1
|
Farhat M, Afif C, Zhang S, Dusanter S, Delbarre H, Riffault V, Sauvage S, Borbon A. Investigating the industrial origin of terpenoids in a coastal city in northern France: A source apportionment combining anthropogenic, biogenic, and oxygenated VOC. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172098. [PMID: 38582124 DOI: 10.1016/j.scitotenv.2024.172098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Terpenoids have long been known to originate from natural sources. However, there is growing evidence for emissions from anthropogenic activities in cities, in particular from the production, manufacturing, and use of household solvents. Here, as part of the DATAbASE (Do Anthropogenic Terpenoids mAtter in AtmoSpheric chEmistry?) project, we investigate for the first time the potential role of industrial activities on the terpenoid burden in the urban atmosphere. This study is based on continuous VOC observations from an intensive field campaign conducted in July 2014 at an industrial-urban background site located in Dunkirk, Northern France. More than 80 VOCs including oxygenated and terpenoid compounds were measured by on-line Thermal Desorption Gas Chromatography with a Flame Ionization Detection (TD-GC-FID) and Proton Transfer Reaction-Time of Flight Mass Spectrometry (PTR-ToFMS). Isoprene, α-pinene, limonene and the sum of monoterpenes were the terpenoids detected at average mixing ratios of 0.02 ± 0.02 ppbv, 0.02 ± 0.02 ppbv, 0.01 ± 0.01 ppbv and 0.03 ± 0.05 ppbv, respectively. Like other anthropogenic VOCs, the mixing ratios of terpenoids significantly increase downwind the industrial plumes by one order of magnitude. Positive Matrix Factorization (PMF) was performed to identify the different emission sources of VOCs and their contribution. Six factors out of the eight factors extracted (r2 = 0.95) are related to industrial emissions such as solvent use, chemical and agrochemical storage, metallurgy, petrochemical, and coal-fired industrial activities. From the correlations between the industrial-type PMF factors, sulfur dioxide, and terpenoids, we determined their emissions ratios and we quantified for the first time their industrial emissions. The highest emission ratio is related to the alkene-dominated factor and is related to petrochemical, metallurgical and coal-fired industrial activities. The industrial emissions of monoterpenes equal 8.1 ± 4.3 tons/year. Those emissions are as significant as the non-industrialized anthropogenic ones estimated for the Paris megacity.
Collapse
Affiliation(s)
- Mariana Farhat
- Université Clermont Auvergne, Laboratoire de Météorologie Physique, OPGC/CNRS UMR 6016, Clermont-Ferrand, France; EMMA Research Group, Center for Analysis and Research, Faculty of Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon.
| | - Charbel Afif
- EMMA Research Group, Center for Analysis and Research, Faculty of Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon; Climate & Atmosphere Research Centre (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | - Shouwen Zhang
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France; Laboratoire de Physico-Chimie de l'Atmosphère, ULCO, Dunkerque, France
| | - Sébastien Dusanter
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France
| | - Hervé Delbarre
- Laboratoire de Physico-Chimie de l'Atmosphère, ULCO, Dunkerque, France
| | - Véronique Riffault
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France
| | - Stéphane Sauvage
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France
| | - Agnès Borbon
- Université Clermont Auvergne, Laboratoire de Météorologie Physique, OPGC/CNRS UMR 6016, Clermont-Ferrand, France.
| |
Collapse
|
2
|
Huang W, Xiao Y, Li X, Wu C, Zhang C, Wang X. Bibliometric analysis of research hotspots and trends in the field of volatile organic compound (VOC) emission accounting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42547-42573. [PMID: 38884935 DOI: 10.1007/s11356-024-33896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Volatile organic compounds (VOCs) have been extensively studied because of their significant roles as precursors of atmospheric ozone and secondary organic aerosol pollution. The research aims to comprehend the current advancements in domestic and international VOC emission accounting. The study utilized the CiteSpace software to represent the pertinent material from Web of Science visually. The hot spots and future development trends of VOC emission calculation are analyzed from the perspectives of thesis subject words, cooperative relationships, co-citation relationships, journals, and core papers. According to the statistics, the approaches most often employed in VOC accounting between 2013 and 2023 are source analysis and emission factor method. Atmospheric environment is the journal with the most publications in the area. The Chinese Academy of Sciences and the University of Colorado System are prominent institutions in VOC emission accounting research, both domestically and internationally. The primary research focuses on the realm of VOC emission accounting clusters, which are "emission factor," "source analysis," "model," "air quality," and "health." A current trend in VOC emission accounting involves the construction of a VOC emission inventory using a novel model that combines emission factors and source analysis. This study reviews the progress made in calculating volatile organic compound (VOC) emissions over the past decade. It aims to provide researchers with a new perspective to promote the development of this field.
Collapse
Affiliation(s)
- Weiqiu Huang
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Center for Oil Vapor Recovery, Changzhou, 213164, China.
