1
|
Fu R, Hai X, Lu Q, Li H, Niu J, Zhang Y, Ren T, Guo X, Di X. Molecularly imprinted polymer gel with superior recognition and adsorption capacity for amphenicol antibiotics in food matrices. Food Chem 2025; 463:141255. [PMID: 39303467 DOI: 10.1016/j.foodchem.2024.141255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
A molecular-imprinted polymer (MIP) gel with high effective recognition of amphenicol antibiotics was synthesized for the first time based on layered double hydroxide (LDH) as the support and initiator, and functionalized β-cyclodextrin (β-CD) as the functional monomer. The synergistic effect of molecular imprinting recognition and β-CD host-guest affinity enabled MIP gel to exhibit excellent selectivity (imprinted factors: 3.9-9.4) and high adsorption capacity (28.9-75.4 mg g-1) for amphenicol antibiotics. Different adsorption isotherms and kinetics models were followed, suggesting heterogeneous single-layer recognition and chemical adsorption. After 5 cycles of adsorption and desorption, the adsorption capacity of MIP gel retained above 83.6 %, demonstrating favorable reproducibility and stability. Under optimal conditions, the method validation showed a satisfactory limit of detection (5-10 μg L-1), good correlation (r2 > 0.9967), and respectable recovery (82.6-105.3 %). The MIP gel was applied to extract amphenicol antibiotics from food matrices, achieving recoveries in the range of 78.3-104.5 %. Importantly, the recognition mechanism was studied in detail using density functional theory. Therefore, the established method demonstrates high sensitivity and can be applied as a new tactic for detecting amphenicol antibiotics in food matrices.
Collapse
Affiliation(s)
- Ruiyu Fu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoqin Hai
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Qingxin Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Hongbo Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jiaxiao Niu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yanhui Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Tingze Ren
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoli Guo
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Xin Di
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
2
|
Sudhakar MP, Nived SA, Dharani G. Fabrication and Characterization of Agar- and Seaweed-Derived Biomembrane Films for Biomedical and Other Applications. Biopolymers 2025; 116:e23643. [PMID: 39655893 DOI: 10.1002/bip.23643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
This study focused on seaweed-based biomembrane development. The physical, mechanical, thermal, and biological properties of the fabricated films with different combinations of materials, such as agar, chitosan, poly(vinyl) alcohol (PVA), and quercetin, were characterized. The surface morphology of the films was analyzed using SEM. The maximum tensile strength (53.11 N/mm2), elongation at break (3.42%), and Young's modulus (15.52) of the biomembrane were recorded for the agar + chitosan combination. FT-Raman analysis confirmed the functional groups shift between the biopolymer and plasticizer used in this study. TG-DSC analysis of the biomembranes revealed a Tg in the range of 92.80°C-115°C. The maximum antioxidant activity was reported for quercetin (58.62%), and the maximum antimicrobial activity was observed for the chitosan and quercetin compounds against E. coli. A minimum hemolysis of 0.95% was achieved for the combination of agar + quercetin (AQ), agar + PEG (APE), Gracilaria corticata extract + PVA + quercetin (GCPQ) and agar + chitosan (AC) biomembranes. The minimum cytotoxicity of the biomembrane was 62.51% and 63.87% for Gracilaria corticata extract + PVA + quercetin (GCPQ), and agar + PVA, respectively. The proposed biomembrane films were found to be suitable for biomedical and packaging applications.
Collapse
Affiliation(s)
- Muthiyal Prabakaran Sudhakar
- Marine Biotechnology, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Chennai, India
| | - Sureshkumar Ambika Nived
- School of Chemical & Biotechnology, The Shanmugha Arts Science, Technology & Research Academy (SASTRA, Deemed to be University), Thanjavur, India
| | - Gopal Dharani
- Marine Biotechnology, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Chennai, India
| |
Collapse
|
3
|
Sharma G, Verma A, García-Peñas A, Kumar A, Dhiman P, Wang T, Amirian J. Polysaccharide-based biopolymeric magnetic hydrogels for remediation of antibiotics from aqueous solution. Int J Biol Macromol 2024; 283:137555. [PMID: 39537064 DOI: 10.1016/j.ijbiomac.2024.137555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Polysaccharide-based biopolymeric magnetic hydrogels have garnered significant attention as effective materials for wastewater treatment due to their high adsorption capacity and environmentally friendly nature. This review examines recent advancements in the development of biopolymeric magnetic hydrogels derived from polysaccharides such as cellulose, chitosan, alginate, carrageenan, starch, and gums, with a focus on their application in removing antibiotics from contaminated water as it not only enhances adsorption performance but also simplifies separation processes after treatment, making them highly efficient for practical applications. The review aims to provide a comprehensive overview of the synthesis techniques, performance characteristics, and interaction mechanisms of these hydrogels, highlighting their renewability and suitability for large-scale water treatment. Despite their promise, there is a lack of in-depth analysis of their performance and fabrication methods. This review addresses this gap by evaluating various synthesis methods and assessing the hydrogels' efficiency in adsorbing antibiotic pollutants. Key findings reveal that the biopolymeric and magnetic components contribute to the materials' enhanced binding, better removal capabilities, and easy recoverability. The interaction mechanisms between the hydrogels and antibiotics are explored, demonstrating their superior adsorption potential. Future challenges and research directions are discussed, with an emphasis on improving the scalability and practical applications of these hydrogels. Overall, this review offers valuable insights into the development and potential of biopolymeric magnetic hydrogels to contribute towards effective wastewater purification.
Collapse
Affiliation(s)
- Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, India.
| | - Akshay Verma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, India
| | - Alberto García-Peñas
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, IAAB, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911 Madrid, Spain.
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, India
| | - Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, India
| | - Tongtong Wang
- Institute for Interdisciplinary and Innovate Research, Xi'an University of Architecture and Technology, Shaanxi Province 710055, PR China
| | - Jhaleh Amirian
- Riga Stradins University, Department of Pharmaceutical Chemistry, Riga LV-1007, Latvia
| |
Collapse
|
4
|
Xu M, Huang B, Beech HK, Getty PT, Urueña JM, Hawker CJ. Efficient Cross-Linking through C-H Bond Insertion of Unfunctionalized Commodity Materials Using Diazirine-Containing Polymers. ACS Macro Lett 2024; 13:1598-1604. [PMID: 39513545 PMCID: PMC11580386 DOI: 10.1021/acsmacrolett.4c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
The synthesis and application of multifunctional diazirine-containing polymers for on-demand cross-linking of unfunctionalized commodity polymers through C-H bond insertion is demonstrated. While small-molecule diazirine cross-linkers have seen important applications such as plastic compatibilization and photopatterning, the high degree of functionalization of polymer-based diazirine cross-linkers offers promise for enhanced compatibility based on polymer blending and increased efficiency due to controllable multivalency. As a demonstrative example, unfunctionalized linear poly(n-butyl acrylate) (PnBA) can be cross-linked using various polymeric cross-linkers with diazirine contents as low as 0.8 wt % in 1 min under photochemical conditions. With gel fractions up to 95%, tunable rheological behavior is observed with increasing cross-linker loadings, consistent with a transition from entangled branched polymers to a cross-linked network. Moreover, the synthetic stability of the diazirine units can be exploited to prepare diazirine-containing polymers based on a variety of different backbones, from vinyl copolymers to poly(dimethylsiloxane) (PDMS), which allows successful photopatterning using a commercial 3D printer.
Collapse
Affiliation(s)
- Mizhi Xu
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Banruo Huang
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Haley K. Beech
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Patrick T. Getty
- Materials
Department, and Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Juan Manuel Urueña
- NSF
BioPACIFIC Materials Innovation Platform, University of California, Santa
Barbara, California 93106, United States
| | - Craig J. Hawker
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials
Department, and Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- NSF
BioPACIFIC Materials Innovation Platform, University of California, Santa
Barbara, California 93106, United States
| |
Collapse
|
5
|
Prediger R, Kluck S, Hambitzer L, Sauter D, Kotz-Helmer F. High-Resolution Structuring of Silica-Based Nanocomposites for the Fabrication of Transparent Multicomponent Glasses with Adjustable Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407630. [PMID: 39219207 DOI: 10.1002/adma.202407630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Silicate-based multicomponent glasses are of high interest for technical applications due to their tailored properties, such as an adaptable refractive index or coefficient of thermal expansion. However, the production of complex structured parts is associated with high effort, since glass components are usually shaped from high-temperature melts with subsequent mechanical or chemical postprocessing. Here for the first time the fabrication of binary and ternary multicomponent glasses using doped nanocomposites based on silica nanoparticles and photocurable metal oxide precursors as part of the binder matrix is presented. The doped nanocomposites are structured in high resolution using UV-casting and additive manufacturing techniques, such as stereolithography and two-photon lithography. Subsequently, the composites are thermally converted into transparent glass. By incorporating titanium oxide, germanium oxide, or zirconium dioxide into the silicate glass network, multicomponent glasses are fabricated with an adjustable refractive index nD between 1.4584-1.4832 and an Abbe number V of 53.85-61.13. It is further demonstrated that by incorporating 7 wt% titanium oxide, glasses with ultralow thermal expansion can be fabricated with so far unseen complexity. These novel materials enable for the first time high-precision lithographic structuring of multicomponent silica glasses with applications from optics and photonics, semiconductors as well as sensors.
