1
|
Duan W, Wang J, Peng X, Cao S, Shang J, Qiu Z, Lu X, Zeng J. Rational design of trimetallic AgPt-Fe 3O 4 nanozyme for catalyst poisoning-mediated CO colorimetric detection. Biosens Bioelectron 2023; 223:115022. [PMID: 36563527 DOI: 10.1016/j.bios.2022.115022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Carbon monoxide (CO) is not only a highly poisonous gas that brings great health risk, but also a significant signaling molecule in body. However, it is still challengeable for development of alternative colorimetric probes to traditional organic chromophores for simple, sensitive and convenient CO sensing. Here, for the first time, we rationally design a novel hydrophilic AgPt-Fe3O4 nanozyme with a unique heterodimeric nanostructure for colorimetric sensing of CO based on the excellent peroxidase-like catalytic activity as well as highly poisonous effect of CO on the nanozyme's catalytic activity. Both experimental evidence and theoretical calculations reveal the trimetallic AgPt-Fe3O4 nanozyme is susceptible to poisoning with the strongest affinity towards CO compared to individual Fe3O4 or Ag-Fe3O4, which is attributed to the adequate exposure of the active metallic sites and efficient interfacial synergy of unique heterodimeric nanostructure. Accordingly, a novel nanozyme-based colorimetric strategy is developed for CO detection with a low detection limit of 5.6 ppb in solution. Furthermore, the probe can be prepared as very convenient test strips and integrated with the portable smartphone platforms for detecting CO gas samples with a low detection limit of 8.9 ppm. Overall, our work proposes guidelines for the rational design of metallic heterogeneous nanostructure to expand the analytical application of nanozyme.
Collapse
Affiliation(s)
- Wei Duan
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Jinling Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Xiaomeng Peng
- China Tobacco Anhui Industrial Co, Ltd, Anhui, 230031, PR China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jingjing Shang
- Tobacco Quality Supervision and Test Station of Anhui, Anhui, 230071, PR China
| | - Zhiwei Qiu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China.
| |
Collapse
|
2
|
Topical application of sustained released-carbon monoxide promotes cutaneous wound healing in diabetic mice. Biochem Pharmacol 2022; 199:115016. [PMID: 35331735 DOI: 10.1016/j.bcp.2022.115016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/13/2023]
Abstract
Clinical incidences of pressure ulcers in the elderly and intractable skin ulcers in diabetic patients are increasing because of the aging population and an increase in the number of diabetic patients worldwide. Although various agents are used to treat pressure and skin ulcers, these ulcers are often refractory and deteriorate the patients' quality of life. Therefore, a novel therapeutic agent with a novel mechanism of action is required. Carbon monoxide (CO) contributes to many physiological and pathophysiological processes, including anti-inflammatory activity; therefore, it can be a therapeutic gaseous molecule. Recent studies have revealed that CO accelerates wound healing in gastrointestinal tract injuries. However, it remains unclear whether CO promotes cutaneous wound healing. Therefore, we aimed to evaluate the therapeutic effects of topical application of a CO-containing solution and elucidate the underlying mechanism. A full-thickness skin wound generated on the back of diabetic mice was treated topically with CO or vehicle. Sustained release of CO was achieved using polyacrylic acid (PAA) as a thickener. The administration of CO-containing PAA aqueous solution resulted in a significant acceleration in wound recovery without elevating serum CO levels in association with increased angiogenesis and supported by elevated expression of vascular endothelial growth factor mRNA in the wound granulomatous tissues. These data suggest that CO might represent a novel therapeutic agent for the treatment of cutaneous wounds.
