projects. These new sequencing approaches include Sanger reaction-based technologies that have electrophoresis as the final separation step as well as those that use completely novel, nonelectrophoretic methods to generate sequence data. In this review, we discuss the various advances in sequencing technologies and evaluate the current limitations of novel methods that currently preclude their complete acceptance in large-scale sequencing projects. Our primary goal is to analyze and predict the continuing role of electrophoresis in large-scale DNA sequencing, both in the near and longer term.
Collapse
Affiliation(s)
- Christopher P Fredlake
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | | | | | | |
Collapse
|
8
|
Kang D, Soo Chung D, Ho Kang S, Kim Y. Separation of DNA with hydroxypropylmethyl cellulose and poly(ethylene oxide) by capillary gel electrophoresis. Microchem J 2005. [DOI: 10.1016/j.microc.2004.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Coope RJN, Marziali A. Contaminant-induced current decline in capillary array electrophoresis. Electrophoresis 2005; 26:2128-37. [PMID: 15852354 DOI: 10.1002/elps.200410291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
High-throughput capillary array electrophoresis (CAE) instruments for DNA sequencing suffer to varying degrees from read length degradation associated with electrophoretic current decline and inhibition or delay in the arrival of fragments at the detector. This effect is known to be associated with residual amounts of large, slow-moving fragments of template or genomic DNA carried through from sample preparation and sequencing reactions. Here, we investigate the creation and expansion of an ionic depletion region induced by overloading the capillary with low-mobility DNA fragments, and the effect of growth of this region on electrophoresis run failure. Slow-moving fragments are analytically and experimentally shown to reduce the ionic concentration of the downstream electrolyte. With injection of large fragments beyond a threshold quantity, the anode-side boundary of the nascent depletion region begins to propagate toward the anode at a rate faster than the contaminant DNA migration. Under such conditions, the depletion region expands, the capillary current declines dramatically, and the electrophoresis run yields a short read length or fails completely.
Collapse
Affiliation(s)
- Robin J N Coope
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
10
|
Catai JR, Formenton-Catai AP, Carrilho E. Simplex maximization of the correlation coefficient for DNA sizing analysis by capillary electrophoresis. Electrophoresis 2005; 26:1680-6. [PMID: 15852448 DOI: 10.1002/elps.200500049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The separation of DNA molecules in polymeric solution by capillary electrophoresis involves the optimization of several variables, such as polymer solution concentration, electric field separation, temperature, etc. The optimization of each variable individually usually is a time-consuming process and the results may reach a false optimum point. Chemometric methods are suitable to be applied in such cases in which a number of variables can be optimized simultaneously. The simplex is a chemometric method that can perform such a task easily and efficiently. In this study, a simplex method was carried out to maximize the correlation coefficient (r(2)) of a logarithmic plot of mobility (mu) vs. base pair (bp), which was obtained from the separation of DNA fragments of size between 75 and 4072 bp. The simplex showed three vertexes with r(2) > 0.98 and the vertex 21 showing the highest resolution. For the fragments between 201 and 2036 bp, the r(2) increased to 0.992 with and relative standard deviation (RSD) lower than 0.2% (inter- and intra-day variation). The precision of the method in determining the size of a PCR DNA fragment was carried out using a 1 kbp DNA ladder. With the addition of an internal standard to the sample, the precision could be further improved.