Collapse
Affiliation(s)
- Richard Prediger
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Sebastian Kluck
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Leonhard Hambitzer
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Daniel Sauter
- Laboratory for Micro-Optics, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Frederik Kotz-Helmer
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104, Freiburg, Germany
- Glassomer GmbH, In den Kirchenmatten 54, 79110, Freiburg, Germany
| |
Collapse
|
6
|
Hoti G, Caldera F, Trotta F, Zoccola M, Patrucco A, Anceschi A. A Novel Approach for Nanosponge: Wool Waste as a Building Block for the Synthesis of Keratin-Based Nanosponge and Perspective Application in Wastewater Treatment. ACS OMEGA 2024; 9:43319-43330. [PMID: 39493986 PMCID: PMC11525742 DOI: 10.1021/acsomega.3c09133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 11/05/2024]
Abstract
Wool waste is a huge environmental problem that needs to be addressed in order to avoid the continuous accumulation of biohazardous waste in landfills. In recent years, wool has proven to be an excellent source of keratin that can be used for various purposes. But never before has keratin from wool waste been used as a building block to synthesize a well-known class of biopolymers called nanosponges. Typically, nanosponges are produced by the reaction of cyclodextrins with an appropriate cross-linker to obtain an insoluble hyper-cross-linked polymer, which has applications in various fields. For this reason, a novel, affordable approach for the synthesis of a novel class of nanosponge using wool keratin as the building block has been presented. The keratin nanosponge was synthesized by reacting keratin with pyromellitic dianhydride as a cross-linking agent. The formation of a cross-linked polymer was successfully confirmed by CHNS-elemental analysis, TGA, DSC, FTIR-ATR, SEM, and water absorption capacity measurements. Surprisingly, the keratin-based nanosponge showed ∼50% uptake of heavy metals after only 24 h of contact time. The adsorption kinetics was also evaluated, indicating a pseudo-second-order model fit and the mechanism is predominantly the intraparticle diffusion process. The novel synthesized nanosponge proved to be a possible alternative for wastewater treatment.
Collapse
Affiliation(s)
- Gjylije Hoti
- Department
of Chemistry, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria
9, 10125 Turin, Italy
| | - Fabrizio Caldera
- Department
of Chemistry, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Francesco Trotta
- Department
of Chemistry, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Marina Zoccola
- CNR-STIIMA,
Italian National Research Council, Institute
of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900, Biella (BI), Italy
| | - Alessia Patrucco
- CNR-STIIMA,
Italian National Research Council, Institute
of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900, Biella (BI), Italy
| | - Anastasia Anceschi
- CNR-STIIMA,
Italian National Research Council, Institute
of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900, Biella (BI), Italy
| |
Collapse
|
7
|
Deng L, Olea AR, Ortiz-Perez A, Sun B, Wang J, Pujals S, Palmans ARA, Albertazzi L. Imaging Diffusion and Stability of Single-Chain Polymeric Nanoparticles in a Multi-Gel Tumor-on-a-Chip Microfluidic Device. SMALL METHODS 2024; 8:e2301072. [PMID: 38348928 DOI: 10.1002/smtd.202301072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Indexed: 10/18/2024]
Abstract
The performance of single-chain polymeric nanoparticles (SCPNs) in biomedical applications highly depends on their conformational stability in cellular environments. Until now, such stability studies are limited to 2D cell culture models, which do not recapitulate the 3D tumor microenvironment well. Here, a microfluidic tumor-on-a-chip model is introduced that recreates the tumor milieu and allows in-depth insights into the diffusion, cellular uptake, and stability of SCPNs. The chip contains Matrigel/collagen-hyaluronic acid as extracellular matrix (ECM) models and is seeded with cancer cell MCF7 spheroids. With this 3D platform, it is assessed how the polymer's microstructure affects the SCPN's behavior when crossing the ECM, and evaluates SCPN internalization in 3D cancer cells. A library of SCPNs varying in microstructure is prepared. All SCPNs show efficient ECM penetration but their cellular uptake/stability behavior depends on the microstructure. Glucose-based nanoparticles display the highest spheroid uptake, followed by charged nanoparticles. Charged nanoparticles possess an open conformation while nanoparticles stabilized by internal hydrogen bonding retain a folded structure inside the tumor spheroids. The 3D microfluidic tumor-on-a-chip platform is an efficient tool to elucidate the interplay between polymer microstructure and SCPN's stability, a key factor for the rational design of nanoparticles for targeted biological applications.
Collapse
Affiliation(s)
- Linlin Deng
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Alis R Olea
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, Barcelona, 08028, Spain
| | - Ana Ortiz-Perez
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Molecular Biosensing for Medical Diagnostics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Bingbing Sun
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Jianhong Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Silvia Pujals
- Institute for Advanced Chemistry of Catalonia (IQAC), Barcelona, 08034, Spain
| | - Anja R A Palmans
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Lorenzo Albertazzi
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Molecular Biosensing for Medical Diagnostics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
8
|
Dodangeh F, Nabipour H, Rohani S, Xu C. Applications, challenges and prospects of superabsorbent polymers based on cellulose derived from lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2024; 408:131204. [PMID: 39102965 DOI: 10.1016/j.biortech.2024.131204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
The synthetic superabsorbent polymers (SAPs) market is experiencing significant growth, with applications spanning agriculture, healthcare, and civil engineering, projected to increase from $9.0 billion USD in 2019 to $12.9 billion USD by 2024. Despite this positive trend, challenges such as fluctuating raw material costs and lower biodegradability of fossil fuel-based SAPs could impede further expansion. In contrast, cellulose and its derivatives present a sustainable alternative due to their renewable, biodegradable, and abundant characteristics. Lignocellulosic biomass (LCB), rich in cellulose and lignin, shows promise as a source for eco-friendly superabsorbent polymer (SAP) production. This review discusses the applications, challenges, and future prospects of SAPs derived from lignocellulosic resources, focusing on the cellulose extraction process through fractionation and various modification and crosslinking techniques. The review underscores the potential of cellulose-based SAPs to meet environmental and market needs, offering a viable path forward in the quest for more sustainable materials.
Collapse
Affiliation(s)
- Fatemeh Dodangeh
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada
| | - Hafezeh Nabipour
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada.
| | - Chunbao Xu
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Paats JWD, Hamelmann NM, Paulusse JMJ. Dual-reactive single-chain polymer nanoparticles for orthogonal functionalization through active ester and click chemistry. J Control Release 2024; 373:117-127. [PMID: 38968970 DOI: 10.1016/j.jconrel.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/09/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Glucose has been extensively studied as a targeting ligand on nanoparticles for biomedical nanoparticles. A promising nanocarrier platform are single-chain polymer nanoparticles (SCNPs). SCNPs are well-defined 5-20 nm semi-flexible nano-objects, formed by intramolecularly crosslinked linear polymers. Functionality can be incorporated by introducing labile pentafluorophenyl (PFP) esters in the polymer backbone, which can be readily substituted by functional amine-ligands. However, not all ligands are compatible with PFP-chemistry, requiring different ligation strategies for increasing versatility of surface functionalization. Here, we combine active PFP-ester chemistry with copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) click chemistry to yield dual-reactive SCNPs. First, the SCNPs are functionalized with increasing amounts of 1-amino-3-butyne groups through PFP-chemistry, leading to a range of butyne-SCNPs with increasing terminal alkyne-density. Subsequently, 3-azido-propylglucose is conjugated through the glucose C1- or C6-position by CuAAC click chemistry, yielding two sets of glyco-SCNPs. Cellular uptake is evaluated in HeLa cancer cells, revealing increased uptake upon higher glucose-surface density, with no apparent positional dependance. The general conjugation strategy proposed here can be readily extended to incorporate a wide variety of functional molecules to create vast libraries of multifunctional SCNPs.
Collapse
Affiliation(s)
- Jan-Willem D Paats
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, the Netherlands
| | - Naomi M Hamelmann
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, the Netherlands
| | - Jos M J Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, the Netherlands.
| |
Collapse
|
10
|
dePolo G, Lesaine A, Faustini M, Laporte L, Thillaye du Boullay C, Barthel É, Hermans J, Iedema PD, de Viguerie L, Shull KR. Using the Quartz Crystal Microbalance to Monitor the Curing of Drying Oils. Anal Chem 2024; 96:10551-10558. [PMID: 38888386 DOI: 10.1021/acs.analchem.4c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Drying oils such as linseed oil form a polymer network through a complex free-radical polymerization process. We have studied polymerization in this challenging class of polymers using a quartz crystal microbalance (QCM). The QCM is able to measure the evolution of polymer mass and mechanical properties as the oil transitions from a liquid-like to a solid-like state. Measurements using bulk materials and thin films provide information about the initial polymerization phase as well as the evolution of the mass and mechanical properties over the first two years of cure. The temperature-dependent response of the cured linseed oil films was also measured. These results were combined with previously published results obtained from traditional dynamic mechanical analysis to give a unified picture of the properties of these materials across a very broad temperature range.