Collapse
|
3
|
Takagi T, Naito Y, Higashimura Y, Uchiyama K, Okayama T, Mizushima K, Katada K, Kamada K, Ishikawa T, Itoh Y. Rectal administration of carbon monoxide inhibits the development of intestinal inflammation and promotes intestinal wound healing via the activation of the Rho-kinase pathway in rats. Nitric Oxide 2021; 107:19-30. [PMID: 33340673 DOI: 10.1016/j.niox.2020.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022]
Abstract
The inhalation of carbon monoxide (CO) gas and the administration of CO-releasing molecules were shown to inhibit the development of intestinal inflammation in a murine colitis model. However, it remains unclear whether CO promotes intestinal wound healing. Herein, we aimed to evaluate the therapeutic effects of the topical application of CO-saturated saline enemas on intestinal inflammation and elucidate the underlying mechanism. Acute colitis was induced with trinitrobenzene sulfonic acid (TNBS) in male Wistar rats. A CO-saturated solution was prepared via bubbling 50% CO gas into saline and was rectally administrated twice a day after colitis induction; rats were sacrificed 3 or 7 days after induction for the study of the acute or healing phases, respectively. The distal colon was isolated, and ulcerated lesions were measured. In vitro wound healing assays were also employed to determine the mechanism underlying rat intestinal epithelial cell restitution after CO treatment. CO solution rectal administration ameliorated acute TNBS-induced colonic ulceration and accelerated ulcer healing without elevating serum CO levels. The increase in thiobarbituric acid-reactive substances and myeloperoxidase activity after induction of acute TNBS colitis was also significantly inhibited after CO treatment. Moreover, the wound healing assays revealed that the CO-saturated medium enhanced rat intestinal epithelial cell migration via the activation of Rho-kinase. In addition, the activation of Rho-kinase in response to CO treatment was confirmed in the inflamed colonic tissue. Therefore, the rectal administration of a CO-saturated solution protects the intestinal mucosa from inflammation and accelerates colonic ulcer healing through enhanced epithelial cell restitution. CO may thus represent a novel therapeutic agent for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Tomohisa Takagi
- Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan; Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yasuki Higashimura
- Department of Food Science, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Tetsuya Okayama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuhiro Katada
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuhiro Kamada
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
4
|
Liu N, Xu L, Zhou S, Zhang L, Li J. Simultaneous Detection of Multiple Atmospheric Components Using an NIR and MIR Laser Hybrid Gas Sensing System. ACS Sens 2020; 5:3607-3616. [PMID: 33137254 DOI: 10.1021/acssensors.0c01910] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A compact multi-gas sensor has been developed for simultaneous detection of atmospheric carbon monoxide (CO), nitrous oxide (N2O), and methane (CH4). Instead of the traditional time-division multiplexing detection technique, two lasers having center emission wavelengths of 1.653 μm (near-infrared (NIR) diode feedback (DFB) laser diode) and 4.56 μm (mid-infrared (MIR) quantum cascade laser) were simultaneously coupled to a multipass cell using a dichroic mirror, which significantly decreased the complexity of the measurement and increased the temporal resolution of the spectrometer. Wavelength modulation spectroscopy (WMS) with the second-harmonic detection technique (WMS-2f) was used to improve the detection sensitivity. A LabVIEW-based digital lock-in amplifier (DLIA) algorithm and system control unit was developed to make the system more compact and flexible. Allan deviation analysis indicates that detection limits of 6.36 ppb by volume for CO, 4.9 ppb by volume for N2O, and 23.6 ppb by volume for CH4 are obtained at 1 s averaging time, and the sensitivity can be improved to 0.44 ppb for CO, 0.41 ppb for N2O, and 2 ppb for CH4 at an optimal averaging time of 900 s. Two-day real-time measurement in ambient air was performed to demonstrate the long-term stability of the sensor system.
Collapse
Affiliation(s)
- Ningwu Liu
- Laser Spectroscopy and Sensing Laboratory, Anhui University, 230601 Hefei, China
| | - Linguang Xu
- Laser Spectroscopy and Sensing Laboratory, Anhui University, 230601 Hefei, China
| | - Sheng Zhou
- Laser Spectroscopy and Sensing Laboratory, Anhui University, 230601 Hefei, China
| | - Lei Zhang
- Laser Spectroscopy and Sensing Laboratory, Anhui University, 230601 Hefei, China
| | - Jingsong Li
- Laser Spectroscopy and Sensing Laboratory, Anhui University, 230601 Hefei, China
| |
Collapse
|
5
|
Okumura N, Jinno N, Taniguchi K, Tanabe K, Nakamura S, Kondo T, Shimouchi A. Effects of Cooking Processes on Breath Hydrogen and Colonic Fermentation of Soybean. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401316666200226104601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Soybean is rich in dietary fibers; consequently, soybean ingestion considerably
increases the breath level of hydrogen molecules via anaerobic colonic fermentation. However,
the influence of cooking methods on this effect, which can affect the overall health benefits of soybean,
remains unknown.