Collapse
Affiliation(s)
- Jonatan R Catai
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador Sãocarlense 400, 13560-970 São Carlos-São Paulo, Brazil
| | | | | |
Collapse
|
11
|
Zhu L, Stryjewski WJ, Soper SA. Multiplexed fluorescence detection in microfabricated devices with both time-resolved and spectral-discrimination capabilities using near-infrared fluorescence. Anal Biochem 2005; 330:206-18. [PMID: 15203326 DOI: 10.1016/j.ab.2004.03.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Indexed: 11/26/2022]
Abstract
We examined the feasibility of using a two-color time-resolved detection scheme with microdevices for DNA sequencing applications. A home-built dual-color optical-fiber-based time-resolved near-infrared (IR) fluorescence microscope successfully coupled lifetime discrimination with color discrimination, increasing fluorescence multiplexing capabilities. The instrument was constructed by using two pulsed-diode lasers (680/780-nm excitation) and two avalanche photodiodes as the basic building blocks. The data were processed using electronics configured in a time-correlated single-photon counting format. The use of near-IR fluorescence detection greatly simplified the hardware and allowed low detection limits (< 0.1nM). We examined the separation of a single-base tract on a microchip and compared the performance with that of conventional capillary gel electrophoresis. The microchip was fabricated in glass and contained an effective separation length of 7.0 cm. It was found that, without incorporating a solid-phase reversible immobilization cleanup procedure, the calculated lifetime of the dye label on the microchip was longer and the standard deviation was larger than those of the same sample analyzed using capillary electrophoresis. Using cleanup steps, the accuracy and precision of the measurements improved. Lifetimes of four near-IR dyes (AlexaFluor680, IRD700, IRD800, and IRD40) used in this study were determined to be 986 ps (RSD=2.1%), 1551 ps (RSD=1.8%), 520 ps (RSD=3.3%), and 788 ps (RSD=4.9%), respectively, in a microchannel filled with poly(dimethylacrylamide) (POP-6) gel. The lifetimes calculated using maximum likelihood estimators provided favorable precision on the microchip, where small numbers of photocounts were collected. An M13mp18 template was sequenced on the microchip using a two-color two-lifetime format with POP-6 as the sieving polymer. Read lengths of 294 bp with calling accuracies of 90.8 and 83.7% were achieved in each color channel. The relatively low calling accuracy and the short read length resulted primarily from the short separation channel, which yielded low electrophoretic resolution.
Collapse
Affiliation(s)
- Li Zhu
- Department of Chemistry, 232 Choppin Hall, Louisiana State University, Baton Rouge, LA 70803-1804, USA
| | | | | |
Collapse
|
12
|
Mohamadi MR, Kataoka M, Mahmoudian L, Jabasini M, Shinohara Y, Baba Y. Analysis of Sources of Error in Quantitation of Purified DNA Fragments and Unpurified PCR Products by DNA Microchip Electrophoresis. Chromatographia 2005. [DOI: 10.1365/s10337-005-0521-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Kan CW, Fredlake CP, Doherty EAS, Barron AE. DNA sequencing and genotyping in miniaturized electrophoresis systems. Electrophoresis 2004; 25:3564-88. [PMID: 15565709 DOI: 10.1002/elps.200406161] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Advances in microchannel electrophoretic separation systems for DNA analyses have had important impacts on biological and biomedical sciences, as exemplified by the successes of the Human Genome Project (HGP). As we enter a new era in genomic science, further technological innovations promise to provide other far-reaching benefits, many of which will require continual increases in sequencing and genotyping efficiency and throughput, as well as major decreases in the cost per analysis. Since the high-resolution size- and/or conformation-based electrophoretic separation of DNA is the most critical step in many genetic analyses, continual advances in the development of materials and methods for microchannel electrophoretic separations will be needed to meet the massive demand for high-quality, low-cost genomic data. In particular, the development (and commercialization) of miniaturized genotyping platforms is needed to support and enable the future breakthroughs of biomedical science. In this review, we briefly discuss the major sequencing and genotyping techniques in which high-throughput and high-resolution electrophoretic separations of DNA play a significant role. We review recent advances in the development of technology for capillary electrophoresis (CE), including capillary array electrophoresis (CAE) systems. Most of these CE/CAE innovations are equally applicable to implementation on microfabricated electrophoresis chips. Major effort is devoted to discussing various key elements needed for the development of integrated and practical microfluidic sequencing and genotyping platforms, including chip substrate selection, microchannel design and fabrication, microchannel surface modification, sample preparation, analyte detection, DNA sieving matrices, and device integration. Finally, we identify some of the remaining challenges, and some of the possible routes to further advances in high-throughput DNA sequencing and genotyping technologies.
