1
|
Jiang Y, Rex DA, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Hegeman AD, Mayta M, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:338-417. [PMID: 39193565 PMCID: PMC11348894 DOI: 10.1021/acsmeasuresciau.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 08/29/2024]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Devasahayam Arokia
Balaya Rex
- Center for
Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
- Department
of Biology, Institute of Molecular Biology
and Biophysics, ETH Zurich, Zurich 8093, Switzerland
- Laboratory
of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical
Sciences Division, National Institute of
Standards and Technology, NIST, Charleston, South Carolina 29412, United States
| | - Germán L. Rosano
- Mass
Spectrometry
Unit, Institute of Molecular and Cellular
Biology of Rosario, Rosario, 2000 Argentina
| | - Norbert Volkmar
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Trenton M. Peters-Clarke
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California, 94158, United States
| | - Susan B. Egbert
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Simion Kreimer
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Emma H. Doud
- Center
for Proteome Analysis, Indiana University
School of Medicine, Indianapolis, Indiana, 46202-3082, United States
| | - Oliver M. Crook
- Oxford
Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United
Kingdom
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | | | - Adrian D. Hegeman
- Departments
of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota 55108, United States
| | - Martín
L. Mayta
- School
of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martin 3103, Argentina
- Molecular
Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas M. Riley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems biology, Seattle, Washington 98109, United States
| | - Jesse G. Meyer
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| |
Collapse
|
2
|
Lancaster NM, Sinitcyn P, Forny P, Peters-Clarke TM, Fecher C, Smith AJ, Shishkova E, Arrey TN, Pashkova A, Robinson ML, Arp N, Fan J, Hansen J, Galmozzi A, Serrano LR, Rojas J, Gasch AP, Westphall MS, Stewart H, Hock C, Damoc E, Pagliarini DJ, Zabrouskov V, Coon JJ. Fast and deep phosphoproteome analysis with the Orbitrap Astral mass spectrometer. Nat Commun 2024; 15:7016. [PMID: 39147754 PMCID: PMC11327265 DOI: 10.1038/s41467-024-51274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
Owing to its roles in cellular signal transduction, protein phosphorylation plays critical roles in myriad cell processes. That said, detecting and quantifying protein phosphorylation has remained a challenge. We describe the use of a novel mass spectrometer (Orbitrap Astral) coupled with data-independent acquisition (DIA) to achieve rapid and deep analysis of human and mouse phosphoproteomes. With this method, we map approximately 30,000 unique human phosphorylation sites within a half-hour of data collection. The technology is benchmarked to other state-of-the-art MS platforms using both synthetic peptide standards and with EGF-stimulated HeLa cells. We apply this approach to generate a phosphoproteome multi-tissue atlas of the mouse. Altogether, we detect 81,120 unique phosphorylation sites within 12 hours of measurement. With this unique dataset, we examine the sequence, structural, and kinase specificity context of protein phosphorylation. Finally, we highlight the discovery potential of this resource with multiple examples of phosphorylation events relevant to mitochondrial and brain biology.
Collapse
Affiliation(s)
- Noah M Lancaster
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Patrick Forny
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Caroline Fecher
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew J Smith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | | | - Anna Pashkova
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | - Margaret Lea Robinson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas Arp
- Morgridge Institute for Research, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Juli Hansen
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Andrea Galmozzi
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Lia R Serrano
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Julie Rojas
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael S Westphall
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | | | | | - Eugen Damoc
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Morgridge Institute for Research, Madison, WI, USA.
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA.
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Huynh TT, Feng Y, Meshaw R, Zhao XG, Rosenfeld L, Vaidyanathan G, Papo N, Zalutsky MR. PSMA-reactive NB7 single domain antibody fragment: A potential scaffold for developing prostate cancer theranostics. Nucl Med Biol 2024; 134-135:108913. [PMID: 38703588 DOI: 10.1016/j.nucmedbio.2024.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Single domain antibody fragments (sdAbs) are an appealing scaffold for radiopharmaceutical development due to their small size (~15 kDa), high solubility, high stability, and excellent tumor penetration. Previously, we developed NB7 sdAb, which has very high affinity for an epitope on PSMA that is different from those targeted by small molecule PSMA inhibitors. Herein, we evaluated NB7 after radioiodination using [*I]SGMIB (1,3,4-isomer) and iso-[*I]SGMIB (1,3,5-isomer), as well as their 211At-labeled analogues. METHODS [*I]SGMIB, iso-[*I]SGMIB, [211At]SAGMB, and iso-[211At]SAGMB conjugates of NB7 sdAb were synthesized and their binding affinity, cell uptake and internalization were assessed in PSMA+ PC3 PIP and PSMA- PC3 flu cells. Biodistribution studies were performed in mice bearing PSMA+ PC3 PIP xenografts. First, a single-label experiment evaluated the tissue distribution of a NB7 bearing a His6-tag (NB7H6) and labeled with iso-[125I]SGMIB. Three paired-label experiments then were performed to compare: a) NB7 labeled using [*I]SGMIB and iso-[*I]SGMIB, b) 131I- vs 211At-labeled NB7 conjugates and c) [125I]SGMIB-NB7H6 to the small molecule PSMA inhibitor [131I]YF2. RESULTS All NB7 radioconjugates bound specifically to PSMA with dissociation constants, Kd, in the low nM range (1.4-6.4 nM). An initial biodistribution study demonstrated good tumor uptake for iso-[125I]SGMIB-NB7H6 (7.2 ± 1.5 % ID/g at 1 h) and no deleterious effect of the His6-tag on renal activity levels, which declined to 3.1 ± 1.1 % ID/g by 4 h. Paired-label biodistribution found no distinction between the two SGMIB isomer NB7 conjugates with the [131I]SGMIB-NB7-to-iso-[125I]SGMIB-NB7 tumor uptake ratios not significantly different from unity: 1.06 ± 0.08 at 1 h, 1.04 ± 0.12 at 4 h, and 1.07 ± 0.09 at 24 h. Both isomer conjugates cleared rapidly from normal tissues and exhibited very low uptake in thyroid, lacrimal and salivary glands. Paired-label biodistribution of [131I]SGMIB-NB7H6 and [211At]SAGMB-NB7H6 demonstrated similar tumor uptake and kidney clearance for the two radioconjugates. However, levels of 211At in thyroid, stomach, salivary and lacrimal glands were significantly higher (P < 0.05) that those for 131I suggesting greater dehalogenation for [211At]SAGMB-NB7H6. Finally, co-administration of [125I]SGMIB-NB7H6 and [131I]YF2 demonstrated good tumor uptake for both with considerably more rapid renal clearance for the NB7 radioconjugate. CONCLUSION NB7 radioconjugates exhibited good accumulation in PSMA-positive xenografts with rapid clearance from kidney and other normal tissues. We conclude that NB7 is a potentially useful scaffold for developing PSMA-targeted theranostics with different characteristics than current small molecule and antibody-based approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Niv Papo
- Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
4
|
Chamrád I, Simerský R, Lenobel R, Novák O. Exploring affinity chromatography in proteomics: A comprehensive review. Anal Chim Acta 2024; 1306:342513. [PMID: 38692783 DOI: 10.1016/j.aca.2024.342513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Over the past decades, the proteomics field has undergone rapid growth. Progress in mass spectrometry and bioinformatics, together with separation methods, has brought many innovative approaches to the study of the molecular biology of the cell. The potential of affinity chromatography was recognized immediately after its first application in proteomics, and since that time, it has become one of the cornerstones of many proteomic protocols. Indeed, this chromatographic technique exploiting the specific binding between two molecules has been employed for numerous purposes, from selective removal of interfering (over)abundant proteins or enrichment of scarce biomarkers in complex biological samples to mapping the post-translational modifications and protein interactions with other proteins, nucleic acids or biologically active small molecules. This review presents a comprehensive survey of this versatile analytical tool in current proteomics. To navigate the reader, the haphazard space of affinity separations is classified according to the experiment's aims and the separated molecule's nature. Different types of available ligands and experimental strategies are discussed in further detail for each of the mentioned procedures.