- School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yilan Xiao
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Center for Oil Vapor Recovery, Changzhou, 213164, China
- School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou, 213164, China
| | - Xufei Li
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Center for Oil Vapor Recovery, Changzhou, 213164, China
- School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou, 213164, China
| | - Chunyan Wu
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Center for Oil Vapor Recovery, Changzhou, 213164, China
- School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou, 213164, China
| | - Cheng Zhang
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Center for Oil Vapor Recovery, Changzhou, 213164, China
- School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou, 213164, China
| | - Xinya Wang
- Jiangsu Provincial Key Laboratory of Oil-Gas Storage and Transportation Technology, Engineering Technology Research Center for Oil Vapor Recovery, Changzhou, 213164, China
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
3
|
Saito S, Numadate N, Teraoka H, Enami S, Kobayashi H, Hama T. Impurity contribution to ultraviolet absorption of saturated fatty acids. SCIENCE ADVANCES 2023; 9:eadj6438. [PMID: 37729407 PMCID: PMC10511181 DOI: 10.1126/sciadv.adj6438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023]
Abstract
Saturated fatty acids are abundant organic compounds in oceans and sea sprays. Their photochemical reactions induced by solar radiation have recently been found as an abiotic source of volatile organic compounds, which serve as precursors of secondary organic aerosols. However, photoabsorption of wavelengths longer than 250 nanometers in liquid saturated fatty acids remains unexplained, despite being first reported in 1931. Here, we demonstrate that the previously reported absorption of wavelengths longer than 250 nanometers by liquid nonanoic acid [CH3(CH2)7COOH)] originates from traces of impurities (0.1% at most) intrinsically contained in nonanoic acid reagents. Absorption cross sections of nonanoic acid newly obtained here indicate that the upper limit of its photolysis rate is three to five orders of magnitude smaller than those for atmospherically relevant carbonyl compounds.
Collapse
Affiliation(s)
- Shota Saito
- Komaba Institute for Science and Department of Basic Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Naoki Numadate
- Komaba Institute for Science and Department of Basic Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Hidemasa Teraoka
- Komaba Institute for Science and Department of Basic Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Shinichi Enami
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Hirokazu Kobayashi
- Komaba Institute for Science and Department of Basic Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Tetsuya Hama
- Komaba Institute for Science and Department of Basic Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
4
|
Gao XF, Nathanson GM. Exploring Gas-Liquid Reactions with Microjets: Lessons We Are Learning. Acc Chem Res 2022; 55:3294-3302. [PMID: 36378763 DOI: 10.1021/acs.accounts.2c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liquid water is all around us: at the beach, in a cloud, from a faucet, inside a spray tower, covering our lungs. It is fascinating to imagine what happens to a reactive gas molecule as it approaches the surface of water in these examples. Some incoming molecules may first be deflected away after colliding with an evaporating water molecule. Those that do strike surface H2O or other surface species may bounce directly off or become momentarily trapped through hydrogen bonding or other attractive forces. The adsorbed gas molecule can then desorb immediately or instead dissolve, passing through the interfacial region and into the bulk, perhaps diffusing back to the surface and evaporating before reacting. Alternatively, it may react with solute or water molecules in the interfacial or bulk regions, and a reaction intermediate or the final product may then desorb into the gas phase. Building a "blow by blow" picture of these pathways is challenging for vacuum-based techniques because of the high vapor pressure of water. In particular, collisions within the thick vapor cloud created by evaporating molecules just above the surface scramble the trajectories and internal states of the gaseous target molecules, hindering construction of gas-liquid reaction mechanisms at the atomic scale that we strive to map out.The introduction of the microjet in 1988 by Faubel, Schlemmer, and Toennies opened up entirely new possibilities. Their inspired solution seems so simple: narrow the end of a glass tube to a diameter smaller than the mean free path of the vapor molecules and then push the liquid through the tube at speeds of a car on a highway. The narrow liquid stream creates a sparse vapor cloud, with water molecules spaced far enough apart that they and the reactant gases interact, at most, weakly. Experimentalists, however, confront a host of challenges: nozzle clogging, unstable jetting, searching for vacuum-compatible solutions, measuring low signal levels, and teasing out artifacts because the slender jet is the smallest surface in the vacuum chamber. In this Account, we describe lessons that we are learning as we explore gases (DCl, (HCOOH)2, N2O5) reacting with water molecules and solute ions in the near-interfacial region of these fast-flowing aqueous microjets.