Collapse
Affiliation(s)
- Cheuk-Wai Kan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
14
|
|
15
|
Paegel BM, Blazej RG, Mathies RA. Microfluidic devices for DNA sequencing: sample preparation and electrophoretic analysis. Curr Opin Biotechnol 2003; 14:42-50. [PMID: 12566001 DOI: 10.1016/s0958-1669(02)00004-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Modern DNA sequencing 'factories' have revolutionized biology by completing the human genome sequence, but in the race to completion we are left with inefficient, cumbersome, and costly macroscale processes and supporting facilities. During the same period, microfabricated DNA sequencing, sample processing and analysis devices have advanced rapidly toward the goal of a 'sequencing lab-on-a-chip'. Integrated microfluidic processing dramatically reduces analysis time and reagent consumption, and eliminates costly and unreliable macroscale robotics and laboratory apparatus. A microfabricated device for high-throughput DNA sequencing that couples clone isolation, template amplification, Sanger extension, purification, and electrophoretic analysis in a single microfluidic circuit is now attainable.
Collapse
Affiliation(s)
- Brian M Paegel
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
16
|
Catai JR, Carrilho E. Simplex optimization of electrokinetic injection of DNA in capillary electrophoresis using dilute polymer solution. Electrophoresis 2003; 24:648-54. [PMID: 12601733 DOI: 10.1002/elps.200390076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In DNA analysis by capillary electrophoresis with polymer solutions there are many variables that can be optimized. However, electric field strength, polymer solution concentration and temperature of analysis are the most relevant ones. These are the variables most responsible for the fragment resolution and analysis time. Optimization of such parameters can be obtained simultaneously using chemometric techniques, reaching the optimum working conditions with few experiments. In this work, we have studied the influence of the sample composition and electrokinetic injection conditions in the reproducibility and the quality of the DNA separation results. A simplex optimization has been carried out and the optimum condition was reached with nine experiments.
Collapse
Affiliation(s)
- Jonatan Ricardo Catai
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos - SP, Brazil
| | | |
Collapse
|
17
|
Zhong W, Yeung ES. Multiplexed capillary electrophoresis for DNA sequencing with ultra violet absorption detection. J Chromatogr A 2002; 960:229-39. [PMID: 12150561 DOI: 10.1016/s0021-9673(01)01393-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA sequencing is performed in a multiplexed capillary electrophoresis system by UV absorption detection. Four individual electropherograms are obtained by simultaneously running the unlabeled DNA products of the four ddNTP-terminated reactions in the capillary array. The sequence of the template used in the cycle-sequencing reaction can be determined by overlaying the four electropherograms. Two internal standards are employed to adjust for the variance in migration times among the capillaries. After applying the correction algorithm, base calling can be done at a high level of confidence.
Collapse
|
18
|
Abstract
The Human Genome Project and other major genomic sequencing projects have pushed the development of sequencing technology. In the past six years alone, instrument throughput has increased 15-fold. New technologies are now on the horizon that could yield massive increases in our capacity for de novo DNA sequencing. This review presents a summary of state-of-the-art technologies for genomic sequencing and describes technologies that may be candidates for the next generation of DNA sequencing instruments.
Collapse
Affiliation(s)
- A Marziali
- Department of Physics and Astronomy, 6224 Agricultural Road, University of British Columbia, Vancouver, BC, Canada, V6T-1Z1.
| | | |
Collapse
|
19
|
Mitnik L, Novotny M, Felten C, Buonocore S, Koutny L, Schmalzing D. Recent advances in DNA sequencing by capillary and microdevice electrophoresis. Electrophoresis 2001; 22:4104-17. [PMID: 11824631 DOI: 10.1002/1522-2683(200111)22:19<4104::aid-elps4104>3.0.co;2-f] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A number of significant improvements in the electrophoretic performance and design of DNA sequencing devices have culminated in the introduction of truly industrial grade production scale instruments. These instruments have been the workhorses behind the massive increase in genomic sequencing data available in public and private databases. We highlight the recent progress in aspects of capillary electrophoresis (CE) that has enabled these achievements. In addition, we summarize recent developments in the use of microfabricated devices for DNA sequencing that promise to bring the next leap in productivity.