Collapse
Affiliation(s)
- Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic.
| | - Radim Simerský
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| |
Collapse
|
5
|
Lancaster NM, Sinitcyn P, Forny P, Peters-Clarke TM, Fecher C, Smith AJ, Shishkova E, Arrey TN, Pashkova A, Robinson ML, Arp N, Fan J, Hansen J, Galmozzi A, Serrano LR, Rojas J, Gasch AP, Westphall MS, Stewart H, Hock C, Damoc E, Pagliarini DJ, Zabrouskov V, Coon JJ. Fast and Deep Phosphoproteome Analysis with the Orbitrap Astral Mass Spectrometer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.21.568149. [PMID: 38045259 PMCID: PMC10690147 DOI: 10.1101/2023.11.21.568149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Owing to its roles in cellular signal transduction, protein phosphorylation plays critical roles in myriad cell processes. That said, detecting and quantifying protein phosphorylation has remained a challenge. We describe the use of a novel mass spectrometer (Orbitrap Astral) coupled with data-independent acquisition (DIA) to achieve rapid and deep analysis of human and mouse phosphoproteomes. With this method we map approximately 30,000 unique human phosphorylation sites within a half-hour of data collection. The technology was benchmarked to other state-of-the-art MS platforms using both synthetic peptide standards and with EGF-stimulated HeLa cells. We applied this approach to generate a phosphoproteome multi-tissue atlas of the mouse. Altogether, we detected 81,120 unique phosphorylation sites within 12 hours of measurement. With this unique dataset, we examine the sequence, structural, and kinase specificity context of protein phosphorylation. Finally, we highlight the discovery potential of this resource with multiple examples of novel phosphorylation events relevant to mitochondrial and brain biology.
Collapse
|
6
|
Wang D, Huang J, Zhang H, Gu TJ, Li L. Cotton Ti-IMAC: Developing Phosphorylated Cotton as a Novel Platform for Phosphopeptide Enrichment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47893-47901. [PMID: 37812448 PMCID: PMC10730235 DOI: 10.1021/acsami.3c08697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Protein phosphorylation is an important post-translational modification (PTM), which is involved in many important cellular functions. Understanding protein phosphorylation at the molecular level is critical to deciphering its relevant biological processes and signaling networks. Mass spectrometry (MS) has become a powerful tool for the comprehensive profiling of protein phosphorylation. Yet the low ionization efficiency and low abundance of phosphopeptides among complex biological samples make its MS analysis challenging; an enrichment strategy with high efficiency and selectivity is always necessary prior to MS analysis. In this study, we developed a phosphorylated cotton-fiber-based Ti(IV)-IMAC material (termed as Cotton Ti-IMAC) that can serve as a novel platform for phosphopeptide enrichment. The cotton fiber can be effectively grafted with phosphate groups covalently in a single step, where the titanium ions can then be immobilized to enable capturing phosphopeptides. The material can be prepared using cost-effective reagents within only 4 h. Benefiting from the flexibility and filterability of cotton fibers, the material can be easily packed as a spin-tip and make the enrichment process convenient. Cotton Ti-IMAC successfully enriched phosphopeptides from protein standard digests and exhibited a high selectivity (BSA/β-casein = 1000:1) and excellent sensitivity (0.1 fmol/μL). Moreover, 2354 phosphopeptides were profiled in one LC-MS/MS injection after enriching from only 100 μg of HeLa cell digests with an enrichment specificity of up to 97.51%. Taken together, we believe that Cotton Ti-IMAC can serve as a widely applicable and robust platform for achieving large-scale phosphopeptide enrichment and expanding our knowledge of phosphoproteomics in complex biological systems.
Collapse
Affiliation(s)
- Danqing Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
- Guangzhou Laboratory, Guangzhou, Guangdong, 510005, China
| | - Haoran Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ting-Jia Gu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
7
|
Linzer J, Phelps Z, Vummidi S, Lee BYE, Coant N, Haley JD. Mass Spectrometry and Pharmacological Approaches to Measuring Cooption and Reciprocal Activation of Receptor Tyrosine Kinases. Proteomes 2023; 11:20. [PMID: 37368466 PMCID: PMC10304582 DOI: 10.3390/proteomes11020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) can show extensive crosstalk, directly and indirectly. Elucidating RTK crosstalk remains an important goal in the clinical combination of anti-cancer therapies. Here, we present mass spectrometry and pharmacological approaches showing the hepatocyte growth factor receptor (MET)-promoting tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) and other membrane receptors in MET-amplified H1993 NSCLC cells. Conversely, in H292 wt-EGFR NSCLC cells, EGFR promotes the tyrosine phosphorylation of MET. Reciprocal regulation of the EGFR and insulin receptor (IR) was observed in the GEO CRC cells, where inhibition of the EGFR drives tyrosine phosphorylation of the insulin receptor. Similarly, in platelet-derived growth factor receptor (PDGFR)-amplified H1703 NSCLC cells, inhibition of the EGFR promotes the tyrosine phosphorylation of the PDGFR. These RTK interactions are used to illustrate basic principles applicable to other RTK signaling networks. More specifically, we focus on two types of RTK interaction: (1) co-option of one RTK by another and (2) reciprocal activation of one receptor following the inhibition of a distinct receptor.
Collapse
Affiliation(s)
| | | | | | | | | | - John D. Haley
- Department of Pathology and Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
8
|
Targeted Quantification of Protein Phosphorylation and Its Contributions towards Mathematical Modeling of Signaling Pathways. Molecules 2023; 28:molecules28031143. [PMID: 36770810 PMCID: PMC9919559 DOI: 10.3390/molecules28031143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Post-translational modifications (PTMs) are key regulatory mechanisms that can control protein function. Of these, phosphorylation is the most common and widely studied. Because of its importance in regulating cell signaling, precise and accurate measurements of protein phosphorylation across wide dynamic ranges are crucial to understanding how signaling pathways function. Although immunological assays are commonly used to detect phosphoproteins, their lack of sensitivity, specificity, and selectivity often make them unreliable for quantitative measurements of complex biological samples. Recent advances in Mass Spectrometry (MS)-based targeted proteomics have made it a more useful approach than immunoassays for studying the dynamics of protein phosphorylation. Selected reaction monitoring (SRM)-also known as multiple reaction monitoring (MRM)-and parallel reaction monitoring (PRM) can quantify relative and absolute abundances of protein phosphorylation in multiplexed fashions targeting specific pathways. In addition, the refinement of these tools by enrichment and fractionation strategies has improved measurement of phosphorylation of low-abundance proteins. The quantitative data generated are particularly useful for building and parameterizing mathematical models of complex phospho-signaling pathways. Potentially, these models can provide a framework for linking analytical measurements of clinical samples to better diagnosis and treatment of disease.