Objectives:
The aim is to examine whether different methods of cooking soybean affect the colonic
fermentation process.
Methods:
Nine healthy adult volunteers participated in the study; they ingested either roasted soybean
flour (kinako) or well-boiled soybean (BS). Differences in their breath components were compared.
Both test meals were cooked using 80 g of soybeans per individual. After a 12 h fast, the participants
ate the test meals, and their breath hydrogen level was analyzed every 1 h for 9 h by using a
gas chromatograph with a semiconductor detector. In addition, particle size distribution and soluble/
insoluble fibers in the feces were examined.
Results:
The oro-cecal transit time did not significantly differ between individuals who ingested
kinako and BS. However, the area under the curve between 7 and 9 h after the ingestion of BS was
significantly increased compared with that after the ingestion of kinako. The nutritional analysis indicated
that the content of both soluble and insoluble fibers in BS was higher than that in kinako. In
addition, the levels of unfermented fragments and soluble/insoluble fibers in the feces were increased
after the ingestion of kinako compared with those after the ingestion of kinako.
Conclusion:
Cooking methods alter the composition of non-digestible fibers in soybean, and this can
result in the lack of fermentative particles in the feces, thereby causing alterations in the breath level
of hydrogen via colonic fermentation.
Collapse
Affiliation(s)
- Naoya Okumura
- College of Life and Health Science, Chubu University, Kasugai City, Japan
| | - Naoya Jinno
- College of Life and Health Science, Chubu University, Kasugai City, Japan
| | - Kentaro Taniguchi
- College of Life and Health Science, Chubu University, Kasugai City, Japan
| | - Kenichi Tanabe
- Laboratory of Public Health Nutrition, Nagoya Women's University, Nagoya City, Japan
| | - Sadako Nakamura
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, Niiza City, Saitama, Japan
| | - Takaharu Kondo
- Health Promotion Center, Chubu University, Kasugai City, Japan
| | - Akito Shimouchi
- College of Life and Health Science, Chubu University, Kasugai City, Japan
| |
Collapse
|
6
|
Lee JH, Woo HJ, Son SK, Kim M, Lee DH, Tsunogai U, Jeong KS. Flux and distribution of methane (CH 4) in the Gunsan Basin of the southeastern Yellow Sea, off the Western Korea. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:457-466. [PMID: 29300684 DOI: 10.1080/10934529.2017.1409026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The flux and distribution of methane (CH4) was investigated in the seawater column at 14 stations in the Gunsan Basin, the southeastern part of Yellow Sea from 2013 to 2015. Here CH4 is concentrated 2.4-4.7 (3.4 ± 0.7) nM in the surface and 2.5-7.4 (5.2 ± 1.7) nM in the bottom layer. The CH4 saturation ratios ranged from 65.5% to 295.5% (162.6 ± 68.7), comprising the mean sea-to-air CH4 flux of 3.8 to 25.3 (15.6 ± 5.5) µM m-2d-1. Methane concentration was largely different in the upper and the lower seawater layers that is separated by the thermocline of which depth is variable (20-60 m) depending on the time of sampling. The concentration of seawater dissolved CH4 is high between the bottom surface of the thermocline layer and the sea floor. Generally it tends to decrease from the south-westernmost part of the basin toward the west coast of Korea. This distribution pattern of CH4 seems to result from the CH4 supply by decomposition of organic matters produced in the upper seawater layer that is superimposed by the larger supply from the underlying sediment layer especially beneath the thermocline. The latter is manifested by ubiquitous CH4 seeps from the seafloor sediments.