Collapse
Affiliation(s)
- L Mitnik
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Tseng WL, Hsieh MM, Wang SJ, Huang CC, Lin YC, Chang PL, Chang HT. Analysis of large-volume DNA markers and polymerase chain reaction products by capillary electrophoresis in the presence of electroosmotic flow. J Chromatogr A 2001; 927:179-90. [PMID: 11572387 DOI: 10.1016/s0021-9673(01)01122-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have demonstrated on-line concentration and separation of DNA in the presence of electroosmotic flow (EOF) using poly(ethylene oxide) (PEO) solutions. After injecting large-volumes DNA samples, PEO solutions entered a capillary filled with 400 mM Tris-borate (TB) buffers by EOF and acted as sieving matrices. DNA fragments stacked between the sample zone and PEO solutions. Because sample matrixes affected PEO adsorption on the capillary wall, leading to changes in EOF, migration time, concentration, and resolving power varied with the injection length. When injecting phiX174 RF DNA-HaeIII digest prepared in 5 mM Tris-HCl buffer, pH 7.0, at 250 V/cm, peak height increased linearly as a function of injection volume up to 0.9 microl (injection time 150 s). The sensitivity improvement was 100-fold compare to that injected at 25 V/cm for 10 s (0.006 microl). When injecting 1.54 microl of GeneScan 1000 ROX, the sensitivity improvement was 265-fold. The sensitivity improvement was 40-fold when injecting 0.17 microl DNA sample containing pBR 322/HaeIII, pBR 328/BglI, and pBR 328/HinfI digests prepared in phosphate-buffered saline. This method allows the analysis of polymerase chain reaction (PCR) products amplified after 17 cycles when injecting 0.32 microl (at 30 cm height for 300 s). The total analysis time was shorter (91.6 min) than that (119.6 min) obtained from injecting PCR products after 32 cycles for 10 s.
Collapse
Affiliation(s)
- W L Tseng
- Department of Chemistry, National Taiwan University, Taipei
| | | | | | | | | | | | | |
Collapse
|
21
|
Gilar M, Belenky A, Wang BH. High-throughput biopolymer desalting by solid-phase extraction prior to mass spectrometric analysis. J Chromatogr A 2001; 921:3-13. [PMID: 11461010 DOI: 10.1016/s0021-9673(01)00833-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the last 10 years mass spectrometry (MS) has become an important method for analysis of peptides, proteins and DNA. It was recently utilized for accurate high-throughput protein identification, sequencing and DNA genotyping. The presence of non-volatile buffers compromises sensitivity and accuracy of MS biopolymer analysis; it is essential to remove sample contaminants prior to analysis. We have developed a fast and efficient method for desalting of DNA oligonucleotides and peptides using 96-well solid-phase extraction plates packed with 5 mg of Waters Oasis HLB sorbent (Waters, Milford, MA, USA). This reversed-phase sorbent retains the biopolymer analytes, while non-retained inorganic ions are washed out with pure deionized water. DNA oligonucleotides or peptides are eluted using a small amount (20-100 microl) of acetonitrile-water (70:30, v/v) solution. The SPE desalting performance meets the requirements for MS applications such as protein digest analysis and DNA genotyping.