Collapse
|
9
|
Materials, workflows and applications of IMAC for phosphoproteome profiling in the recent decade: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Zhang X, Feng Q, Xie Z, Xu F, Yan Y, Ding C. A Ti/Nb-functionalized COF material based on IMAC strategy for efficient separation of phosphopeptides and phosphorylated exosomes. Anal Bioanal Chem 2022; 414:7885-7895. [PMID: 36136112 DOI: 10.1007/s00216-022-04323-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 11/01/2022]
Abstract
In this work, on the basis of an immobilized metal ion affinity chromatography enrichment strategy, a new kind of covalent organic framework (COF) material for enrichment of phosphorylated peptides and exosomes was successfully prepared in a facile method, and Ti4+ and Nb5+ were used as dual-functional ions (denoted as COF-S-S-COOH-Ti4+/Nb5+). With the advantage of unbiased enrichment towards phosphopeptides, COF-S-S-COOH-Ti4+/Nb5+ shows ultra-high selectivity (maximum molar ratio of β-casein: BSA is 1:20,000) and low limit of detection (0.2 fmol). In addition, the material has an excellent phosphopeptide loading capacity (100 μg/mg) and reusability (at least seven times). Furthermore, applying the material to the actual sample, 4 phosphopeptides were selectively extracted from the serum of renal carcinoma patients. At the same time, exosomes with an intact structure in the serum of renal carcinoma patients were successfully isolated rapidly using this strategy. All experiments have shown that COF-S-S-COOH-Ti4+/Nb5+ exhibits exciting potential in practical applications.
Collapse
Affiliation(s)
- Xiaoya Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zehu Xie
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Fuxing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Chuanfan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| |
Collapse
|
11
|
James Sanford E, Bustamante Smolka M. A field guide to the proteomics of post-translational modifications in DNA repair. Proteomics 2022; 22:e2200064. [PMID: 35695711 PMCID: PMC9950963 DOI: 10.1002/pmic.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 12/15/2022]
Abstract
All cells incur DNA damage from exogenous and endogenous sources and possess pathways to detect and repair DNA damage. Post-translational modifications (PTMs), in the past 20 years, have risen to ineluctable importance in the study of the regulation of DNA repair mechanisms. For example, DNA damage response kinases are critical in both the initial sensing of DNA damage as well as in orchestrating downstream activities of DNA repair factors. Mass spectrometry-based proteomics revolutionized the study of the role of PTMs in the DNA damage response and has canonized PTMs as central modulators of nearly all aspects of DNA damage signaling and repair. This review provides a biologist-friendly guide for the mass spectrometry analysis of PTMs in the context of DNA repair and DNA damage responses. We reflect on the current state of proteomics for exploring new mechanisms of PTM-based regulation and outline a roadmap for designing PTM mapping experiments that focus on the DNA repair and DNA damage responses.
Collapse
Key Words
- LC-MS/MS, technology, bottom-up proteomics, technology, signal transduction, cell biology
- phosphoproteomics, technology, post-translational modification analysis, technology, post-translational modifications, cell biology, mass spectrometry
Collapse
Affiliation(s)
- Ethan James Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853,Corresponding author:
| |
Collapse
|
12
|
Zeng H, Hajizadeh S, Yu X, Wan J, Ye L, Cao X. Synthesis of Core@Brush microspheres by atom transfer radical polymerization for capturing phosphoprotein β-casein utilizing iron ion chelation and Schiff base bio-conjugation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Zeng X, Lan Y, Xiao J, Hu L, Tan L, Liang M, Wang X, Lu S, Peng T, Long F. Advances in phosphoproteomics and its application to COPD. Expert Rev Proteomics 2022; 19:311-324. [PMID: 36730079 DOI: 10.1080/14789450.2023.2176756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) was the third leading cause of global death in 2019, causing a huge economic burden to society. Therefore, it is urgent to identify specific phenotypes of COPD patients through early detection, and to promptly treat exacerbations. The field of phosphoproteomics has been a massive advancement, compelled by the developments in mass spectrometry, enrichment strategies, algorithms, and tools. Modern mass spectrometry-based phosphoproteomics allows understanding of disease pathobiology, biomarker discovery, and predicting new therapeutic modalities. AREAS COVERED In this article, we present an overview of phosphoproteomic research and strategies for enrichment and fractionation of phosphopeptides, identification of phosphorylation sites, chromatographic separation and mass spectrometry detection strategies, and the potential application of phosphorylated proteomic analysis in the diagnosis, treatment, and prognosis of COPD disease. EXPERT OPINION The role of phosphoproteomics in COPD is critical for understanding disease pathobiology, identifying potential biomarkers, and predicting new therapeutic approaches. However, the complexity of COPD requires the more comprehensive understanding that can be achieved through integrated multi-omics studies. Phosphoproteomics, as a part of these multi-omics approaches, can provide valuable insights into the underlying mechanisms of COPD.
Collapse
Affiliation(s)
- Xiaoyin Zeng
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Yanting Lan
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jing Xiao
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Longbo Hu
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Long Tan
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Mengdi Liang
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xufei Wang
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Shaohua Lu
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.,Guangdong South China Vaccine Co. Ltd, Guangzhou, China
| | - Fei Long
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Kemper EK, Zhang Y, Dix MM, Cravatt BF. Global profiling of phosphorylation-dependent changes in cysteine reactivity. Nat Methods 2022; 19:341-352. [PMID: 35228727 PMCID: PMC8920781 DOI: 10.1038/s41592-022-01398-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023]
Abstract
Proteomics has revealed that the ~20,000 human genes engender a far greater number of proteins, or proteoforms, that are diversified in large part by post-translational modifications (PTMs). How such PTMs affect protein structure and function is an active area of research but remains technically challenging to assess on a proteome-wide scale. Here, we describe a chemical proteomic method to quantitatively relate serine/threonine phosphorylation to changes in the reactivity of cysteine residues, a parameter that can affect the potential for cysteines to be post-translationally modified or engaged by covalent drugs. Leveraging the extensive high-stoichiometry phosphorylation occurring in mitotic cells, we discover numerous cysteines that exhibit phosphorylation-dependent changes in reactivity on diverse proteins enriched in cell cycle regulatory pathways. The discovery of bidirectional changes in cysteine reactivity often occurring in proximity to serine/threonine phosphorylation events points to the broad impact of phosphorylation on the chemical reactivity of proteins and the future potential to create small-molecule probes that differentially target proteoforms with PTMs.
Collapse
Affiliation(s)
- Esther K Kemper
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Yuanjin Zhang
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Melissa M Dix
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin F Cravatt
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
15
|
Kinoshita E, Kinoshita-Kikuta E, Koike T. History of Phos-tag technology for phosphoproteomics. J Proteomics 2022; 252:104432. [PMID: 34818585 DOI: 10.1016/j.jprot.2021.104432] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Phos-tag is a functional molecule that selectively captures a phosphate monoester dianion in neutral aqueous solutions. The affinity of Phos-tag for phosphate monoester dianions is more than 10,000 times greater than that for other anions present in living organisms, such as carboxylic acid anions. We have developed and applied useful techniques for phosphoproteomics based on Phos-tag. This review describes the history of Phos-tag development and outlines three main technologies that have been put to practical use. The first is a technique to separate and concentrate phosphopeptides and phosphoproteins using a Phos-tag derivative with a hydrophilic chromatography carrier (Phos-tag polymer beads). The second is a technology to detect phosphopeptides and phosphoproteins on various arrays using Phos-tag biotin. The third is a technique to separate and detect phosphoproteins by electrophoresis using Phos-tag acrylamide. We hope that these three technologies will make a significant contribution to phosphoproteomics and, ultimately, to life science research. SIGNIFICANCE: The authors found that a dinuclear metal complex of 1,3-bis[bis(pyridin-2-ylmethyl)-amino]propan-2-olato acted as a novel phosphate-binding tag nanomolecule, Phos-tag, in an aqueous solution under near physiological conditions. The metal complex having a vacancy on two metal ions is suitable for the access of a phosphomonoester dianion (R-OPO32-) as a bridging ligand. A dinuclear zinc(II) complex (Zn2+-Phos-tag) strongly binds to a p-nitrophenyl phosphate dianion (Kd = 2.5 × 10-8 M) at a neutral pH. The anion selectivity indexes against SO42-, CH3COO-, Cl-, and the bisphenyl phosphate monoanion at 25 °C are 5.2 × 103, 1.6 × 104, 8.0 × 105, and > 2 × 106, respectively. We have been involved in developing technologies by using the Phos-tag molecule and its derivatives to permit the analysis of phosphorylated biomolecules. To date, Phos-tag technology has contributed to the development of several procedures for phosphoproteomics, including a phosphate-affinity chromatography technique for the separation and enrichment of phosphopeptides and phosphoproteins, a wide variety of microarray/on-chip techniques for the detection of protein phosphorylation, and a phosphate-affinity electrophoresis technique for the detection of shifts in the mobilities of phosphoproteins. In this review article, the authors introduce the impact of Phos-tag-based technological advances for phosphoproteomics.