Collapse
Affiliation(s)
- Jun-Ho Lee
- a Korean Seas Geosystem Research Center, Korea Institute of Ocean Science & Technology , Busan , Republic of Korea
| | - Han Jun Woo
- a Korean Seas Geosystem Research Center, Korea Institute of Ocean Science & Technology , Busan , Republic of Korea
| | - Seung-Kyu Son
- b Deep-sea and Seabed Mineral Resources Research Center, Korea Institute of Ocean Science & Technology , Busan , Republic of Korea
| | - Moonkoo Kim
- c Oil and POPs Research Group, Korea Institute of Ocean Science & Technology , Geoje-si , Gyeongsangnam-do , Republic of Korea
| | - Dong-Hun Lee
- d Department of Marine Sciences and Convergent Technology , Hanyang University , Ansan-si , Gyeonggi-do , Republic of Korea
| | - Urumu Tsunogai
- e Graduate School of Environmental Studies, Nagoya University , Chikusa-ku , Nagoya , Japan
| | - Kap-Sik Jeong
- a Korean Seas Geosystem Research Center, Korea Institute of Ocean Science & Technology , Busan , Republic of Korea
| |
Collapse
|
7
|
Gould O, Wieczorek T, de Lacy Costello B, Persad R, Ratcliffe N. Assessment of a combined gas chromatography mass spectrometer sensor system for detecting biologically relevant volatile compounds. J Breath Res 2017; 12:016009. [PMID: 29211690 DOI: 10.1088/1752-7163/aa8efe] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There have been a number of studies in which metal oxide sensors (MOS) have replaced conventional analytical detectors in gas chromatography systems. However, despite the use of these instruments in a range of applications including breath research the sensor responses (i.e. resistance changes w.r.t. concentration of VCs) remain largely unreported. This paper addresses that issue by comparing the response of a metal oxide sensor directly with a mass spectrometer (MS), whereby both detectors are interfaced to the same GC column using an s-swafer. It was demonstrated that the sensitivity of an in-house fabricated ZnO/SnO2 thick film MOS was superior to a modern MS for the detection of a wide range of volatile compounds (VCs) of different functionalities and masses. Better techniques for detection and quantification of these VCs is valuable, as many of these compounds are commonly reported throughout the scientific literature. This is also the first published report of a combined GC-MS sensor system. These two different detector technologies when combined, should enhance discriminatory abilities to aid disease diagnoses using volatiles from e.g. breath, and bodily fluids. Twenty-nine chemical standards have been tested using solid phase micro-extraction; 25 of these compounds are found on human breath. In all but two instances the sensor exhibited the same or superior limit of detection compared to the MS. Twelve stool samples from healthy participants were analysed; the sensor detected, on average 1.6 peaks more per sample than the MS. Similarly, analysing the headspace of E. coli broth cultures the sensor detected 6.9 more peaks per sample versus the MS. This greater sensitivity is primarily a function of the superior limits of detection of the metal oxide sensor. This shows that systems based on the combination of chromatography systems with solid state sensors shows promise for a range of applications.
Collapse
Affiliation(s)
- Oliver Gould
- Institute of Biosensor Technology, University of the West of England, Coldharbour Lane, Frenchay, Bristol, BS16 1QY, United Kingdom
| | | | | | | | | |
Collapse
|
8
|
Povarov VG, Lopatnikov AI. A simple multisensor detector based on tin dioxide in capillary gas chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1134/s1061934816090136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Takeda K, Katoh S, Mitsui Y, Nakano S, Nakatani N, Sakugawa H. Spatial distributions of and diurnal variations in low molecular weight carbonyl compounds in coastal seawater, and the controlling factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:454-462. [PMID: 24956078 DOI: 10.1016/j.scitotenv.2014.05.126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
We studied the spatial distributions of and the diurnal variations in four low molecular weight (LMW) carbonyl compounds, formaldehyde, acetaldehyde, propionaldehyde, and glyoxal, in coastal seawater. The samples were taken from the coastal areas of Hiroshima Bay, the Iyo Nada, and the Bungo Channel, western Japan. The formaldehyde, acetaldehyde, and glyoxal concentrations were higher in the northern part of Hiroshima Bay than at offshore sampling points in the Iyo Nada and the Bungo Channel. These three compounds were found at much higher concentrations in the surface water than in deeper water layers in Hiroshima Bay. It is noteworthy that propionaldehyde was not detected in any of the seawater samples, the concentrations present being lower than the detection limit (1 nanomole per liter (nM)) of the high performance liquid chromatography (HPLC) system we used. Photochemical and biological experiments were performed in the laboratory to help understand the characteristic distributions and fates of the LMW carbonyl compounds. The primary process controlling their fate in the coastal environment appears to be their biological consumption. The direct photo degradation of propionaldehyde, initiated by ultraviolet (UV) absorption, was observed, although formaldehyde and acetaldehyde were not degraded by UV irradiation. Our results suggest that the degradation of the LMW carbonyl compounds by photochemically formed hydroxyl radicals is relatively insignificant in the study area. Atmospheric deposition is a possible source of soluble carbonyl compounds in coastal surface seawater, but it may not influence the carbonyl concentrations in offshore waters.