Collapse
Affiliation(s)
- M Gilar
- Waters Corporation, Milford, MA 01757-3696, USA.
| | | | | |
Collapse
|
22
|
Song L, Liang D, Fang D, Chu B. Fast DNA sequencing up to 1,000 bases by capillary electrophoresis using poly(N,N-dimethylacrylamide) as a separation medium. Electrophoresis 2001; 22:1987-96. [PMID: 11465497 DOI: 10.1002/1522-2683(200106)22:10<1987::aid-elps1987>3.0.co;2-k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Poly(N,N-dimethylacrylamide) (PDMA) with a molecular mass of 5.2 x 10(6) g/mol has been synthesized and used in DNA sequencing analysis by capillary electrophoresis (CE). A systematic investigation is presented on the effects of different separation conditions, such as injection amount, capillary inner diameter, polymer concentration, effective separation length, electric field and temperature, on the resolution. DNA sequencing up to 800 bases with a resolution (R) limit of 0.5 (and 1,000 bases with a resolution limit of 0.3) and a migration time of 96 min was achieved by using 2.5% w/v polymer, 150 V/cm separation electric field, and 60 cm effective separation length at room temperature on a DNA sample prepared with FAM-labeled--21M13 forward primer on pGEM3Zf(+) and terminated with ddCTP. Ultrafast and fast DNA sequencing up to 420 and 590 bases (R > or = 0.5) were also achieved by using 3% w/v polymer and 40 cm effective separation length with a separation electric field of 525 and 300 V/cm, and a migration time of 12.5 and 31.5 min, respectively. PDMA has low viscosity, long shelf life and dynamic coating ability to the glass surface. The unique properties of PDMA make it a very good candidate as a separation medium for large-scale DNA sequencing by capillary array electrophoresis (CAE).
Collapse
Affiliation(s)
- L Song
- Chemistry Department, State University of New York at Stony Brook, 11794-3400, USA
| | | | | | | |
Collapse
|
23
|
Nakane J, Broemeling D, Donaldson R, Marziali A, Willis TD, O'Keefe M, Davis RW. A Method For Parallel, Automated, Thermal Cycling of Submicroliter Samples. Genome Res 2001. [DOI: 10.1101/gr.164401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A large fraction of the cost of DNA sequencing and other DNA-analysis processes results from the reagent costs incurred during cycle sequencing or PCR. In particular, the high cost of the enzymes and dyes used in these processes often results in thermal cycling costs exceeding $0.50 per sample. In the case of high-throughput DNA sequencing, this is a significant and unnecessary expense. Improved detection efficiency of new sequencing instrumentation allows the reaction volumes for cycle sequencing to be scaled down to one-tenth of presently used volumes, resulting in at least a 10-fold decrease in the cost of this process. However, commercially available thermal cyclers and automated reaction setup devices have inherent design limitations which make handling volumes of <1 μL extremely difficult. In this paper, we describe a method for thermal cycling aimed at reliable, automated cycling of submicroliter reaction volumes.
Collapse
|
24
|
Li Y, White J, Stokes D, Sayler G, Sepaniak M. Capillary electrophoresis as a method to study DNA reassociation. Biotechnol Prog 2001; 17:348-54. [PMID: 11312713 DOI: 10.1021/bp010005f] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To develop analytical methodology to assess the genetic complexity of a DNA sample, capillary electrophoresis with laser-induced fluorescence detection is used to monitor the annealing process of DNA samples. Coated columns are filled with an entangled polymer solution shown to optimally separate DNA through size-selective capillary electrophoresis. DNA samples are denatured by heating in a boiling water bath for approximately 10 min and then cooled to approximately 25 degrees C below the melting point of the DNA sample to initiate the reassociation process. The DNA is detected by means of the laser-induced fluorescence of intercalated ethidium bromide, which produces a substantially greater signal for double- versus single-stranded DNA. The rate of reassociation is dependent upon the rate at which complimentary strands of DNA encounter each other and the degree of repeating base sequences in the sample (hence, the diversity of the DNA). Experimental parameters also influence the reassociation rate. The effects of salt concentration and incubation temperature are presented. Traditional plots of C(o)t (C(o) = DNA concentration and t = reassociation time) versus % recovery of double-stranded DNA signal are generated for PhiX 174 Hae III digest and 50 bp stepladder DNA, individually and combined, to calculate the reassociation rate constants for these samples. Because reassociation of individual fragments is observed by the CE-LIF method, more information about the samples is available than with less specific and time-consuming traditional methods of investigating DNA reassociation.