Collapse
Affiliation(s)
- Eiji Kinoshita
- Department of Human Nutrition, Faculty of Human Sciences, Hiroshima Bunkyo University, Kabehigashi 1-2-1, Asakita-ku, Hiroshima 731-0295, Japan.
| | - Emiko Kinoshita-Kikuta
- Department of Functional Molecular Science, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Tohru Koike
- Department of Functional Molecular Science, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
16
|
Gök V, Topel Ö, Aksu S. Development of New Lanthanide(III) Ion-Based Magnetic Affinity Material for Phosphopeptide Enrichment. NEW J CHEM 2022. [DOI: 10.1039/d2nj02216h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide (III) ion-based magnetic IMAC materials consisting of core-shell-like silica-coated magnetic nanoparticles as supporting material, chelidamic acid as chelating agent, and Ln3+ ions were developed in this study. Magnetic nanoparticles...
Collapse
|
17
|
Carregari VC. Phosphopeptide Enrichment Techniques: A Pivotal Step for Phosphoproteomic Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:17-27. [DOI: 10.1007/978-3-031-05460-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
18
|
Phosphoproteomics Sample Preparation Impacts Biological Interpretation of Phosphorylation Signaling Outcomes. Cells 2021; 10:cells10123407. [PMID: 34943915 PMCID: PMC8699897 DOI: 10.3390/cells10123407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 01/02/2023] Open
Abstract
The influence of phosphoproteomics sample preparation methods on the biological interpretation of signaling outcome is unclear. Here, we demonstrate a strong bias in phosphorylation signaling targets uncovered by comparing the phosphoproteomes generated by two commonly used methods-strong cation exchange chromatography-based phosphoproteomics (SCXPhos) and single-run high-throughput phosphoproteomics (HighPhos). Phosphoproteomes of embryonic stem cells exposed to ionizing radiation (IR) profiled by both methods achieved equivalent coverage (around 20,000 phosphosites), whereas a combined dataset significantly increased the depth (>30,000 phosphosites). While both methods reproducibly quantified a subset of shared IR-responsive phosphosites that represent DNA damage and cell-cycle-related signaling events, most IR-responsive phosphoproteins (>82%) and phosphosites (>96%) were method-specific. Both methods uncovered unique insights into phospho-signaling mediated by single (SCXPhos) versus double/multi-site (HighPhos) phosphorylation events; particularly, each method identified a distinct set of previously unreported IR-responsive kinome/phosphatome (95% disparate) directly impacting the uncovered biology.
Collapse
|
19
|
Low TY, Mohtar MA, Lee PY, Omar N, Zhou H, Ye M. WIDENING THE BOTTLENECK OF PHOSPHOPROTEOMICS: EVOLVING STRATEGIES FOR PHOSPHOPEPTIDE ENRICHMENT. MASS SPECTROMETRY REVIEWS 2021; 40:309-333. [PMID: 32491218 DOI: 10.1002/mas.21636] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Phosphorylation is a form of protein posttranslational modification (PTM) that regulates many biological processes. Whereas phosphoproteomics is a scientific discipline that identifies and quantifies the phosphorylated proteome using mass spectrometry (MS). This task is extremely challenging as ~30% of the human proteome is phosphorylated; and each phosphoprotein may exist as multiple phospho-isoforms that are present in low abundance and stoichiometry. Hence, phosphopeptide enrichment techniques are indispensable to (phospho)proteomics laboratories. These enrichment methods encompass widely-adopted techniques such as (i) affinity-based chromatography; (ii) ion exchange and mixed-mode chromatography (iii) enrichment with phospho-specific antibodies and protein domains, and (iv) functionalized polymers and other less common but emerging technologies such as hydroxyapatite chromatography and precipitation with inorganic ions. Here, we review these techniques, their history, continuous development and evaluation. Besides, we outline associating challenges of phosphoproteomics that are linked to experimental design, sample preparation, and proteolytic digestion. In addition, we also discuss about the future outlooks in phosphoproteomics, focusing on elucidating the noncanonical phosphoproteome and deciphering the "dark phosphoproteome". © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Nursyazwani Omar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Houjiang Zhou
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Centre, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
20
|
Bryan L, Clynes M, Meleady P. The emerging role of cellular post-translational modifications in modulating growth and productivity of recombinant Chinese hamster ovary cells. Biotechnol Adv 2021; 49:107757. [PMID: 33895332 DOI: 10.1016/j.biotechadv.2021.107757] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Chinese hamster ovary (CHO) cells are one of the most commonly used host cell lines used for the production human therapeutic proteins. Much research over the past two decades has focussed on improving the growth, titre and cell specific productivity of CHO cells and in turn lowering the costs associated with production of recombinant proteins. CHO cell engineering has become of particular interest in recent years following the publication of the CHO cell genome and the availability of data relating to the proteome, transcriptome and metabolome of CHO cells. However, data relating to the cellular post-translational modification (PTMs) which can affect the functionality of CHO cellular proteins has only begun to be presented in recent years. PTMs are important to many cellular processes and can further alter proteins by increasing the complexity of proteins and their interactions. In this review, we describe the research presented from CHO cells to date related on three of the most important PTMs; glycosylation, phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Laura Bryan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
21
|
Genome-Wide Proteomics and Phosphoproteomics Analysis of Trypanosoma cruzi During Differentiation. Methods Mol Biol 2021; 2116:139-159. [PMID: 32221920 DOI: 10.1007/978-1-0716-0294-2_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Trypanosoma cruzi is a pathogenic protozoan that still has an impact on public health, despite the decrease in the number of infection cases along the years. T. cruzi possesses an heteroxenic life cycle in which it differentiates in at least four forms. Among the differentiation processes, metacyclogenesis has been exploited in different views by researchers. An intriguing question that rises is how metacyclogenesis is triggered and controlled by cell signaling and which are the differentially expressed proteins and posttranslational modifications involved in this process. An important cell signaling pathway is the protein phosphorylation, and it is reinforced in T. cruzi in which the gene expression control occurs almost exclusively posttranscriptionally. Additionally, the number of protein kinases in T. cruzi is relatively high compared to other organisms. A way to approach these questions is evaluating the cells through phosphoproteomics and proteomics. In this chapter, we will describe the steps from the cell protein extraction, digestion and fractionation, phosphopeptide enrichment, to LC-MS/MS analysis as well as a brief overview on peptide identification. In addition, a published method for in vitro metacyclogenesis will be detailed.