Collapse
Affiliation(s)
- Kazuhiko Takeda
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan.
| | - Shinya Katoh
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Yumi Mitsui
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Shinichi Nakano
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Nobutake Nakatani
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan; Department of Environmental and Symbiotic Sciences, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroshi Sakugawa
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
10
|
Batzias FA, Siontorou CG, Spanidis PMP. Designing a reliable leak bio-detection system for natural gas pipelines. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:35-58. [PMID: 21177031 DOI: 10.1016/j.jhazmat.2010.09.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 08/23/2010] [Accepted: 09/10/2010] [Indexed: 05/30/2023]
Abstract
Monitoring of natural gas (NG) pipelines is an important task for economical/safety operation, loss prevention and environmental protection. Timely and reliable leak detection of gas pipeline, therefore, plays a key role in the overall integrity management for the pipeline system. Owing to the various limitations of the currently available techniques and the surveillance area that needs to be covered, the research on new detector systems is still thriving. Biosensors are worldwide considered as a niche technology in the environmental market, since they afford the desired detector capabilities at low cost, provided they have been properly designed/developed and rationally placed/networked/maintained by the aid of operational research techniques. This paper addresses NG leakage surveillance through a robust cooperative/synergistic scheme between biosensors and conventional detector systems; the network is validated in situ and optimized in order to provide reliable information at the required granularity level. The proposed scheme is substantiated through a knowledge based approach and relies on Fuzzy Multicriteria Analysis (FMCA), for selecting the best biosensor design that suits both, the target analyte and the operational micro-environment. This approach is illustrated in the design of leak surveying over a pipeline network in Greece.
Collapse
Affiliation(s)
- F A Batzias
- University Piraeus, Department of Industrial Management & Technology, Piraeus, Greece.
| | | | | |
Collapse
|
11
|
Takaki S, Takeyama N, Kajita Y, Yabuki T, Noguchi H, Miki Y, Inoue Y, Nakagawa T, Noguchi H. Beneficial effects of the heme oxygenase-1/carbon monoxide system in patients with severe sepsis/septic shock. Intensive Care Med 2009; 36:42-8. [PMID: 19787335 DOI: 10.1007/s00134-009-1575-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 06/17/2009] [Indexed: 01/28/2023]
Abstract
PURPOSE We evaluated the relations among the arterial carbon monoxide (CO) concentration, heme oxygenase (HO)-1 expression by monocytes, oxidative stress, plasma levels of cytokines and bilirubin, and the outcome of patients with severe sepsis or septic shock. METHODS Thirty-six patients who fulfilled the criteria for severe sepsis or septic shock and 21 other patients without sepsis during their stay in the intensive care unit were studied. HO-1 protein expression by monocytes, arterial CO, oxidative stress, bilirubin, and cytokines were measured. RESULTS Arterial blood CO, cytokine, and bilirubin levels, and monocyte HO-1 protein expression were higher in patients with severe sepsis/septic shock than in non-septic patients. Increased HO-1 expression was related to the arterial CO concentration and oxidative stress. There was a positive correlation between survival and increased HO-1 protein expression or a higher CO level. CONCLUSIONS Arterial CO and monocyte HO-1 protein expression were increased in critically ill patients, particularly those with severe sepsis or septic shock, suggesting that oxidative stress is closely related to HO-1 expression. The HO-1/CO system may play an important role in sepsis.