Collapse
Affiliation(s)
- Y Li
- School of Public Health, West China University of Medical Sciences, Chengdu 610041, PR China
| | | | | | | | | |
Collapse
|
25
|
Gilar M, Bouvier ES, Compton BJ. Advances in sample preparation in electromigration, chromatographic and mass spectrometric separation methods. J Chromatogr A 2001; 909:111-35. [PMID: 11269513 DOI: 10.1016/s0021-9673(00)01108-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The quality of sample preparation is a key factor in determining the success of analysis. While analysis of pharmaceutically important compounds in biological matrixes has driven forward the development of sample clean-up procedures in last 20 years, today's chemists face an additional challenge: sample preparation and analysis of complex biochemical samples for characterization of genotypic or phenotypic information contained in DNA and proteins. This review focuses on various sample pretreatment methods designed to meet the requirements for the analysis of biopolymers and small drugs in complex matrices. We discuss the advances in development of solid-phase extraction (SPE) sorbents, on-line SPE, membrane-based sample preparation, and sample clean-up of biopolymers prior to their analysis by mass spectrometry.
Collapse
Affiliation(s)
- M Gilar
- Waters Corp., Milford, MA 01757, USA.
| | | | | |
Collapse
|
26
|
|
27
|
He H, McGown LB. DNA sequencing by capillary electrophoresis with four-decay fluorescence detection. Anal Chem 2000; 72:5865-73. [PMID: 11140750 DOI: 10.1021/ac000952n] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A scheme for multiplex detection of dye-labeled DNA fragments in DNA sequencing is described in which on-the-fly, frequency-domain fluorescence lifetime detection is used to discriminate among the dye-labeled fragments of the four terminal bases in a single-lane CE separation. Two four-dye systems were evaluated, one excited at 488 nm and the other, at 514 nm. The 488 nm system proved successful for four-decay detection. Base calling was achieved either directly from on-the-fly lifetimes or from lifetime-resolved electropherograms recovered for each base from the electropherogram of the mixture of sequencing reaction products. The latter method was found to be more accurate (99% for two bases and 98.5% for three bases) and could achieve longer read lengths, but it was unsuccessful for sequencing of all four bases. The first method gave a base-calling accuracy of 96% for four-base sequencing over the fragment length range of 41-220 bases.
Collapse
Affiliation(s)
- H He
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
28
|
Hadd AG, Goard MP, Rank DR, Jovanovich SB. Sub-microliter DNA sequencing for capillary array electrophoresis. J Chromatogr A 2000; 894:191-201. [PMID: 11100862 DOI: 10.1016/s0021-9673(00)00459-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA sequencing from sub-microliter samples was demonstrated for capillary array electrophoresis by optimizing the analysis of 500 nl reaction aliquots of full-volume reactions and by preparing 500 nl reactions within fused-silica capillaries. Sub-microliter aliquots were removed from the pooled reaction products of 10 microl dye-primer cycle-sequencing reactions and analyzed without modifying either the reagent concentrations or instrument workflow. The impact of precipitation methods, resuspension buffers, and injection times on electrokinetic injection efficiency for 500 nl aliquots were determined by peak heights, signal-to-noise ratios, and changes in base-called readlengths. For 500 nl aliquots diluted to 5 microl in 60% formamide-1 mM EDTA and directly injected, a five-fold increase in signal-to-noise ratios was obtained by increasing injection times from 10 to 80 s without a corresponding increase in peak widths or reduction in readlengths. For 500 nl aliquots precipitated in alcohol, 80 +/- 5% template recovery and a two-fold decrease in conductivity was obtained, resulting in a two-fold increase in peak heights and 50 to 100 bases increase in readlengths. In a comparison of aliquot volumes and precipitation methods, equivalent readlengths were obtained for 500 nl, 4 microl, and 8 microl aliquots by simply adjusting the electrokinetic injection conditions. To ascertain the robustness of this methodology for genomic sequencing, 96 Arabidopsis thaliana subclones were sequenced, with a yield of 38 624 bases obtained from 500 nl aliquots versus 30 764 bases from standard scale reactions. To demonstrate 500 nl sample preparation, reactions were performed in fused-silica capillary reaction chambers using air-based thermal cycling. A readlength of 690 bases was obtained for the polymerase chain reaction product of an Arabidopsis subclone without modifying the reagent concentrations, post-reaction processing or electrokinetic injection workflow. These results demonstrated the fundamental feasibility of small-volume DNA sequencing for high-throughput capillary electrophoresis.