Collapse
Affiliation(s)
- Gwen dePolo
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Arnaud Lesaine
- Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), CNRS UMR 8220, Sorbonne Université, 75005 Paris, France
- Laboratoire Chimie de la Matière Condensée de Paris LCMCP, CNRS, Sorbonne Université, 4 pl. Jussieu, 75005 Paris, France
| | - Marco Faustini
- Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), CNRS UMR 8220, Sorbonne Université, 75005 Paris, France
- Laboratoire Chimie de la Matière Condensée de Paris LCMCP, CNRS, Sorbonne Université, 4 pl. Jussieu, 75005 Paris, France
| | - Lucie Laporte
- Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), CNRS UMR 8220, Sorbonne Université, 75005 Paris, France
| | - Côme Thillaye du Boullay
- Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), CNRS UMR 8220, Sorbonne Université, 75005 Paris, France
| | - Étienne Barthel
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, CNRS, Sorbonne Université, 75005 Paris, France
| | - Joen Hermans
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Conservation & Science, Rijksmuseum, Amsterdam, The Netherlands
- Conservation & Restoration, Amsterdam School of Heritage, Memory and Material Culture, University of Amsterdam, Amsterdam 1012 WP, The Netherlands
| | - Piet D Iedema
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Laurence de Viguerie
- Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), CNRS UMR 8220, Sorbonne Université, 75005 Paris, France
| | - Kenneth R Shull
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Liu P, Jimaja S, Immel S, Thomas C, Mayer M, Weder C, Bruns N. Mechanically triggered on-demand degradation of polymers synthesized by radical polymerizations. Nat Chem 2024; 16:1184-1192. [PMID: 38609710 PMCID: PMC11230896 DOI: 10.1038/s41557-024-01508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Polymers that degrade on demand have the potential to facilitate chemical recycling, reduce environmental pollution and are useful in implant immolation, drug delivery or as adhesives that debond on demand. However, polymers made by radical polymerization, which feature all carbon-bond backbones and constitute the most important class of polymers, have proven difficult to render degradable. Here we report cyclobutene-based monomers that can be co-polymerized with conventional monomers and impart the resulting polymers with mechanically triggered degradability. The cyclobutene residues act as mechanophores and can undergo a mechanically triggered ring-opening reaction, which causes a rearrangement that renders the polymer chains cleavable by hydrolysis under basic conditions. These cyclobutene-based monomers are broadly applicable in free radical and controlled radical polymerizations, introduce functional groups into the backbone of polymers and allow the mechanically gated degradation of high-molecular-weight materials or cross-linked polymer networks into low-molecular-weight species.
Collapse
Affiliation(s)
- Peng Liu
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland.
- Department of Materials, ETH Zürich, Zürich, Switzerland.
| | - Sètuhn Jimaja
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland
| | - Stefan Immel
- Department of Chemistry and Centre for Synthetic Biology, University of Darmstadt, Darmstadt, Germany
| | | | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland
| | - Nico Bruns
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland.
- Department of Chemistry and Centre for Synthetic Biology, University of Darmstadt, Darmstadt, Germany.
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
12
|
Kumankuma-Sarpong J, Chang C, Hao J, Li T, Deng X, Han C, Li B. Entanglement Added to Cross-Linked Chains Enables Tough Gelatin-Based Hydrogel for Zn Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403214. [PMID: 38748854 DOI: 10.1002/adma.202403214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/08/2024] [Indexed: 05/23/2024]
Abstract
Currently, it is still challenging to develop a hydrogel electrolyte matrix that can successfully achieve a harmonious combination of mechanical strength, ionic conductivity, and interfacial adaptability. Herein, a multi-networked hydrogel electrolyte with a high entanglement effect based on gelatin/oxidized dextran/methacrylic anhydride, denoted as ODGelMA is constructed. Attribute to the Schiff base network formulation of ─RC═N─, oxidized dextran integrated gelatin chains induce a dense hydrophilic conformation group. Furthermore, addition of methacrylic anhydride through a grafting process, the entangled hydrogel achieves impressive mechanical features (6.8 MPa tensile strength) and high ionic conductivity (3.68 mS cm-1 at 20 °C). The ODGelMA electrolyte regulates the zinc electrode by circumventing dendrite growth, and showcases an adaptable framework reservoir to accelerate the Zn2+ desolvation process. Benefiting from the entanglement effect, the Zn anode achieves an outstanding average Coulombic efficiency (CE) of 99.8% over 500 cycles and cycling stability of 900 h at 5 mA cm-2 and 2.5 mAh cm-2. The Zn||I2 full cell yields an ultra-long cycling stability of 10 000 cycles with a capacity retention of 92.4% at 5 C. Furthermore, a 60 mAh single-layer pouch cell maintains a stable work of 350 cycles.
Collapse
Affiliation(s)
- James Kumankuma-Sarpong
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Caiyun Chang
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jing Hao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Titi Li
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
| | - Xianming Deng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Cuiping Han
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Baohua Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
13
|
Sanders MA, Chittari SS, Foley JR, Swofford WM, Elder BM, Knight AS. Leveraging Triphenylphosphine-Containing Polymers to Explore Design Principles for Protein-Mimetic Catalysts. J Am Chem Soc 2024; 146:17404-17413. [PMID: 38863219 DOI: 10.1021/jacs.4c05040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Complex interactions between noncoordinating residues are significant yet commonly overlooked components of macromolecular catalyst function. While these interactions have been demonstrated to impact binding affinities and catalytic rates in metalloenzymes, the roles of similar structural elements in synthetic polymeric catalysts remain underexplored. Using a model Suzuki-Miyuara cross-coupling reaction, we performed a series of systematic studies to probe the interconnected effects of metal-ligand cross-links, electrostatic interactions, and local rigidity in polymer catalysts. To achieve this, a novel bifunctional triphenylphosphine acrylamide (BisTPPAm) monomer was synthesized and evaluated alongside an analogous monofunctional triphenylphosphine acrylamide (TPPAm). In model copolymer catalysts, increased initial reaction rates were observed for copolymers untethered by Pd complexation (BisTPPAm-containing) compared to Pd-cross-linked catalysts (TPPAm-containing). Further, incorporating local rigidity through secondary structure-like and electrostatic interactions revealed nonmonotonic relationships between composition and the reaction rate, demonstrating the potential for tunable behavior through secondary-sphere interactions. Finally, through rigorous cheminformatics featurization strategies and statistical modeling, we quantitated relationships between chemical descriptors of the substrate and reaction conditions on catalytic performance. Collectively, these results provide insights into relationships among the composition, structure, and function of protein-mimetic catalytic copolymers.
Collapse
Affiliation(s)
- Matthew A Sanders
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Supraja S Chittari
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jack R Foley
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William M Swofford
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bridgette M Elder
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
14
|
Perera GGG, Argenta DF, Caon T. The rheology of injectable hyaluronic acid hydrogels used as facial fillers: A review. Int J Biol Macromol 2024; 268:131880. [PMID: 38677707 DOI: 10.1016/j.ijbiomac.2024.131880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Injectable hyaluronic acid (HA) hydrogels have been popularized in facial aesthetics as they provide a long-lasting effect, low risk of complications, allergenicity tests are not required before application and can be easily removed by the action of hyaluronidases. On the other hand, the development of these systems requires in-depth studies of chemical mechanisms involved in hydrogel formation. Ideal dermal fillers should temporarily fluidize during extrusion through the needle and quickly recover their original shape after application. Hydrogels with more elastic properties, for example, are difficult to inject while viscous materials are too liquid. A balance between both properties should be achieved. Each region of the face requires products with distinct rheological properties. High G' dermal fillers are preferable for deeper wrinkles whereas the counterpart with lower values of G' is more indicated in superficial wrinkles or lip augmentation. Factors such as molecular weight and concentration of HA, pH, type and concentration of the crosslinking agent, particle size, crosslinking reaction time and crosslinking agent/polysaccharide ratio should be modulated to achieve specific rheological properties. In this review, the effect of each variable is discussed in detail to guide the rational development of new dermal fillers.
Collapse
Affiliation(s)
- Giordana Gabriela Guilande Perera
- Laboratory of Cosmetic & Pharmaceutical Technology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Debora Fretes Argenta
- Laboratory of Cosmetic & Pharmaceutical Technology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Thiago Caon
- Laboratory of Cosmetic & Pharmaceutical Technology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil.
| |
Collapse
|
15
|
Wesdemiotis C, Williams-Pavlantos KN, Keating AR, McGee AS, Bochenek C. Mass spectrometry of polymers: A tutorial review. MASS SPECTROMETRY REVIEWS 2024; 43:427-476. [PMID: 37070280 DOI: 10.1002/mas.21844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Ever since the inception of synthetic polymeric materials in the late 19th century, the number of studies on polymers as well as the complexity of their structures have only increased. The development and commercialization of new polymers with properties fine-tuned for specific technological, environmental, consumer, or biomedical applications requires powerful analytical techniques that permit the in-depth characterization of these materials. One such method with the ability to provide chemical composition and structure information with high sensitivity, selectivity, specificity, and speed is mass spectrometry (MS). This tutorial review presents and exemplifies the various MS techniques available for the elucidation of specific structural features in a synthetic polymer, including compositional complexity, primary structure, architecture, topology, and surface properties. Key to every MS analysis is sample conversion to gas-phase ions. This review describes the fundamentals of the most suitable ionization methods for synthetic materials and provides relevant sample preparation protocols. Most importantly, structural characterizations via one-step as well as hyphenated or multidimensional approaches are introduced and demonstrated with specific applications, including surface sensitive and imaging techniques. The aim of this tutorial review is to illustrate the capabilities of MS for the characterization of large, complex polymers and emphasize its potential as a powerful compositional and structural elucidation tool in polymer chemistry.