Collapse
|
22
|
Prust N, van der Laarse S, van den Toorn HWP, van Sorge NM, Lemeer S. In-Depth Characterization of the Staphylococcus aureus Phosphoproteome Reveals New Targets of Stk1. Mol Cell Proteomics 2021; 20:100034. [PMID: 33444734 PMCID: PMC7950182 DOI: 10.1074/mcp.ra120.002232] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 11/26/2022] Open
Abstract
Staphylococcus aureus is a major cause of infections worldwide, and infection results in a variety of diseases. As of no surprise, protein phosphorylation is an important game player in signaling cascades and has been shown to be involved in S. aureus virulence. Albeit long neglected, eukaryotic-type serine/threonine kinases in S. aureus have been implicated in this complex signaling cascades. Due to the substoichiometric nature of protein phosphorylation and a lack of suitable analysis tools, the knowledge of these cascades is, however, to date, still limited. Here, were apply an optimized protocol for efficient phosphopeptide enrichment via Fe3+-IMAC followed by LC-MS/MS to get a better understanding of the impact of protein phosphorylation on the complex signaling networks involved in pathogenicity. By profiling a serine/threonine kinase and phosphatase mutant from a methicillin-resistant S. aureus mutant library, we generated the most comprehensive phosphoproteome data set of S. aureus to date, aiding a better understanding of signaling in bacteria. With the identification of 3800 class I p-sites, we were able to increase the number of identifications by more than 21 times compared with recent literature. In addition, we were able to identify 74 downstream targets of the only reported eukaryotic-type Ser/Thr kinase of the S. aureus strain USA300, Stk1. This work allowed an extensive analysis of the bacterial phosphoproteome and indicates that Ser/Thr kinase signaling is far more abundant than previously anticipated in S. aureus.
Collapse
Affiliation(s)
- Nadine Prust
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Saar van der Laarse
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Henk W P van den Toorn
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Nina M van Sorge
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Medical Microbiology and Infection Prevention and Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Simone Lemeer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands.
| |
Collapse
|
23
|
Deleonardis A, Papale M. Methods to Study Posttranslational Modification Patterns in Cytotoxic T-Cells and Cancer. Methods Mol Biol 2021; 2325:137-153. [PMID: 34053056 DOI: 10.1007/978-1-0716-1507-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein posttranslational modifications (PTMs) regulate intracellular signaling associated with development and progression of many diseases; thus, they are key to understanding pathological mechanisms and set up more tailored therapies. In addition, many posttranslationally modified proteins are released into biological fluids and can be used as new and more specific biomarkers. Based on this evidence, we analyzed the role of some PTMs in cancer and described the correlation between specific PTMs and T-cells activation/inhibition in cancer microenvironment. In the second part of this chapter, we analyzed the most commonly used approaches for qualitative and quantitative determination of PTMs. The comparison of three distinct but often complementary methodologies such as immunoblotting, mass spectrometry, and ELISA assays has allowed to highlight the pros and cons of each approach with a focus on their current application and their future developments to obtain more confident biomarkers and therapeutic targets useful for diagnosis, prognosis, and monitoring of the response to therapy.
Collapse
Affiliation(s)
- Annamaria Deleonardis
- R&D Unit, Fluidia srl, Foggia, Italy
- Section of Nephrology, Dialysis and Transplantation, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Bari, Italy
| | - Massimo Papale
- Clinical Pathology Unit, Department of Laboratory Diagnostics, Policlinic University Hospital "Riuniti", Foggia, Italy.
| |
Collapse
|
24
|
Silbern I, Fang P, Ji Y, Christof L, Urlaub H, Pan KT. Relative Quantification of Phosphorylated and Glycosylated Peptides from the Same Sample Using Isobaric Chemical Labelling with a Two-Step Enrichment Strategy. Methods Mol Biol 2021; 2228:185-203. [PMID: 33950492 DOI: 10.1007/978-1-0716-1024-4_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Post-translational modifications (PTMs) are essential for the regulation of all cellular processes. The interplay of various PTMs on a single protein or different proteins comprises a complexity that we are far from understanding in its entirety. Reliable strategies for the enrichment and accurate quantification of PTMs are needed to study as many PTMs on proteins as possible. In this protocol we present a liquid chromatography-tandem mass spectrometry (LC/MS/MS)-based workflow that enables the enrichment and quantification of phosphorylated and N-glycosylated peptides from the same sample. After extraction and digestion of proteins, we label the peptides with stable isotope-coded tandem mass tags (TMTs) and enrich N-glycopeptides and phosphopeptides by using zwitterionic hydrophilic interaction chromatography (ZIC-HILIC) and titanium dioxide (TiO2) beads, respectively. Labelled and enriched N-glycopeptides and phosphopeptides are further separated by high pH (basic) reversed-phase chromatography and analyzed by LC/MS/MS. The enrichment strategies, together with quantification of two different PTM types from the same sample, allow investigation of the interplay of those two PTMs, which are important for signal transduction inside the cell (phosphorylation), as well as for messaging between cells through decoration of the cellular surface (glycosylation).
Collapse
Affiliation(s)
- Ivan Silbern
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Pan Fang
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Yanlong Ji
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Lenz Christof
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany.
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | - Kuan-Ting Pan
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany.
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Arribas Diez I, Govender I, Naicker P, Stoychev S, Jordaan J, Jensen ON. Zirconium(IV)-IMAC Revisited: Improved Performance and Phosphoproteome Coverage by Magnetic Microparticles for Phosphopeptide Affinity Enrichment. J Proteome Res 2020; 20:453-462. [PMID: 33226818 DOI: 10.1021/acs.jproteome.0c00508] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphopeptide enrichment is an essential step in large-scale, quantitative phosphoproteomics by mass spectrometry. Several phosphopeptide affinity enrichment techniques exist, such as immobilized metal-ion affinity chromatography (IMAC) and metal oxide affinity chromatography (MOAC). We compared zirconium(IV) IMAC (Zr-IMAC) magnetic microparticles to more commonly used titanium(IV) IMAC (Ti-IMAC) and TiO2 magnetic microparticles for phosphopeptide enrichment from simple and complex protein samples prior to phosphopeptide sequencing and characterization by mass spectrometry (liquid chromatography-tandem mass spectrometry, LC-MS/MS). We optimized sample-loading conditions to increase phosphopeptide recovery for Zr-IMAC-, Ti-IMAC-, and TiO2-based workflows by 22, 24, and 35%, respectively. The optimized protocol resulted in improved performance of Zr-IMAC over Ti-IMAC and TiO2 as well as high-performance liquid chromatography-based Fe(III)-IMAC with up to 23% more identified phosphopeptides. The different enrichment chemistries showed a high degree of overlap but also differences in phosphopeptide selectivity and complementarity. We conclude that Zr-IMAC improves phosphoproteome coverage and recommend that this complementary and scalable affinity enrichment method is more widely used in biological and biomedical studies of cell signaling and the search for biomarkers. Data are available via ProteomeXchange with identifier PXD018273.