Collapse
Affiliation(s)
- A G Hadd
- Molecular Dynamics/Amersham Pharmacia Biotech, Sunnyvale, CA 94086, USA
| | | | | | | |
Collapse
|
29
|
Hanning A, Westberg J, Roeraade J. A liquid core waveguide fluorescence detector for multicapillary electrophoresis applied to DNA sequencing in a 91-capillary array. Electrophoresis 2000; 21:3290-304. [PMID: 11001228 DOI: 10.1002/1522-2683(20000901)21:15<3290::aid-elps3290>3.0.co;2-j] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A new laser-induced fluorescence (LIF) detector for multicapillary electrophoresis is presented. The detection principle is based on waveguiding of the emitted fluorescence from the point of illumination to the capillary ends by total internal reflection (TIR) and imaging of the capillary ends. The capillaries themselves thus act as liquid core waveguides (LCWs). At the illumination point, the capillaries are arranged in a planar array, which allows clean and efficient illumination with a line-focused laser beam. The capillary ends are rearranged into a small, densely packed two-dimensional array, which is imaged end-on with high light collection efficiency and excellent image quality. Wavelength dispersion is obtained with a single prism. Intercapillary optical crosstalk is less than 0.5%, and rejection of stray light is very efficient. The detector is applied to four-color DNA sequencing by gel electrophoresis in a 91-capillary array, with simple fluorescein and rhodamine dyes as fluorophores. Since the imaged two-dimensional array is so compact, the detector has a high potential for very large-scale multiplexing.
Collapse
Affiliation(s)
- A Hanning
- Royal Institute of Technology, Department of Analytical Chemistry, Stockholm, Sweden
| | | | | |
Collapse
|
30
|
Liu S, Ren H, Gao Q, Roach DJ, Loder RT, Armstrong TM, Mao Q, Blaga I, Barker DL, Jovanovich SB. Automated parallel DNA sequencing on multiple channel microchips. Proc Natl Acad Sci U S A 2000; 97:5369-74. [PMID: 10792056 PMCID: PMC25835 DOI: 10.1073/pnas.100113197] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2000] [Accepted: 03/14/2000] [Indexed: 11/18/2022] Open
Abstract
We report automated DNA sequencing in 16-channel microchips. A microchip prefilled with sieving matrix is aligned on a heating plate affixed to a movable platform. Samples are loaded into sample reservoirs by using an eight-tip pipetting device, and the chip is docked with an array of electrodes in the focal plane of a four-color scanning detection system. Under computer control, high voltage is applied to the appropriate reservoirs in a programmed sequence that injects and separates the DNA samples. An integrated four-color confocal fluorescent detector automatically scans all 16 channels. The system routinely yields more than 450 bases in 15 min in all 16 channels. In the best case using an automated base-calling program, 543 bases have been called at an accuracy of >99%. Separations, including automated chip loading and sample injection, normally are completed in less than 18 min. The advantages of DNA sequencing on capillary electrophoresis chips include uniform signal intensity and tolerance of high DNA template concentration. To understand the fundamentals of these unique features we developed a theoretical treatment of cross-channel chip injection that we call the differential concentration effect. We present experimental evidence consistent with the predictions of the theory.