Collapse
Affiliation(s)
| | | | - Addie R Keating
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| | - Andrew S McGee
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| | - Calum Bochenek
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| |
Collapse
|
16
|
Blázquez-Martín A, Bonardd S, Verde-Sesto E, Arbe A, Pomposo JA. Trimethylsilanol Cleaves Stable Azaylides As Revealed by Unfolding of Robust "Staudinger" Single-Chain Nanoparticles. ACS POLYMERS AU 2024; 4:140-148. [PMID: 38618005 PMCID: PMC11010256 DOI: 10.1021/acspolymersau.3c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 04/16/2024]
Abstract
Herein, we disclose a unique and selective reagent for the cleavage of stable azaylides prepared by the nonhydrolysis Staudinger reaction, enabling the on-demand unfolding of robust single-chain nanoparticles (SCNPs). SCNPs with promising use in catalysis, nanomedicine, and sensing are obtained through intrachain folding of discrete synthetic polymer chains. The unfolding of SCNPs involving reversible interactions triggered by a variety of external stimuli (e.g., pH, temperature, light, and redox potential) or substances (e.g., competitive reagents, solvents, and anions) is well known. Conversely, methods for the unfolding (i.e., intrachain disassembly) of SCNPs with stronger covalent interactions are scarce. We show that trimethylsilanol (Me3SiOH) triggers the efficient unfolding of robust "Staudinger" SCNPs with stable azaylide (-N=P-) moieties as intrachain cross-linking units showing exceptional stability toward water, air, and CS2, a standard reagent for azaylides. As a consequence, Me3SiOH arises as a rare, exceptional, and valuable reagent for the cleavage of stable azaylides prepared by the nonhydrolysis Staudinger reaction.
Collapse
Affiliation(s)
- Agustín Blázquez-Martín
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
| | - Sebastián Bonardd
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología,University of the Basque
Country (UPV/EHU), P°
Manuel Lardizabal 3, E-20800 Donostia, Spain
| | - Ester Verde-Sesto
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE
− Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Arantxa Arbe
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
| | - José A. Pomposo
- Centro
de Física de Materiales (CSIC - UPV/EHU) − Materials
Physics Center MPC, P°
Manuel Lardizabal 5, E-20018 Donostia, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología,University of the Basque
Country (UPV/EHU), P°
Manuel Lardizabal 3, E-20800 Donostia, Spain
- IKERBASQUE
− Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| |
Collapse
|
17
|
Hilton EM, Jinks MA, Burnett AD, Warren NJ, Wilson AJ. Visible-Light Driven Control Over Triply and Quadruply Hydrogen-Bonded Supramolecular Assemblies. Chemistry 2024; 30:e202304033. [PMID: 38190370 PMCID: PMC11497329 DOI: 10.1002/chem.202304033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Supramolecular polymers offer tremendous potential to produce new "smart" materials, however, there remains a need to develop systems that are responsive to external stimuli. In this work, visible-light responsive hydrogen-bonded supramolecular polymers comprising photoresponsive supramolecular synthons (I-III) consisting of two hydrogen bonding motifs (HBMs) connected by a central ortho-tetrafluorinated azobenzene have been characterized by DOSY NMR and viscometry. Comparison of different hydrogen-bonding motifs reveals that assembly in the low and high concentration regimes is strongly influenced by the strength of association between the HBMs. I, Incorporating a triply hydrogen-bonded heterodimer, was found to exhibit concentration dependent switching between a monomeric pseudo-cycle and supramolecular oligomer through intermolecular hydrogen bonding interactions between the HBMs. II, Based on the same photoresponsive scaffold, and incorporating a quadruply hydrogen-bonded homodimer was found to form a supramolecular polymer which was dependent upon the ring-chain equilibrium and thus dependent upon both concentration and photochemical stimulus. Finally, III, incorporating a quadruply hydrogen-bonded heterodimer represents the first photoswitchable AB type hydrogen-bonded supramolecular polymer. Depending on the concentration and photostationary state, four different assemblies dominate for both monomers II and III, demonstrating the ability to control supramolecular assembly and physical properties triggered by light.
Collapse
Affiliation(s)
- Eleanor M. Hilton
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Chemical and Process EngineeringUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Michael A. Jinks
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of ChemistryUniversity of Birmingham, EdgbastonBirminghamB15 2TTUK
| | | | - Nicholas J. Warren
- School of Chemical and Process EngineeringUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Andrew J. Wilson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of ChemistryUniversity of Birmingham, EdgbastonBirminghamB15 2TTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
18
|
Chen J, Bhat V, Hawker CJ. High-Throughput Synthesis, Purification, and Application of Alkyne-Functionalized Discrete Oligomers. J Am Chem Soc 2024; 146:8650-8658. [PMID: 38489842 PMCID: PMC10979451 DOI: 10.1021/jacs.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024]
Abstract
The development of synthetic oligomers as discrete single molecular entities with accurate control over the number and nature of functional groups along the backbone has enabled a variety of new research opportunities. From fundamental studies of self-assembly in materials science to understanding efficacy and safety profiles in biology and pharmaceuticals, future directions are significantly impacted by the availability of discrete, multifunctional oligomers. However, the preparation of diverse libraries of discrete and stereospecific oligomers remains a significant challenge. We report a novel strategy for accelerating the synthesis and isolation of discrete oligomers in a high-throughput manner based on click chemistry and simplified bead-based purification. The resulting synthetic platform allows libraries of discrete polyether oligomers to be prepared and the impact of variables such as chain length, number, and nature of side chain functionalities and molecular dispersity on antibacterial behavior examined. Significantly, discrete oligomers were shown to exhibit enhanced activity with lower toxicity compared with traditional disperse samples. This work provides a practical and scalable methodology for nonexperts to prepare libraries of multifunctional discrete oligomers and demonstrates the advantages of discrete materials in biological applications.
Collapse
Affiliation(s)
- Junfeng Chen
- Materials
Department, Materials Research Laboratory, and Department of Chemistry
and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Vittal Bhat
- Materials
Department, Materials Research Laboratory, and Department of Chemistry
and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Craig J. Hawker
- Materials
Department, Materials Research Laboratory, and Department of Chemistry
and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
19
|
Zeng Y, Xu T, Chen W, Fang J, Chen D. Quasi-Chromophores Segregated by Single-Chain Nanoparticles of Fluorinated Zwitterionic Random Copolymers Showing Remarkably Enhanced Fluorescence Emission Capable of Fluorescent Cell Imaging. Macromol Rapid Commun 2024:e2400029. [PMID: 38477018 DOI: 10.1002/marc.202400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Organic and polymer fluorescent nanomaterials are a frontier research focus. Here in this work, a series of fluorinated zwitterionic random copolymers end-attached with a quasi-chromophoric group of pyrene or tetraphenylethylene (TPE) are well synthesized via atom transfer radical polymerization with activators regenerated by electron transfer (ARGET ATRP). Those random copolymers with total degree of polymerization 100 or 200 are able to produce fluorescent single-chain nanoparticles (SCNPs) through intra-chain self-folding assembly with quite uniform diameters in the range of 10-20 nm as characterized by dynamic light scattering and transmission electron microscopy. By virtue of the segregation or confinement effect, both SCNPs functionalized with pyrene or TPE group are capable of emitting fluorescence, with pyrene tethered SCNPs exhibiting stronger fluorescence emission reaching the highest quantum yield ≈20%. Moreover, such kind of fluorescent SCNPs manifest low cytotoxicity and good cell imaging performance for Hela cells. The creation of fluorescent SCNPs through covalently attached one quasi-chromophore to the end of one fluorinated zwitterionic random copolymer provides an alternative strategy for preparing polymeric luminescence nanomaterials, promisingly serving as a new type of fluorescent nanoprobes for biological imaging applications.
Collapse
Affiliation(s)
- Yongming Zeng
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tianchi Xu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weizhi Chen
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianglin Fang
- Center for Materials Analysis, Nanjing University, Nanjing, 210093, China
| | - Dongzhong Chen
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Collaborative Innovation Center of Chemistry for Life Sciences, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
20
|
Woźniak-Budych M, Staszak K, Wieszczycka K, Bajek A, Staszak M, Roszkowski S, Giamberini M, Tylkowski B. Microplastic label in microencapsulation field - Consequence of shell material selection. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133000. [PMID: 38029585 DOI: 10.1016/j.jhazmat.2023.133000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023]
Abstract
Plastics make our lives easier in many ways; however, if they are not appropriately disposed of or recycled, they may end up in the environment where they stay for centuries and degrade into smaller and smaller pieces, called microplastics. Each year, approximately 42000 tonnes of microplastics end up in the environment when products containing them are used. According to the European Chemicals Agency (ECHA) one of the significant sources of microplastics are microcapsules formulated in home care and consumer care products. As part of the EU's plastics strategy, ECHA has proposed new regulations to ban intentionally added microplastics starting from 2022. It means that the current cross-linked microcapsules widely applied in consumer goods must be transformed into biodegradable shell capsules. The aim of this review is to provide the readers with a comprehensive and in-depth understanding of recent developments in the art of microencapsulation. Thus, considering the chemical structure of the capsule shell's materials, we discuss whether microcapsules should also be categorized as microplastic and therefore, feared and avoided or whether they should be used despite the persisting concern.