Collapse
Affiliation(s)
- Ignacio Arribas Diez
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Ireshyn Govender
- NextGen Health, Council for Scientific and Industrial Research, Pretoria 0184, South Africa
| | - Previn Naicker
- NextGen Health, Council for Scientific and Industrial Research, Pretoria 0184, South Africa
| | - Stoyan Stoychev
- NextGen Health, Council for Scientific and Industrial Research, Pretoria 0184, South Africa.,ReSyn Biosciences, Pretoria 1610, Gauteng, South Africa
| | - Justin Jordaan
- ReSyn Biosciences, Pretoria 1610, Gauteng, South Africa.,Rhodes University, Grahamstown 6139, South Africa
| | - Ole N Jensen
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense M DK-5230, Denmark
| |
Collapse
|
26
|
Yang F, Wang C. Profiling of post-translational modifications by chemical and computational proteomics. Chem Commun (Camb) 2020; 56:13506-13519. [PMID: 33084662 DOI: 10.1039/d0cc05447j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational modifications (PTMs) diversify the molecular structures of proteins and play essential roles in regulating their functions. Abnormal PTM status has been linked to a variety of developmental disorders and human diseases, highlighting the importance of studying PTMs in understanding physiological processes and discovering novel nodes and links with therapeutic intervention potential. Classical biochemical methods are suitable for studying PTMs on individual proteins; however, global profiling of PTMs in proteomes remains a challenging task. In this feature article, we start with a brief review of the traditional affinity-based strategies and shift the emphasis to summarizing recent progress in the development and application of chemical and computational proteomic strategies to delineate the global landscapes of functional PTMs. Finally, we discuss current challenges in PTM detection and provide future perspectives on how the field can be further advanced.
Collapse
Affiliation(s)
- Fan Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | |
Collapse
|
27
|
Thingholm TE, Rönnstrand L, Rosenberg PA. Why and how to investigate the role of protein phosphorylation in ZIP and ZnT zinc transporter activity and regulation. Cell Mol Life Sci 2020; 77:3085-3102. [PMID: 32076742 PMCID: PMC7391401 DOI: 10.1007/s00018-020-03473-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
Zinc is required for the regulation of proliferation, metabolism, and cell signaling. It is an intracellular second messenger, and the cellular level of ionic, mobile zinc is strictly controlled by zinc transporters. In mammals, zinc homeostasis is primarily regulated by ZIP and ZnT zinc transporters. The importance of these transporters is underscored by the list of diseases resulting from changes in transporter expression and activity. However, despite numerous structural studies of the transporters revealing both zinc binding sites and motifs important for transporter function, the exact molecular mechanisms regulating ZIP and ZnT activities are still not clear. For example, protein phosphorylation was found to regulate ZIP7 activity resulting in the release of Zn2+ from intracellular stores leading to phosphorylation of tyrosine kinases and activation of signaling pathways. In addition, sequence analyses predict all 24 human zinc transporters to be phosphorylated suggesting that protein phosphorylation is important for regulation of transporter function. This review describes how zinc transporters are implicated in a number of important human diseases. It summarizes the current knowledge regarding ZIP and ZnT transporter structures and points to how protein phosphorylation seems to be important for the regulation of zinc transporter activity. The review addresses the need to investigate the role of protein phosphorylation in zinc transporter function and regulation, and argues for a pressing need to introduce quantitative phosphoproteomics to specifically target zinc transporters and proteins involved in zinc signaling. Finally, different quantitative phosphoproteomic strategies are suggested.
Collapse
Affiliation(s)
- T E Thingholm
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, J.B. Winsløws Vej 25, 3, 5000, Odense C, Denmark.
| | - L Rönnstrand
- Division of Translational Cancer Research, Lund University, Medicon Village, Building 404, Scheelevägen 2, Lund, Sweden
- Lund Stem Cell Center, Lund University, Medicon Village, Building 404, Scheelevägen 2, Lund, Sweden
- Division of Oncology, Skåne University Hospital, Lund, Sweden
| | - P A Rosenberg
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Neurology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
28
|
Dual metal cations coated magnetic mesoporous silica probe for highly selective capture of endogenous phosphopeptides in biological samples. Mikrochim Acta 2020; 187:400. [DOI: 10.1007/s00604-020-04323-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/14/2020] [Indexed: 11/25/2022]
|
29
|
Zuo B, Li W, Wu X, Wang S, Deng Q, Huang M. Recent Advances in the Synthesis, Surface Modifications and Applications of Core‐Shell Magnetic Mesoporous Silica Nanospheres. Chem Asian J 2020; 15:1248-1265. [DOI: 10.1002/asia.202000045] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Bin Zuo
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Wanfang Li
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Xiaoqiang Wu
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Shige Wang
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Qinyue Deng
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Mingxian Huang
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| |
Collapse
|
30
|
Zhou Y, Lih TSM, Yang G, Chen SY, Chen L, Chan DW, Zhang H, Li QK. An Integrated Workflow for Global, Glyco-, and Phospho-proteomic Analysis of Tumor Tissues. Anal Chem 2020; 92:1842-1849. [PMID: 31859488 DOI: 10.1021/acs.analchem.9b03753] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recently, the rapid development and application of mass spectrometry (MS)-based technologies have markedly improved the comprehensive proteomic characterization of global proteome and protein post-translational modifications (PTMs). However, the current conventional approach for global proteomic analysis is often carried out separately from PTM analysis. In our study, we developed an integrated workflow for multiplex analysis of global, glyco-, and phospho-proteomics using breast cancer patient-derived xenograft (PDX) tumor samples. Our approach included the following steps: trypsin-digested tumor samples were enriched for phosphopeptides through immobilized metal ion affinity chromatography (IMAC), followed by enrichment of glycopeptides through mixed anion exchange (MAX) method, and then the flow-through peptides were analyzed for global proteomics. Our workflow demonstrated an increased identification of peptides and associated proteins in global proteome, as compared to those using the peptides without PTM depletion. In addition to global proteome, the workflow identified phosphopeptides and glycopeptides from the PTM enrichment. We also found a subset of glycans with unique distribution profiles in the IMAC flow-through, as compared to those enriched directly using the MAX method. Our integrated workflow provided an effective platform for simultaneous global proteomic and PTM analysis of biospecimens.
Collapse
Affiliation(s)
- Yangying Zhou
- Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , Maryland 21231 , United States
| | - Tung-Shing Mamie Lih
- Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , Maryland 21231 , United States
| | - Ganglong Yang
- Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , Maryland 21231 , United States
| | - Shao-Yung Chen
- Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , Maryland 21231 , United States
| | - Lijun Chen
- Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , Maryland 21231 , United States
| | - Daniel W Chan
- Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , Maryland 21231 , United States
| | - Hui Zhang
- Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , Maryland 21231 , United States
| | - Qing Kay Li
- Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , Maryland 21231 , United States.,Department of Oncology , Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions , Baltimore , Maryland 21224 , United States
| |
Collapse
|
31
|
Hamaloğlu KÖ. Nucleoside Isolation Performance of Ti4+/Zr4+ Immobilized Polydopamine Coated, Monodisperse-Porous Titania Microbeads. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-019-01431-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Cao L, Zhao Y, Chu Z, Zhang X, Zhang W. Core-shell magnetic bimetallic MOF material for synergistic enrichment of phosphopeptides. Talanta 2020; 206:120165. [DOI: 10.1016/j.talanta.2019.120165] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
|
33
|
Scalable, Non-denaturing Purification of Phosphoproteins Using Ga 3+-IMAC: N2A and M1M2 Titin Components as Study case. Protein J 2019; 38:181-189. [PMID: 30719619 DOI: 10.1007/s10930-019-09815-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purification of phosphorylated proteins in a folded state and in large enough quantity for biochemical or biophysical analysis remains a challenging task. Here, we develop a new implementation of the method of gallium immobilized metal chromatography (Ga3+-IMAC) as to permit the selective enrichment of phosphoproteins in the milligram scale and under native conditions using automated FPLC instrumentation. We apply this method to the purification of the UN2A and M1M2 components of the muscle protein titin upon being monophosphorylated in vitro by cAMP-dependent protein kinase (PKA). We found that UN2A is phosphorylated by PKA at its C-terminus in residue S9578 and M1M2 is phosphorylated in its interdomain linker sequence at position T32607. We demonstrate that the Ga3+-IMAC method is efficient, economical and suitable for implementation in automated purification pipelines for recombinant proteins. The procedure can be applied both to the selective enrichment and to the removal of phosphoproteins from biochemical samples.