Collapse
Affiliation(s)
- S Liu
- Molecular Dynamics/Amersham Pharmacia Biotech, Sunnyvale, CA 94086, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
To comply with the current needs for high-speed DNA sequencing analysis, several instruments and innovative technologies have been introduced by several groups in recent years. This review article discusses and compares the issues regarding high-throughput DNA sequencing by electrophoretic methods in miniaturized systems, such as capillaries, capillary arrays, and microchannels. Initially, general features of several capillary array designs (including commercial ones) will be considered, followed by similar analyses with microfabricated array electrophoretic devices and how they can contribute to the success of large sequencing projects.
Collapse
Affiliation(s)
- E Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, Brazil.
| |
Collapse
|
32
|
Dolník V. DNA sequencing by capillary electrophoresis (review). JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1999; 41:103-19. [PMID: 10626769 DOI: 10.1016/s0165-022x(99)00041-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
DNA sequencing by capillary electrophoresis has been reviewed with an emphasis on progress during the last four years. The effects of sample purification, composition of sieving matrices, electric field strength, temperature, wall coating and DNA labeling on the DNA sequencing performance are discussed. Multicapillary array instrumentation is compared with one-capillary systems. Integrated systems that perform the whole DNA sequencing operation online starting from the DNA amplification through base calling and data processing are discussed.
Collapse
Affiliation(s)
- V Dolník
- Molecular Dynamics, Sunnyvale, CA 94086, USA.
| |
Collapse
|
33
|
Schmalzing D, Koutny L, Salas-Solano O, Adourian A, Matsudaira P, Ehrlich D. Recent developments in DNA sequencing by capillary and microdevice electrophoresis. Electrophoresis 1999; 20:3066-77. [PMID: 10596815 DOI: 10.1002/(sici)1522-2683(19991001)20:15/16<3066::aid-elps3066>3.0.co;2-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present review covers papers published in the years 1997 and 1998 on DNA sequencing by capillary and microdevice electrophoresis. The article does not include other electrophoretic DNA applications such as analysis of oligonucleotides, genotyping, and mutational analysis. Capillary gel electrophoresis (CGE) is starting to become a viable competitor to slab gel electrophoresis for DNA sequencing. Commercially available multicapillary array sequencers are now entering sequencing facilities which to date have totally relied on traditional slab gel technology. CGE research on DNA sequencing therefore becomes increasingly concerned with the critical task of fine-tuning the operational parameters to create robust sequencing systems. Electrophoretic microdevices are being considered the next technological step in DNA sequencing by electrophoresis.
Collapse
Affiliation(s)
- D Schmalzing
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Schmalzing D, Tsao N, Koutny L, Chisholm D, Srivastava A, Adourian A, Linton L, McEwan P, Matsudaira P, Ehrlich D. Toward real-world sequencing by microdevice electrophoresis. Genome Res 1999; 9:853-8. [PMID: 10508844 PMCID: PMC310810 DOI: 10.1101/gr.9.9.853] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report results using a microdevice for DNA sequencing using samples from chromosome 17, obtained from the Whitehead Institute Center for Genome Research (WICGR) production line. The device had an effective separation distance of 11.5 cm and a lithographically defined injection width of 150 microm. The four-color raw data were processed, base-called by the sequencing software Trout, and compared to the corresponding ABI 377 sequence from WICGR. With a criteria of 99% accuracy, we achieved average continuous reads of 505 bases in 27 min with 3% linear polyacrylamide (LPA) at 150 V/cm, and 460 bases in 22 min with 4% LPA at 200 V/cm at a temperature of 45 degrees C. In the best case, up to 565 bases could be base-called with the same accuracy in <25 min. In some instances, Trout allowed for accurate base-calling down to a resolution R as low as R = 0.35. This may be due in part to the high signal-to-noise ratio of the microdevice. Unlike many results reported on capillary machines, no additional sample cleanup other than ethanol precipitation was required. In addition, DNA fragment biasing (i.e., discrimination against larger fragments) was reduced significantly through the unique sample injection mechanism of the microfabricated device. This led to increased signal strength for long fragments, which is of great importance for the high performance of the microdevice.
Collapse
Affiliation(s)
- D Schmalzing
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|