Collapse
Affiliation(s)
- Marta Woźniak-Budych
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Anna Bajek
- Tissue Engineering Department, Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Karlowicza str 24, 85-092 Bydgoszcz, Poland
| | - Maciej Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Szymon Roszkowski
- Department of Geriatrics, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Jagiellonska 13/15, 85-067 Bydgoszcz, Poland
| | - Marta Giamberini
- Department of Chemical Engineering (DEQ), Universitat Rovira i Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Tecnologia Química, Marcel·lí Domingo 2, 43007 Tarragona, Spain; Department of Clinical Neuropsychology, Faculty of Health Science, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Sklodowskiej Curie 9, 85-094 Bydgoszcz, Poland.
| |
Collapse
|
21
|
Zhang L, Wang H, Qu X. Biosystem-Inspired Engineering of Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211147. [PMID: 36622946 DOI: 10.1002/adma.202211147] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Nanozymes with intrinsic enzyme-mimicking activities have shown great potential to become surrogates of natural enzymes in many fields by virtue of their advantages of high catalytic stability, ease of functionalization, and low cost. However, due to the lack of predictable descriptors, most of the nanozymes reported in the past have been obtained mainly through trial-and-error strategies, and the catalytic efficacy, substrate specificity, as well as practical application effect under physiological conditions, are far inferior to that of natural enzymes. To optimize the catalytic efficacies and functions of nanozymes in biomedical settings, recent studies have introduced biosystem-inspired strategies into nanozyme design. In this review, recent advances in the engineering of biosystem-inspired nanozymes by leveraging the refined catalytic structure of natural enzymes, simulating the behavior changes of natural enzymes in the catalytic process, and mimicking the specific biological processes or living organisms, are introduced. Furthermore, the currently involved biomedical applications of biosystem-inspired nanozymes are summarized. More importantly, the current opportunities and challenges of the design and application of biosystem-inspired nanozymes are discussed. It is hoped that the studies of nanozymes based on bioinspired strategies will be beneficial for constructing the new generation of nanozymes and broadening their biomedical applications.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
22
|
Mundsinger K, Izuagbe A, Tuten BT, Roesky PW, Barner-Kowollik C. Single Chain Nanoparticles in Catalysis. Angew Chem Int Ed Engl 2024; 63:e202311734. [PMID: 37852937 DOI: 10.1002/anie.202311734] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Over the last six decades folded polymer chains-so-called Single Chain Nanoparticles (SCNPs)-have evolved from the mere concept of intramolecularly crosslinked polymer chains to tailored nanoreactors, underpinned by a plethora of techniques and chemistries to tailor and analyze their morphology and function. These monomolecular polymer entities hold critical promise in a wide range of applications. Herein, we highlight the exciting progress that has been made in the field of catalytically active SCNPs in recent years.
Collapse
Affiliation(s)
- Kai Mundsinger
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 4000, Brisbane QLD, Australia
| | - Aidan Izuagbe
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 4000, Brisbane QLD, Australia
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse15, 76131, Karlsruhe, Germany
| | - Bryan T Tuten
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 4000, Brisbane QLD, Australia
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse15, 76131, Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 4000, Brisbane QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
23
|
Chełminiak-Dudkiewicz D, Smolarkiewicz-Wyczachowski A, Ziegler-Borowska M, Kaczmarek H. Photochemical stability of chitosan films doped with cannabis oil. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112850. [PMID: 38277961 DOI: 10.1016/j.jphotobiol.2024.112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
The effect of UV radiation from three different sources on chitosan (CS) films containing the addition of 10% by weight of cannabis oil was investigated. Cannabis oil (CBD) alone exposed to UV is unstable, but its photostability significantly increases in the chitosan matrix. The course of photochemical reactions, studied by FTIR spectroscopy, is slow and inefficient in chitosan with CBD, even under high-energy UV sources. The research also included chitosan films with CBD cross-linked with dialdehyde starch (DAS). Using AFM microscopy and contact angle measurements, the morphology and surface properties of prepared chitosan films with CBD were investigated, respectively. It was found that CBD embedded in CS is characterized by the best photostability under the influence of an LED emitting long-wave radiation. Using a monochromatic and polychromatic UV lamp (HPK and UV-C) emitting high-energy radiation, gradual degradation accompanied by oxidation was observed, both in the CS chains and in the CBD additive. Additionally, changes in surface properties are observed during UV irradiation. It was concluded that CS protects CBD against photodegradation, and a further improvement in photochemical stability is achieved after system cross-linking with DAS.
Collapse
Affiliation(s)
| | | | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Halina Kaczmarek
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
24
|
Baluchi A, Homaei A. Immobilization of l-asparaginase on chitosan nanoparticles for the purpose of long-term application. Int J Biol Macromol 2024; 257:128655. [PMID: 38065449 DOI: 10.1016/j.ijbiomac.2023.128655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Asparaginase holds significant commercial value as an enzyme in the food and pharmaceutical industries. This study examined the optimum and practical use of the l-asparaginase derived from Pseudomonas aeruginosa HR03. Specifically, the study focused on the effectiveness of the stabilized enzyme when applied to chitosan nanoparticles. The structure, size, and morphology of chitosan nanoparticles were evaluated in relation to the immobilization procedure. This assessment involved the use of several analytical techniques, including FT-IR, DLS, SEM, TEM, and EDS analysis. Subsequently, the durability of the enzyme that has been stabilized was assessed by evaluating its effectiveness under extreme temperatures of 60 and 70 °C, as well as at pH values of 3 and 12. The findings indicate that incorporating chitosan nanoparticles led to enhanced immobilization of the l-asparaginase enzyme. This improvement was observed in terms of long-term stability, stability under crucial temperature and pH conditions, as well as thermal stability. In addition, the optimum temperature increased from 40 to 50 °C, and the optimum pH increased from 8 to 9. Enzyme immobilization led to an increase in Km and a decrease in kcat compared to its free counterpart. Because of its enhanced long-term stability, l-asparaginase immobilization on chitosan nanoparticles may be a potential choice for use in industries that rely on l-asparaginase enzymes, particularly the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Ayeshe Baluchi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran.
| |
Collapse
|
25
|
Schwans CL, Clark TD, O’Neil GW. Hydroxyl-Directed Regio- and Diastereoselective Allylic Sulfone Reductions with [Sm(H 2O) n]I 2. J Org Chem 2024; 89:692-700. [PMID: 38091512 PMCID: PMC10777405 DOI: 10.1021/acs.joc.3c01647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024]
Abstract
Allylic 1,2- and 1,3-hydroxy phenyl sulfones undergo regioselective and diastereoselective desulfonylation with double bond migration upon treatment with [Sm(H2O)n]I2. Selectivity in these reactions is thought to arise from the formation of a chelated organosamarium intermediate followed by intramolecular protonation by samarium-bound water, which is supported by observed diastereoselectivity and stereospecificity trends along with deuterium labeling experiments. The reaction was then featured in the synthesis of the phenolic fragment of the thailandamide natural products.
Collapse
Affiliation(s)
- Cody L. Schwans
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| | - Trevor D. Clark
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| | - Gregory W. O’Neil
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| |
Collapse
|
26
|
Patel DK, Jung E, Priya S, Won SY, Han SS. Recent advances in biopolymer-based hydrogels and their potential biomedical applications. Carbohydr Polym 2024; 323:121408. [PMID: 37940291 DOI: 10.1016/j.carbpol.2023.121408] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023]
Abstract
Hydrogels are three-dimensional networks of polymer chains containing large amounts of water in their structure. Hydrogels have received significant attention in biomedical applications owing to their attractive physicochemical properties, including flexibility, softness, biodegradability, and biocompatibility. Different natural and synthetic polymers have been intensely explored in developing hydrogels for the desired applications. Biopolymers-based hydrogels have advantages over synthetic polymers regarding improved cellular activity and weak immune response. These properties can be further improved by grafting with other polymers or adding nanomaterials, and they structurally mimic the living tissue environments, which opens their broad applicability. The hydrogels can be physically or chemically cross-linked depending on the structure. The use of different biopolymers-based hydrogels in biomedical applications has been reviewed and discussed earlier. However, no report is still available to comprehensively introduce the synthesis, advantages, disadvantages, and biomedical applications of biopolymers-based hydrogels from the material point of view. Herein, we systematically overview different synthesis methods of hydrogels and provide a holistic approach to biopolymers-based hydrogels for biomedical applications, especially in bone regeneration, wound healing, drug delivery, bioimaging, and therapy. The current challenges and prospects of biopolymers-based hydrogels are highlighted rationally, giving an insight into the progress of these hydrogels and their practical applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Eunseo Jung
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sahariya Priya
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
27
|
Gao B, Zhang C, Dong R, Chen Y, Zhang S. Facile fabrication of reusable starch sponge with adjustable crosslinked networks for efficient nest-trap and in situ photodegrade methylene blue. Carbohydr Polym 2023; 322:121342. [PMID: 37839847 DOI: 10.1016/j.carbpol.2023.121342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/08/2023] [Accepted: 08/27/2023] [Indexed: 10/17/2023]
Abstract
The fabrication of reusable natural polysaccharide sponges with nanoscale dispersed photocatalysts to achieve robust photocatalytic efficiency is desirable yet challenging. Herein, inspired by the nesting behavior when fishing, we designed reusable starch sponge with chemically anchored nano-ZnO into carboxylated starch matrix by thermoplastic interfacial reactions and solvent replacement for absorbing and photodegrading methylene blue (MB) in situ. The plasticization and interfacial reactions promoted a simultaneous increase in the reactivity of the starch hydroxyl/carboxyl groups and the specific surface area of ZnO. Meanwhile, the crosslinked networks of starch sponge could be adjusted by varying the ZnO and carboxylic groups contents. The results of photodegradation experiments revealed the recyclable closed-loop process of attraction-trapping-photodegradation of MB was successfully realized, achieving the effect of killing three birds with one stone. The reusable starch sponge with homogeneous dispersion of nano-ZnO by constructing three-dimensional porous channels possessed the high enrichment capacity and the remarkable photocatalysis efficiency with 150 mg/L ZnO. Under UV irradiation, the starch sponge degraded 97 % of MB with 1.67 × 10-3 min-1 photodegradation rate constant even after five cycles, which exceeded most existing photocatalytic systems. Overall, the reusable starch sponge with adjustable structure provided new insights for multifunctional bio-based photocatalyst loading systems.