Collapse
|
34
|
Li Y, Sun N, Hu X, Li Y, Deng C. Recent advances in nanoporous materials as sample preparation techniques for peptidome research. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115658] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Xiao J, Yang SS, Wu JX, Wang H, Yu X, Shang W, Chen GQ, Gu ZY. Highly Selective Capture of Monophosphopeptides by Two-Dimensional Metal–Organic Framework Nanosheets. Anal Chem 2019; 91:9093-9101. [DOI: 10.1021/acs.analchem.9b01581] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Xiao
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shi-Shu Yang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian-Xiang Wu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - He Wang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Avenue, Nanjing, 210061, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gui-Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Avenue, Nanjing, 210061, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
36
|
Mirza MR, Rainer M, Duran S, Moin ST, Choudhary MI, Bonn GK. Highly selective enrichment of phosphopeptides using poly(dibenzo‐18‐crown‐6) as a solid‐phase extraction material. Biomed Chromatogr 2019; 33:e4567. [DOI: 10.1002/bmc.4567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/25/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Munazza Raza Mirza
- Institute of Analytical Chemistry and RadiochemistryLeopold‐Franzens University of Innsbruck Innsbruck Austria
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of Karachi Karachi Pakistan
| | - Matthias Rainer
- Institute of Analytical Chemistry and RadiochemistryLeopold‐Franzens University of Innsbruck Innsbruck Austria
| | - Shahid Duran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological SciencesUniversity of Karachi Karachi Pakistan
| | - Syed Tarique Moin
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological SciencesUniversity of Karachi Karachi Pakistan
| | - M. Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of Karachi Karachi Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological SciencesUniversity of Karachi Karachi Pakistan
| | - Günther K. Bonn
- Institute of Analytical Chemistry and RadiochemistryLeopold‐Franzens University of Innsbruck Innsbruck Austria
| |
Collapse
|
37
|
Humphrey SJ, Karayel O, James DE, Mann M. High-throughput and high-sensitivity phosphoproteomics with the EasyPhos platform. Nat Protoc 2019; 13:1897-1916. [PMID: 30190555 DOI: 10.1038/s41596-018-0014-9] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mass spectrometry has transformed the field of cell signaling by enabling global studies of dynamic protein phosphorylation ('phosphoproteomics'). Recent developments are enabling increasingly sophisticated phosphoproteomics studies, but practical challenges remain. The EasyPhos workflow addresses these and is sufficiently streamlined to enable the analysis of hundreds of phosphoproteomes at a depth of >10,000 quantified phosphorylation sites. Here we present a detailed and updated workflow that further ensures high performance in sample-limited conditions while also reducing sample preparation time. By eliminating protein precipitation steps and performing the entire protocol, including digestion, in a single 96-well plate, we now greatly minimize opportunities for sample loss and variability. This results in very high reproducibility and a small sample size requirement (≤200 μg of protein starting material). After cell culture or tissue collection, the protocol takes 1 d, whereas mass spectrometry measurements require ~1 h per sample. Applied to glioblastoma cells acutely treated with epidermal growth factor (EGF), EasyPhos quantified 20,132 distinct phosphopeptides from 200 μg of protein in less than 1 d of measurement time, revealing thousands of EGF-regulated phosphorylation events.
Collapse
Affiliation(s)
- Sean J Humphrey
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia. .,The Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.
| | - Ozge Karayel
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David E James
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.,The Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Matthias Mann
- Max Planck Institute of Biochemistry, Martinsried, Germany. .,NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
38
|
Schönberger N, Braun R, Matys S, Lederer FL, Lehmann F, Flemming K, Pollmann K. Chromatopanning for the identification of gallium binding peptides. J Chromatogr A 2019; 1600:158-166. [PMID: 31040030 DOI: 10.1016/j.chroma.2019.04.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/28/2019] [Accepted: 04/13/2019] [Indexed: 12/31/2022]
Abstract
This study is concerned with a chromatography-based approach (Immobilized Metal Ion Affinity Chromatography) for the recovery of gallium binding peptide sequences from a recombinant phage display library. The here described methods apply the fundamental knowledge and methods of separation science and meet thereby the key requirement of the phage display technique of precise separation of target-binding bacteriophage clones from non-interacting bacteriophage during the biopanning. During the chromatopanning called process, a total of 101 bacteriophage clones were identified of which in subsequent binding experiments, phage clones expressing the peptide sequences TMHHAAIAHPPH, SQALSTSRQDLR and HTQHIQSDDHLA were characterized to bind >10 fold better to a target that presents immobilized gallium ions than control phage, displaying no peptide sequence. The performance of biopanning experiments in chromatographic systems is particularly suitable for demanding targets such as trivalent metal ions. We found, that the selection process benefits immensely from the stable immobilization of the target metal ions during the entire biopanning process as well as the complete recovery of well interacting bacteriophage clones. Among others, this was possible due to an enhanced monitoring of process conditions and fractionation of eluates.
Collapse
Affiliation(s)
- Nora Schönberger
- Institute of Nonferrous Metallurgy and Purest Materials, TU Bergakademie Freiberg, Leipziger Str. 32, 09599, Freiberg, Germany; Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Robert Braun
- Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sabine Matys
- Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Franziska L Lederer
- Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Falk Lehmann
- Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Katrin Flemming
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Katrin Pollmann
- Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| |
Collapse
|
39
|
Metal–organic framework-based affinity materials in proteomics. Anal Bioanal Chem 2019; 411:1745-1759. [DOI: 10.1007/s00216-019-01610-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/31/2018] [Accepted: 01/14/2019] [Indexed: 01/17/2023]
|
40
|
Cho KC, Chen L, Hu Y, Schnaubelt M, Zhang H. Developing Workflow for Simultaneous Analyses of Phosphopeptides and Glycopeptides. ACS Chem Biol 2019; 14:58-66. [PMID: 30525447 DOI: 10.1021/acschembio.8b00902] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Enrichment of modified peptides from global peptides is inevitable in mass spectrometric analysis protein modifications because of their importance in the study of cellular functions and low abundance in the global proteomic analysis. Recent advances in enrichment methods for modified peptides such as phosphopeptides and intact glycopeptides (IGPs) show that the methods for proteomic analyses of both protein modifications are robust. We have recently observed and reported a large number of IGPs from phosphoproteomic analysis using IMAC-based phosphopeptides enrichment procedure. To determine whether phosphorylated peptides could be specifically isolated from coenriched IGPs in IMAC experiments with different pH, IMAC procedures were performed at different pH conditions, and we found that the enrichment of phosphopeptides at pH 2.0 was the optimal condition for having the highest number of phosphopeptide identifications; however, coenrichment of phosphopeptides and glycopeptides was inevitable in the entire pH range. The hydrophilic enrichments of IGPs performed before or after IMAC enrichment were evaluated subsequently to determine the optimal workflow for simultaneous analyses of phosphopeptides and glycopeptides, and IMAC enrichment followed by hydrophilic enrichment was chosen as the optimized workflow. Applying the workflow to the TMT-labeled peptides from luminal and basal-like type of breast cancer patient-derived xenograft (PDX) models allowed quantitative analyses of phospho- and glycoproteomics with 17582 phosphopeptides and 3468 glycopeptides identified, and 1237 phosphopeptides and 236 glycopeptides showed significant expression differences between luminal and basal-like, respectively. This method allows simultaneous analyses of phosphoprotein and glycoprotein modifications, extending our understanding of roles of glycosylation and phosphorylation in biology and diseases.