Collapse
Affiliation(s)
- Shoji Takaki
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Nagakute-cho, Aichi, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Nakao A, Toyokawa H, Tsung A, Nalesnik MA, Stolz DB, Kohmoto J, Ikeda A, Tomiyama K, Harada T, Takahashi T, Yang R, Fink MP, Morita K, Choi AMK, Murase N. Ex vivo application of carbon monoxide in University of Wisconsin solution to prevent intestinal cold ischemia/reperfusion injury. Am J Transplant 2006; 6:2243-55. [PMID: 16827783 DOI: 10.1111/j.1600-6143.2006.01465.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Carbon monoxide (CO), a byproduct of heme catalysis, was shown to have potent cytoprotective and anti-inflammatory effects. In vivo recipient CO inhalation at low concentrations prevented ischemia/reperfusion (I/R) injury associated with small intestinal transplantation (SITx). This study examined whether ex vivo delivery of CO in University of Wisconsin (UW) solution could ameliorate intestinal I/R injury. Orthotopic syngenic SITx was performed in Lewis rats after 6 h cold preservation in control UW or UW that was bubbled with CO gas (0.1-5%) (CO-UW). Recipient survival with intestinal grafts preserved in 5%, but not 0.1%, CO-UW improved to 86.7% (13/15) from 53% (9/17) with control UW. At 3 h after SITx, grafts stored in 5% CO-UW showed improved intestinal barrier function, less mucosal denudation and reduced inflammatory mediator upregulation compared to those in control UW. Preservation in CO-UW associated with reduced vascular resistance (end preservation), increased graft cyclic guanosine monophosphate levels (1 h), and improved graft blood flow (1 h). Protective effects of CO-UW were reversed by ODQ, an inhibitor of soluble guanylyl cyclase. In vitro culture experiment also showed better preservation of vascular endothelial cells with CO-UW. The study suggests that ex vivo CO delivery into UW solution would be a simple and innovative therapeutic strategy to prevent transplant-induced I/R injury.
Collapse
Affiliation(s)
- A Nakao
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
TAKAGI T, NAITO Y, TSUBOI H, ISOZAKI Y, KATADA K, SUZUKI T, TERAO K, HANDA O, KOKURA S, ICHIKAWA H, YOSHIDA N, OKUYAMA Y, YAGI N, UEDA H, YOSHIKAWA T. Increased intestinal luminal carbon monoxide gas in patients with ulcerative colitis. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1746-6342.2006.00051.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Determination of carbon monoxide in ambient air using piezoelectric crystal sorption detection. Anal Chim Acta 2002. [DOI: 10.1016/s0003-2670(02)00013-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Xie H, Zafiriou OC, Wang W, Taylor CD. A simple automated continuous-flow-equilibration method for measuring carbon monoxide in seawater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2001; 35:1475-1480. [PMID: 11348089 DOI: 10.1021/es001656v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A simple, robust, low-maintenance method using air-segmented continuous-flow equilibration was developed and automated to measure carbon monoxide (CO) in natural waters precisely and accurately. Finely regulated flows of CO-free air and of seawater or standard water were pumped into a glass coil, forming discrete gas/liquid segments. The partially CO-equilibrated gas effluent was injected into a Trace Analytical reduction analyzer for CO detection. A semiempirical mass-balance model was established for predicting and optimizing the performance of the CO extractor. The optimized gas and water flow rates were approximately 1.2 and approximately 14 mL min(-1), respectively, giving a response time of less than 15 min and a CO-extraction yield of approximately 80%. The analytical blank, precision, and accuracy were, respectively, 0.02 nM, +/-2.5% (at the approximately 1 nM level), and better than 5%. Two extractors can be interfaced to one detector at 4-6 samples per hour for each extractor. Coupled with a continuous surface-water sampler, the system was successfully applied to monitoring the diurnal variation of CO concentration in Sargasso Sea surface waters.
Collapse
Affiliation(s)
- H Xie
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Massachusetts 02543, USA
| | | | | | | |
Collapse
|