Collapse
Affiliation(s)
- Bingbing Gao
- School of Mechanical and Automotive Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Congyun Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Ran Dong
- School of Mechanical and Automotive Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Yukun Chen
- School of Mechanical and Automotive Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Shuidong Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China; Guangdong Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
28
|
Blazquez-Martín A, Verde-Sesto E, Arbe A, Pomposo JA. Metamorphosis of a Commodity Plastic like PVC to Efficient Catalytic Single-Chain Nanoparticles. Angew Chem Int Ed Engl 2023; 62:e202313502. [PMID: 37792399 DOI: 10.1002/anie.202313502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/05/2023]
Abstract
We perform the conversion of a commodity plastic of common use in pipes, window frames, medical devices, flexible hoses, etc. like polyvinyl chloride (PVC) to single-chain nanoparticles (SCNPs). SCNPs are versatile, protein-mimetic soft nano-objects of growing interest for catalysis, sensing, and nanomedicine, among other uses. We demonstrate that the metamorphosis process -as induced through metal-free click chemistry- leads to well-defined, uniform SCNPs that are stable during storage in the solid state for months. All the conversion process (from PVC isolation to PVC-SCNPs synthesis) can be run in a green, dipolar aprotic solvent and involving, when required, a simple mixture of ethanol and water (1/1 vol.) as non-solvent. The resulting PVC-SCNPs are investigated as recyclable, metalloenzyme-mimetic catalysts for several representative Cu(II)-catalyzed organic reactions. The method could be valid for the metamorphosis and valorization of other commodity plastics in which it is feasible to install azide functional groups in their linear polymer chains.
Collapse
Affiliation(s)
- Agustín Blazquez-Martín
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P° Manuel de Lardizabal 5, E-20018, Donostia, Spain
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P° Manuel de Lardizabal 5, E-20018, Donostia, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, E-48009, Bilbao, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P° Manuel de Lardizabal 5, E-20018, Donostia, Spain
| | - José A Pomposo
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P° Manuel de Lardizabal 5, E-20018, Donostia, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, E-48009, Bilbao, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología. University of the Basque Country (UPV/EHU), PO Box 1072, E-20800, Donostia, Spain
| |
Collapse
|
29
|
Chen T, Qiu M, Peng Y, Yi C, Xu Z. Colloidal Polymer-Templated Formation of Inorganic Nanocrystals and their Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303282. [PMID: 37409416 DOI: 10.1002/smll.202303282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/10/2023] [Indexed: 07/07/2023]
Abstract
Inorganic nanocrystals possess unique physicochemical properties compared to their bulk counterparts. Stabilizing agents are commonly used for the preparation of inorganic nanocrystals with controllable properties. Particularly, colloidal polymers have emerged as general and robust templates for in situ formation and confinement of inorganic nanocrystals. In addition to templating and stabilizing inorganic nanocrystals, colloidal polymers can tailor their physicochemical properties such as size, shape, structure, composition, surface chemistry, and so on. By incorporating functional groups into colloidal polymers, desired functions can be integrated with inorganic nanocrystals, advancing their potential applications. Here, recent advances in the colloidal polymer-templated formation of inorganic nanocrystals are reviewed. Seven types of colloidal polymers, including dendrimer, polymer micelle, stare-like block polymer, bottlebrush polymer, spherical polyelectrolyte brush, microgel, and single-chain nanoparticle, have been extensively applied for the synthesis of inorganic nanocrystals. Different strategies for the development of these colloidal polymer-templated inorganic nanocrystals are summarized. Then, their emerging applications in the fields of catalysis, biomedicine, solar cells, sensing, light-emitting diodes, and lithium-ion batteries are highlighted. Last, the remaining issues and future directions are discussed. This review will stimulate the development and application of colloidal polymer-templated inorganic nanocrystals.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
30
|
Wang Z, Cui F, Sui Y, Yan J. Radical chemistry in polymer science: an overview and recent advances. Beilstein J Org Chem 2023; 19:1580-1603. [PMID: 37915554 PMCID: PMC10616707 DOI: 10.3762/bjoc.19.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Radical chemistry is one of the most important methods used in modern polymer science and industry. Over the past century, new knowledge on radical chemistry has both promoted and been generated from the emergence of polymer synthesis and modification techniques. In this review, we discuss radical chemistry in polymer science from four interconnected aspects. We begin with radical polymerization, the most employed technique for industrial production of polymeric materials, and other polymer synthesis involving a radical process. Post-polymerization modification, including polymer crosslinking and polymer surface modification, is the key process that introduces functionality and practicality to polymeric materials. Radical depolymerization, an efficient approach to destroy polymers, finds applications in two distinct fields, semiconductor industry and environmental protection. Polymer chemistry has largely diverged from organic chemistry with the fine division of modern science but polymer chemists constantly acquire new inspirations from organic chemists. Dialogues on radical chemistry between the two communities will deepen the understanding of the two fields and benefit the humanity.
Collapse
Affiliation(s)
- Zixiao Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Feichen Cui
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Yang Sui
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Jiajun Yan
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| |
Collapse
|
31
|
Nguyen HD, Jana RD, Campbell DT, Tran TV, Do LH. Lewis acid-driven self-assembly of diiridium macrocyclic catalysts imparts substrate selectivity and glutathione tolerance. Chem Sci 2023; 14:10264-10272. [PMID: 37772092 PMCID: PMC10530542 DOI: 10.1039/d3sc02836d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/02/2023] [Indexed: 09/30/2023] Open
Abstract
Molecular inorganic catalysts (MICs) tend to have solvent-exposed metal centers that lack substrate specificity and are easily inhibited by biological nucleophiles. Unfortunately, these limitations exclude many MICs from being considered for in vivo applications. To overcome this challenge, a strategy to spatially confine MICs using Lewis acid-driven self-assembly is presented. It was shown that in the presence of external cations (e.g., Li+, Na+, K+, or Cs+) or phosphate buffered saline, diiridium macrocycles spontaneously formed supramolecular iridium-cation species, which were characterized by X-ray crystallography and dynamic light scattering. These nanoassemblies selectively reduced sterically unhindered C[double bond, length as m-dash]O groups via transfer hydrogenation and tolerated up to 1 mM of glutathione. In contrast, when non-coordinating tetraalkylammonium cations were used, the diiridium catalysts were unable to form higher-ordered structures and discriminate between different aldehyde substrates. This work suggests that in situ coordination self-assembly could be a versatile approach to enable or enhance the integration of MICs with biological hosts.
Collapse
Affiliation(s)
- Hieu D Nguyen
- Department of Chemistry, University of Houston 4800 Calhoun Road Houston Texas USA
| | - Rahul D Jana
- Department of Chemistry, University of Houston 4800 Calhoun Road Houston Texas USA
| | - Dylan T Campbell
- Department of Chemistry, University of Houston 4800 Calhoun Road Houston Texas USA
| | - Thi V Tran
- Department of Chemistry, University of Houston 4800 Calhoun Road Houston Texas USA
| | - Loi H Do
- Department of Chemistry, University of Houston 4800 Calhoun Road Houston Texas USA
| |
Collapse
|
32
|
Guo Y, Liu Y, Zhao X, Zhao J, Wang Y, Zhang X, Guo Z, Yan X. Synergistic Covalent-and-Supramolecular Polymers with an Interwoven Topology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25161-25172. [PMID: 35894294 DOI: 10.1021/acsami.2c10404] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Network topologies, especially some high-order topologies, are able to furnish cross-linked polymer materials with enhanced properties without altering their chemical composition. However, the fabrication of such topologically intriguing architectures at the macromolecular level and in-depth insights into their structure-property relationship remain a significant challenge. Herein, we relied on synergistic covalent-and-supramolecular polymers (CSPs) as a platform to prepare a range of polymer networks with an interwoven topology. Specifically, through the sequential supramolecular self-assemblies, the covalent polymers (CPs) and metallosupramolecular polymers (MSPs) could be interwoven in our CSPs by [2]pseudorotaxane cross-links. As a result, the obtained CSPs possessed a topological network that could not only promote the synergistic effect between CPs and MSPs to afford mechanically robust yet dynamic materials but also vest polymers with some functions, as manifested by force-induced hierarchical dissociations of supramolecular interactions and superior thermomechanical stability compared to our previously reported CSP systems. Furthermore, our CSPs exhibited tunable mechanical performance toward multiple stimuli including K+ and PPh3, demonstrating abundant stimuli-responsive properties. We hope that these findings could provide novel opportunities toward achieving topological structures at the macromolecular level and also motivate further explorations of polymeric materials via the way of controlling their topological structures.