Collapse
Affiliation(s)
- Kyung-Cho Cho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
41
|
Abstract
Posttranslational modification (PTM) of proteins occurs during or after translation and in most cases means covalent binding of a functional group to certain amino acid side chains. Among PTMs, phosphorylation is extensively studied for decades. During phosphorylation, a phosphate group is added to the target residue that is dominantly serine, threonine, and tyrosine in eukaryotes. The phosphate group attachment is catalyzed by kinases, whereas the removal of phosphate (dephosphorylation) is performed by phosphatases. Phosphorylation of phytochrome photoreceptors alters light signaling in multiple ways, thus the examination of this PTM is an expanding aspect of light signaling research. Although this chapter presents methods for detecting phosphorylated phytochrome B molecules, it can be applied on other phytochrome species. The first presented protocol of this chapter shows how the phosphorylation state of phytochrome photoreceptors can be monitored in a modified polyacrylamide gel electrophoresis system. The second protocol describes in detail how phosphorylated amino acids of a target molecule can be identified using mass spectrometry analysis.
Collapse
Affiliation(s)
- Eva Klement
- Laboratory of Proteomics Research, Biological Research Centre, Szeged, Hungary
| | - Péter Gyula
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary
| | - András Viczián
- Plant Biology Institute, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
42
|
Cheng P, Lin J, Qiu X, Zhang W, Cheng J, Wang Y, Li N, Yang J, Yu H. Viral capsid-like titania for selective enrichment of phosphorylated peptides. Chem Commun (Camb) 2019; 55:6759-6762. [DOI: 10.1039/c9cc02763g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Viral capsid-like titania (VCL-TiO2) bearing ordered mesoporous channels and protrusions was fabricated for selectively enriching phosphorylated peptides.
Collapse
Affiliation(s)
- Panpan Cheng
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Jianjian Lin
- Key Laboratory of Eco-chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Xiaoyan Qiu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Institution Nanjing Tech University (Nanjing Tech)
- Nanjing 211800
- P. R. China
| | - Wanna Zhang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Juan Cheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Institution Nanjing Tech University (Nanjing Tech)
- Nanjing 211800
- P. R. China
| | - Yong Wang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Nan Li
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Jingying Yang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Haizhou Yu
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Nanjing Tech University
- Nanjing 211816
- P. R. China
| |
Collapse
|
43
|
|
44
|
Arrington JV, Hsu CC, Elder SG, Andy Tao W. Recent advances in phosphoproteomics and application to neurological diseases. Analyst 2018; 142:4373-4387. [PMID: 29094114 DOI: 10.1039/c7an00985b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphorylation has an incredible impact on the biological behavior of proteins, altering everything from intrinsic activity to cellular localization and complex formation. It is no surprise then that this post-translational modification has been the subject of intense study and that, with the advent of faster, more accurate instrumentation, the number of large-scale mass spectrometry-based phosphoproteomic studies has swelled over the past decade. Recent developments in sample preparation, phosphorylation enrichment, quantification, and data analysis strategies permit both targeted and ultra-deep phosphoproteome profiling, but challenges remain in pinpointing biologically relevant phosphorylation events. We describe here technological advances that have facilitated phosphoproteomic analysis of cells, tissues, and biofluids and note applications to neuropathologies in which the phosphorylation machinery may be dysregulated, much as it is in cancer.
Collapse
|
45
|
Ahmed A, Raja VJ, Cavaliere P, Dephoure N. Robust, Reproducible, and Economical Phosphopeptide Enrichment Using Calcium Titanate. J Proteome Res 2018; 18:1411-1417. [DOI: 10.1021/acs.jproteome.8b00883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adnan Ahmed
- Department of Biochemistry, Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, New York 10021, United States
| | - Vijay J. Raja
- Department of Biochemistry, Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, New York 10021, United States
| | - Paola Cavaliere
- Department of Biochemistry, Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, New York 10021, United States
| | - Noah Dephoure
- Department of Biochemistry, Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, New York 10021, United States
| |
Collapse
|
46
|
Lau BYC, Othman A, Ramli US. Application of Proteomics Technologies in Oil Palm Research. Protein J 2018; 37:473-499. [DOI: 10.1007/s10930-018-9802-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Chatterjee B, Thakur SS. Investigation of post-translational modifications in type 2 diabetes. Clin Proteomics 2018; 15:32. [PMID: 30258344 PMCID: PMC6154926 DOI: 10.1186/s12014-018-9208-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
The investigation of post-translational modifications (PTMs) plays an important role for the study of type 2 diabetes. The importance of PTMs has been realized with the advancement of analytical techniques. The challenging detection and analysis of post-translational modifications is eased by different enrichment methods and by high throughput mass spectrometry based proteomics studies. This technology along with different quantitation methods provide accurate knowledge about the changes happening in disease conditions as well as in normal conditions. In this review, we have discussed PTMs such as phosphorylation, N-glycosylation, O-GlcNAcylation, acetylation and advanced glycation end products in type 2 diabetes which have been characterized by high throughput mass spectrometry based proteomics analysis.
Collapse
Affiliation(s)
- Bhaswati Chatterjee
- 1Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500 037 India
| | - Suman S Thakur
- 2Proteomics and Cell Signaling, Lab E409, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
| |
Collapse
|
48
|
Hwang SY, Choi JK. Simultaneous Detection of Phosphoproteins and Total Proteins in SDS-PAGE Using Calcon. ANAL SCI 2018; 34:1427-1432. [PMID: 30224566 DOI: 10.2116/analsci.18p298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel fluorescent staining protocol to detect phosphoproteins in sodium dodecyl sulfate-polyacrylamide gels using a fluorescence sensor, 1-(2-hydroxy-1-naphthylazo)-2-naphthol-4-sulfonic acid sodium salt (Calcon), was developed. This method yields results within 135 min, with the sensitivities of 15 ng of α-casein and β-casein, and 62.5 ng of κ-casein, respectively. Since non-phosphoproteins have shown negative signals that are distinctly different from positive signals of phosphoproteins, this detection method allows one to monitor phosphoproteins with high specificity. Furthermore, a total protein profile can be achieved before a destaining step using a scanner with rapid and low-cost without further total protein staining.
Collapse
Affiliation(s)
- Sun-Young Hwang
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University
| | - Jung-Kap Choi
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University
| |
Collapse
|
49
|
Hydrophilic probe in mesoporous pore for selective enrichment of endogenous glycopeptides in biological samples. Anal Chim Acta 2018; 1024:84-92. [DOI: 10.1016/j.aca.2018.04.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/30/2022]
|
50
|
Detection of Phosphoproteins in Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis Using 8-Quinolinol Stain. Methods Mol Biol 2018. [PMID: 30097931 DOI: 10.1007/978-1-4939-8745-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In order to detect phosphoproteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), an easy and fast fluorescent detection method is described. 8-Quinolinol can form ternary complexes in the gel matrix contributed by the affinity of aluminum ion to the phosphate groups on the proteins and the metal chelating property of 8-Quinolinol, exhibiting strong fluorescence in ultraviolet light. It can visualize as little as 4-8 ng of α-casein and β-casein, 15-31 ng of ovalbumin and κ-casein within 70 min. The approach utilizing 8-quinolinol could be an alternative staining method for phosphoproteomics.
Collapse
|