Collapse
Affiliation(s)
- Xiao-Fei Gao
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Gilbert M Nathanson
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Uning R, Latif MT, Hamid HHA, Suratman S. A floating chamber system for VOC sea-to-air flux measurement near the sea surface. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:531. [PMID: 35760953 DOI: 10.1007/s10661-022-10237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) form ozone (O3) and secondary organic aerosols (SOAs) in the atmosphere under favourable conditions. Biogenic VOC levels in the marine atmosphere are significantly lower compared with levels in the atmosphere above terrestrial ecosystems. However, much less is known about the marine biogenic VOC sea-to-air flux, specifically at the sea surface level. Therefore, here we describe a newly developed and cost-effective floating chamber system that has the capacity to measure the VOC sea-to-air flux near the sea surface (< 1 m). The floating chamber is coupled with adsorbent cartridges, and samples were analysed in the laboratory using commercial thermal desorption and gas chromatography mass spectrometry (TD-GC-MS). The structural performance of the floating flux chamber was evaluated, and it was shown to have the capacity to stay continuously afloat for up to 72 h in various conditions (e.g., rainy, windy) and with wave heights up to approximately 1 m in coastal waters. Preliminary measurements of isoprene (3-Methyl-1,2-butadiene) (C5H8) sea-to-air flux using the floating flux chamber in the coastal waters off the east coast of Peninsular Malaysia found values in the region of 107 molecules/cm2/s, comparable with most published values based on various flux measurement techniques. We suggest the proposed floating chamber system could serve as a cost-effective VOC flux technique that allows measurements near the sea surface.
Collapse
Affiliation(s)
- Royston Uning
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Haris Hafizal Abd Hamid
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Suhaimi Suratman
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
6
|
Sauer JS, Mayer KJ, Lee C, Alves MR, Amiri S, Bahaveolos CJ, Franklin EB, Crocker DR, Dang D, Dinasquet J, Garofalo LA, Kaluarachchi CP, Kilgour DB, Mael LE, Mitts BA, Moon DR, Moore AN, Morris CK, Mullenmeister CA, Ni CM, Pendergraft MA, Petras D, Simpson RMC, Smith S, Tumminello PR, Walker JL, DeMott PJ, Farmer DK, Goldstein AH, Grassian VH, Jaffe JS, Malfatti F, Martz TR, Slade JH, Tivanski AV, Bertram TH, Cappa CD, Prather KA. The Sea Spray Chemistry and Particle Evolution study (SeaSCAPE): overview and experimental methods. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:290-315. [PMID: 35048927 DOI: 10.1039/d1em00260k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Marine aerosols strongly influence climate through their interactions with solar radiation and clouds. However, significant questions remain regarding the influences of biological activity and seawater chemistry on the flux, chemical composition, and climate-relevant properties of marine aerosols and gases. Wave channels, a traditional tool of physical oceanography, have been adapted for large-scale ocean-atmosphere mesocosm experiments in the laboratory. These experiments enable the study of aerosols under controlled conditions which isolate the marine system from atmospheric anthropogenic and terrestrial influences. Here, we present an overview of the 2019 Sea Spray Chemistry and Particle Evolution (SeaSCAPE) study, which was conducted in an 11 800 L wave channel which was modified to facilitate atmospheric measurements. The SeaSCAPE campaign sought to determine the influence of biological activity in seawater on the production of primary sea spray aerosols, volatile organic compounds (VOCs), and secondary marine aerosols. Notably, the SeaSCAPE experiment also focused on understanding how photooxidative aging processes transform the composition of marine aerosols. In addition to a broad range of aerosol, gas, and seawater measurements, we present key results which highlight the experimental capabilities during the campaign, including the phytoplankton bloom dynamics, VOC production, and the effects of photochemical aging on aerosol production, morphology, and chemical composition. Additionally, we discuss the modifications made to the wave channel to improve aerosol production and reduce background contamination, as well as subsequent characterization experiments. The SeaSCAPE experiment provides unique insight into the connections between marine biology, atmospheric chemistry, and climate-relevant aerosol properties, and demonstrates how an ocean-atmosphere-interaction facility can be used to isolate and study reactions in the marine atmosphere in the laboratory under more controlled conditions.
Collapse
Affiliation(s)
- Jon S Sauer
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Kathryn J Mayer
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Christopher Lee
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
| | - Michael R Alves
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Sarah Amiri
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | | | - Emily B Franklin
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, USA
| | - Daniel R Crocker
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Duyen Dang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Julie Dinasquet
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
| | - Lauren A Garofalo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | - Delaney B Kilgour
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Liora E Mael
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Brock A Mitts
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Daniel R Moon
- Department of Civil and Environmental Engineering, University of California, Davis, California 95616, USA
- Institute for Chemical Science, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Alexia N Moore
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Clare K Morris
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
| | - Catherine A Mullenmeister
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Chi-Min Ni
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Matthew A Pendergraft
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
| | - Daniel Petras
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, California 92093, USA
| | - Rebecca M C Simpson
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
| | - Stephanie Smith
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
| | - Paul R Tumminello
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Joseph L Walker
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
| | - Paul J DeMott
- Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Allen H Goldstein
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Jules S Jaffe
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
| | - Francesca Malfatti
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
- Universita' degli Studi di Trieste, Department of Life Sciences, Trieste, 34127, Italy
| | - Todd R Martz
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
| | - Jonathan H Slade
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Alexei V Tivanski
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | - Timothy H Bertram
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Christopher D Cappa
- Department of Civil and Environmental Engineering, University of California, Davis, California 95616, USA
| | - Kimberly A Prather
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|