Collapse
Affiliation(s)
- Yuchen Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xinyang Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhewen Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
33
|
Bernal-Chávez SA, Romero-Montero A, Hernández-Parra H, Peña-Corona SI, Del Prado-Audelo ML, Alcalá-Alcalá S, Cortés H, Kiyekbayeva L, Sharifi-Rad J, Leyva-Gómez G. Enhancing chemical and physical stability of pharmaceuticals using freeze-thaw method: challenges and opportunities for process optimization through quality by design approach. J Biol Eng 2023; 17:35. [PMID: 37221599 DOI: 10.1186/s13036-023-00353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
The freeze-thaw (F/T) method is commonly employed during the processing and handling of drug substances to enhance their chemical and physical stability and obtain pharmaceutical applications such as hydrogels, emulsions, and nanosystems (e.g., supramolecular complexes of cyclodextrins and liposomes). Using F/T in manufacturing hydrogels successfully prevents the need for toxic cross-linking agents; moreover, their use promotes a concentrated product and better stability in emulsions. However, the use of F/T in these applications is limited by their characteristics (e.g., porosity, flexibility, swelling capacity, drug loading, and drug release capacity), which depend on the optimization of process conditions and the kind and ratio of polymers, temperature, time, and the number of cycles that involve high physical stress that could change properties associated to quality attributes. Therefore, is necessary the optimization of F/T conditions and variables. The current research regarding F/T is focused on enhancing the formulations, the process, and the use of this method in pharmaceutical, clinical, and biological areas. The present review aims to discuss different studies related to the impact and effects of the F/T process on the physical, mechanical, and chemical properties (porosity, swelling capacity) of diverse pharmaceutical applications with an emphasis on their formulation properties, the method and variables used, as well as challenges and opportunities in developing. Finally, we review the experimental approach for choosing the standard variables studied in the F/T method applying the systematic methodology of quality by design.
Collapse
Affiliation(s)
- Sergio A Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - María L Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Ciudad de México, Ciudad de México, Mexico
| | - Sergio Alcalá-Alcalá
- Laboratorio de Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62209, México
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
- Faculties of Pharmacy, Kazakh-Russian Medical University, Public Health and Nursing, Almaty, Kazakhstan
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
34
|
Sanders MA, Chittari SS, Sherman N, Foley JR, Knight AS. Versatile Triphenylphosphine-Containing Polymeric Catalysts and Elucidation of Structure-Function Relationships. J Am Chem Soc 2023; 145:9686-9692. [PMID: 37079910 DOI: 10.1021/jacs.3c01092] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Synthetic polymers are a modular solution to bridging the two most common classes of catalysts: proteins and small molecules. Polymers offer the synthetic versatility of small-molecule catalysts while simultaneously having the ability to construct microenvironments mimicking those of natural proteins. We synthesized a panel of polymeric catalysts containing a novel triphenylphosphine acrylamide monomer and investigated how their properties impact the rate of a model Suzuki-Miyaura cross-coupling reaction. Systematic variation of polymer properties, such as the molecular weight, functional density, and comonomer identity, led to tunable reaction rates and solvent compatibility, including full conversion in an aqueous medium. Studies with bulkier substrates revealed connections between polymer parameters and reaction conditions that were further elucidated with a regression analysis. Some connections were substrate-specific, highlighting the value of the rapidly tunable polymer catalyst. Collectively, these results aid in building structure-function relationships to guide the development of polymer catalysts with tunable substrates and environmental compatibility.
Collapse
Affiliation(s)
- Matthew A Sanders
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Supraja S Chittari
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nicole Sherman
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jack R Foley
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
35
|
Tian Y, Yang L, Peng X, Qi W, Wang M. A covalent crosslinking strategy to construct a robust peptide-based artificial esterase. SOFT MATTER 2023; 19:3458-3463. [PMID: 37129250 DOI: 10.1039/d3sm00284e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Peptide-based artificial enzymes derived from the supramolecular assembly of short peptides have attracted growing attention in recent years. However, the stability of these artificial enzymes is still a problem since their noncovalent supramolecular structure is quite sensitive and frail under environmental conditions. In this study, we reported a covalent crosslinking strategy for the fabrication of a robust peptide-based artificial esterase. Inspired by the di-tyrosine bonds in many natural structural proteins, multi-tyrosines were designed into a peptide sequence with histidine as the catalytic residue for the ester hydrolysis reaction. Upon the photo-induced oxidation reaction, the short peptide YYHYY rapidly transferred into nanoparticle-shaped aggregates (CL-YYHYY) and displayed improved esterase-like catalytic activity than some previously reported noncovalent-based artificial esterases. Impressively, CL-YYHYY showed outstanding reusability and superior stability under high temperature, strong acid and alkaline and organic solvent conditions. This study provides a promising approach to improving the catalytic activity and stability of peptide-based artificial enzymes.
Collapse
Affiliation(s)
- Yi Tian
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Lijun Yang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Xin Peng
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China.
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
- The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China
| | - Mengfan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China.
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China.
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, P. R. China
| |
Collapse
|
36
|
Blázquez-Martín A, Ruiz-Bardillo A, Verde-Sesto E, Iturrospe A, Arbe A, Pomposo JA. Toward Long-Term-Dispersible, Metal-Free Single-Chain Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1394. [PMID: 37110979 PMCID: PMC10143805 DOI: 10.3390/nano13081394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
We report herein on a new platform for synthesizing stable, inert, and dispersible metal-free single-chain nanoparticles (SCNPs) via intramolecular metal-traceless azide-alkyne click chemistry. It is well known that SCNPs synthesized via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) often experience metal-induced aggregation issues during storage. Moreover, the presence of metal traces limits its use in a number of potential applications. To address these problems, we selected a bifunctional cross-linker molecule, sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DIBOD). DIBOD has two highly strained alkyne bonds that allow for the synthesis of metal-free SCNPs. We demonstrate the utility of this new approach by synthesizing metal-free polystyrene (PS)-SCNPs without significant aggregation issues during storage, as demonstrated by small-angle X-ray scattering (SAXS) experiments. Notably, this method paves the way for the synthesis of long-term-dispersible, metal-free SCNPs from potentially any polymer precursor decorated with azide functional groups.
Collapse
Affiliation(s)
- Agustín Blázquez-Martín
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), 20018 Donostia-San Sebastián, Spain (A.A.)
| | - Ainara Ruiz-Bardillo
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), 20018 Donostia-San Sebastián, Spain (A.A.)
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), 20018 Donostia-San Sebastián, Spain (A.A.)
- IKERBASQUE-Basque Foundation for Science, 48009 Bilbao, Spain
| | - Amaia Iturrospe
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), 20018 Donostia-San Sebastián, Spain (A.A.)
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), 20018 Donostia-San Sebastián, Spain (A.A.)
| | - José A. Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), 20018 Donostia-San Sebastián, Spain (A.A.)
- IKERBASQUE-Basque Foundation for Science, 48009 Bilbao, Spain
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
37
|
Almeida GHDR, Iglesia RP, Rinaldi JDC, Murai MK, Calomeno CVAQ, da Silva Junior LN, Horvath-Pereira BDO, Pinho LBM, Miglino MA, Carreira ACO. Current Trends on Bioengineering Approaches for Ovarian Microenvironment Reconstruction. TISSUE ENGINEERING. PART B, REVIEWS 2023. [PMID: 36355603 DOI: 10.1089/ten.teb.2022.0171] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ovarian tissue has a unique microarchitecture and a complex cellular and molecular dynamics that are essential for follicular survival and development. Due to this great complexity, several factors may lead to ovarian insufficiency, and therefore to systemic metabolic disorders and female infertility. Techniques currently used in the reproductive clinic such as oocyte cryopreservation or even ovarian tissue transplant, although effective, have several limitations, which impair their wide application. In this scenario, mimetic ovarian tissue reconstruction comes as an innovative alternative to develop new methodologies for germ cells preservation and ovarian functions restoration. The ovarian extracellular matrix (ECM) is crucial for oocyte viability maintenance, once it acts actively in folliculogenesis. One of the key components of ovarian bioengineering is biomaterials application that mimics ECM and provides conditions for cell anchorage, proliferation, and differentiation. Therefore, this review aims at describing ovarian tissue engineering approaches and listing the main limitations of current methods for preservation and reestablishment of ovarian fertility. In addition, we describe the main elements that structure this study field, highlighting the main advances and the challenges to overcome to develop innovative methodologies to be applied in reproductive medicine. Impact Statement This review presents the main advances in the application of tissue bioengineering in the ovarian tissue reconstruction to develop innovative solutions for ovarian fertility reestablishment.
Collapse
Affiliation(s)
| | - Rebeca Piatniczka Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Mikaelly Kiemy Murai
- Department of Morphological Sciences, State University of Maringa, Maringá, Brazil
| | | | | | | | - Letícia Beatriz Mazo Pinho
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,Center of Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| |
Collapse
|
38
|
O'Halloran S, Pandit A, Heise A, Kellett A. Two-Photon Polymerization: Fundamentals, Materials, and Chemical Modification Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204072. [PMID: 36585380 PMCID: PMC9982557 DOI: 10.1002/advs.202204072] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Two-photon polymerization (TPP) has become a premier state-of-the-art method for microscale fabrication of bespoke polymeric devices and surfaces. With applications ranging from the production of optical, drug delivery, tissue engineering, and microfluidic devices, TPP has grown immensely in the past two decades. Significantly, the field has expanded from standard acrylate- and epoxy-based photoresists to custom formulated monomers designed to change the hydrophilicity, surface chemistry, mechanical properties, and more of the resulting structures. This review explains the essentials of TPP, from its initial conception through to standard operating principles and advanced chemical modification strategies for TPP materials. At the outset, the fundamental chemistries of radical and cationic polymerization are described, along with strategies used to tailor mechanical and functional properties. This review then describes TPP systems and introduces an array of commonly used photoresists including hard polyacrylic resins, soft hydrogel acrylic esters, epoxides, and organic/inorganic hybrid materials. Specific examples of each class-including chemically modified photoresists-are described to inform the understanding of their applications to the fields of tissue-engineering scaffolds, micromedical, optical, and drug delivery devices.
Collapse
Affiliation(s)
- Seán O'Halloran
- CÚRAMthe SFI Research Centre for Medical DevicesSchool of Chemical SciencesDublin City UniversityGlasnevinDublin 9Ireland
| | - Abhay Pandit
- CÚRAMthe SFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91 W2TYIreland
| | - Andreas Heise
- RCSIUniversity of Medicine and Health SciencesDepartment of Chemistry123 St. Stephens GreenDublinDublin 2Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI University of Medicine and Health Sciences and Trinity College DublinDublinDublin 2Ireland
- CÚRAMthe SFI Research Centre for Medical DevicesRCSI University of Medicine and Health SciencesDublin and National University of Ireland GalwayGalwayH91 W2TYIreland
| | - Andrew Kellett
- CÚRAMthe SFI Research Centre for Medical DevicesSchool of Chemical SciencesDublin City UniversityGlasnevinDublin 9Ireland
- SSPCthe SFI Research Centre for PharmaceuticalsDublin City UniversityGlasnevinDublinDublin 9Ireland
| |
Collapse
|
39
|
Hu C, Song Y, Zhang Y, He S, Liu X, Yang X, Gong T, Huang Y, Gao H. Sequential delivery of PD-1/PD-L1 blockade peptide and IDO inhibitor for immunosuppressive microenvironment remodeling via an MMP-2 responsive dual-targeting liposome. Acta Pharm Sin B 2023; 13:2176-2187. [DOI: 10.1016/j.apsb.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/24/2022] [Accepted: 01/20/2023] [Indexed: 02/23/2023] Open
|
40
|
Wang S, Song Y, Ma J, Chen X, Guan Y, Peng H, Yan G, Tang R. Dynamic crosslinked polymeric nano-prodrugs for highly selective synergistic chemotherapy. Asian J Pharm Sci 2022; 17:880-891. [PMID: 36600901 PMCID: PMC9800956 DOI: 10.1016/j.ajps.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 01/07/2023] Open
Abstract
To achieve highly selective synergistic chemotherapy attractive for clinical translation, the precise polymeric nano-prodrugs (PPD-NPs) were successfully constructed via the facile crosslinking reaction between pH-sensitive poly(ortho ester)s and reduction-sensitive small molecule synergistic prodrug (Pt(IV)-1). PPD-NPs endowed the defined structure and high drug loading of cisplatin and demethylcantharidin (DMC). Moreover, PPD-NPs exhibited steady long-term storage and circulation via the crosslinked structure, suitable negative potentials and low critical micelle concentration (CMC), improved selective tumour accumulation and cellular internalization via dynamic size transition and surficial amino protonation at tumoural extracellular pH, promoted efficient disintegration and drug release at tumoural intracellular pH/glutathione, and enhanced cytotoxicity via the synergistic effect between cisplatin and DMC with the feed ratio of 1:2, achieving significant tumour suppression while decreasing the side effects. Thus, the dynamic crosslinked polymeric nano-prodrugs exhibit tremendous potential for clinically targeted synergistic cancer therapy.
Collapse
Affiliation(s)
- Shi Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yining Song
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, China
| | - Jingge Ma
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Xinyang Chen
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yuanhui Guan
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Hui Peng
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Guoqing Yan
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China,Corresponding authors.
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China,Corresponding authors.
| |
Collapse
|
41
|
TG-FTIR-QMS analysis of more environmentally friendly poly(geranyl methacrylate)-co-poly(cyclohexyl methacrylate) copolymers. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Kędzierska M, Jamroży M, Drabczyk A, Kudłacik-Kramarczyk S, Bańkosz M, Gruca M, Potemski P, Tyliszczak B. Analysis of the Influence of Both the Average Molecular Weight and the Content of Crosslinking Agent on Physicochemical Properties of PVP-Based Hydrogels Developed as Innovative Dressings. Int J Mol Sci 2022; 23:ijms231911618. [PMID: 36232921 PMCID: PMC9569959 DOI: 10.3390/ijms231911618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogels belong to the group of polymers with a three-dimensional crosslinked structure, and their crosslinking density strongly affects their physicochemical properties. Here, we verified the impact of both the average molecular weight of crosslinking agents used during the photopolymerization of hydrogels and that of their content on selected properties of these materials. First, PVP-based hydrogels modified with Aloe vera juice and L-ascorbic acid were prepared using UV radiation. Next, their surface morphology was characterized via optical scanning electron microscopy, whereas their chemical structure was investigated by FT-IR spectroscopy. Moreover, we verified the tendency of the hydrogels to degrade in selected physiological liquids, as well as their tensile strength, percentage of elongation, and swelling capability. We found that the more crosslinking agent in the hydrogel matrix, the higher its tensile strength and the less elongation. The hydrogels showed the highest stability during incubation in SBF and 2% hemoglobin solution. A sharp decrease in the pH of distilled water observed during the incubation of the hydrogels was probably due to the release of Aloe vera juice from the hydrogel matrices. This was additionally confirmed by the decrease in the intensity of the absorption band derived from the polysaccharides included in this additive and by the decrease in the swelling ratio after 48 h. Importantly, all hydrogels demonstrated swelling properties, and it was proven that the higher content of the crosslinking agent in hydrogels, the lower their swelling ability.
Collapse
Affiliation(s)
- Magdalena Kędzierska
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 93-513 Lodz, Poland
| | - Mateusz Jamroży
- Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
- Correspondence: (M.J.); (S.K.-K.)
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
- Correspondence: (M.J.); (S.K.-K.)
| | - Magdalena Bańkosz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Mateusz Gruca
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Piotr Potemski
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 93-513 Lodz, Poland
| | - Bożena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
43
|
Tut TA, Cesur S, Ilhan E, Sahin A, Yildirim OS, Gunduz O. Gentamicin-loaded polyvinyl alcohol/whey protein isolate/hydroxyapatite 3D composite scaffolds with drug delivery capability for bone tissue engineering applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Stars, combs and bottlebrushes of elastic single-chain nanoparticles. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Progress in polymer single-chain based hybrid nanoparticles. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Maruthupandy M, Muneeswaran T, Chackaravarthi G, Vennila T, Anand M, Cho WS, Quero F. Synthesis of chitosan/SnO2 nanocomposites by chemical precipitation for enhanced visible light photocatalytic degradation efficiency of congo red and rhodamine-B dye molecules. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Esen C, Kumru B. Photocatalyst-Incorporated Cross-Linked Porous Polymer Networks. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cansu Esen
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Baris Kumru
- Aerospace Structures and Materials Department, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands
| |
Collapse
|
48
|
Jin J, Zhou Y, Luo Z. Kinetic Modeling of Simultaneous Polycondensation and Free Radical Polymerization for
PU
/
PMMA IPN. AIChE J 2022. [DOI: 10.1002/aic.17838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jie Jin
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai P. R. China
| | - Yin‐Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai P. R. China
| | - Zheng‐Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai P. R. China
| |
Collapse
|
49
|
Affiliation(s)
- Yue Shao
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yilan Ye
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dayin Sun
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
50
|
Shao Y, Wang Y, Tang Z, Wen Z, Chang C, Wang C, Sun D, Ye Y, Qiu D, Ke Y, Liu F, Yang Z. Scalable Synthesis of Photoluminescent Single‐Chain Nanoparticles by Electrostatic‐Mediated Intramolecular Crosslinking. Angew Chem Int Ed Engl 2022; 61:e202205183. [DOI: 10.1002/anie.202205183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yue Shao
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Yong‐Lei Wang
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
- Department of Electrochemical Energy Storage Helmholtz-Zentrum Berlin für Materialien und Energie 14109 Berlin Germany
| | - Zian Tang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Zhendong Wen
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Chiawei Chang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Chunyu Wang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Dayin Sun
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Yilan Ye
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences (BNLMS) Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100180 China
| | - Yubin Ke
- Spallation Neutron Source Science Center Dongguan 523803 China
| | - Feng Liu
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|