1
|
Roy SS, Bagri S, Vinayagamurthy S, Sengupta A, Then CR, Kumar R, Sridharan S, Chowdhury S. Artificially inserted strong promoter containing multiple G-quadruplexes induces long-range chromatin modification. eLife 2024; 13:RP96216. [PMID: 39158543 PMCID: PMC11333042 DOI: 10.7554/elife.96216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Although the role of G-quadruplex (G4) DNA structures has been suggested in chromosomal looping this was not tested directly. Here, to test causal function, an array of G4s, or control sequence that does not form G4s, were inserted within chromatin in cells. In vivo G4 formation of the inserted G4 sequence array, and not the control sequence, was confirmed using G4-selective antibody. Compared to the control insert, we observed a remarkable increase in the number of 3D chromatin looping interactions from the inserted G4 array. This was evident within the immediate topologically associated domain (TAD) and throughout the genome. Locally, recruitment of enhancer histone marks and the transcriptional coactivator p300/Acetylated-p300 increased in the G4-array, but not in the control insertion. Resulting promoter-enhancer interactions and gene activation were clear up to 5 Mb away from the insertion site. Together, these show the causal role of G4s in enhancer function and long-range chromatin interactions. Mechanisms of 3D topology are primarily based on DNA-bound architectural proteins that induce/stabilize long-range interactions. Involvement of the underlying intrinsic DNA sequence/structure in 3D looping shown here therefore throws new light on how long-range chromosomal interactions might be induced or maintained.
Collapse
Affiliation(s)
- Shuvra Shekhar Roy
- CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sulochana Bagri
- CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Soujanya Vinayagamurthy
- CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Avik Sengupta
- Department of Biotechnology, Indian Institute of Technology HyderabadHyderabadIndia
| | - Claudia Regina Then
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
| | - Rahul Kumar
- Department of Biotechnology, Indian Institute of Technology HyderabadHyderabadIndia
| | - Sriram Sridharan
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
| | - Shantanu Chowdhury
- CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
2
|
Iachettini S, Biroccio A, Zizza P. Therapeutic Use of G4-Ligands in Cancer: State-of-the-Art and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:771. [PMID: 38931438 PMCID: PMC11206494 DOI: 10.3390/ph17060771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
G-quadruplexes (G4s) are guanine-rich non-canonical secondary structures of nucleic acids that were identified in vitro almost half a century ago. Starting from the early 1980s, these structures were also observed in eukaryotic cells, first at the telomeric level and later in regulatory regions of cancer-related genes, in regulatory RNAs and within specific cell compartments such as lysosomes, mitochondria, and ribosomes. Because of the involvement of these structures in a large number of biological processes and in the pathogenesis of several diseases, including cancer, the interest in G4 targeting has exponentially increased in the last few years, and a great number of novel G4 ligands have been developed. Notably, G4 ligands represent a large family of heterogeneous molecules that can exert their functions by recognizing, binding, and stabilizing G4 structures in multiple ways. Regarding anti-cancer activity, the efficacy of G4 ligands was originally attributed to the capability of these molecules to inhibit the activity of telomerase, an enzyme that elongates telomeres and promotes endless replication in cancer cells. Thereafter, novel mechanisms through which G4 ligands exert their antitumoral activities have been defined, including the induction of DNA damage, control of gene expression, and regulation of metabolic pathways, among others. Here, we provided a perspective on the structure and function of G4 ligands with particular emphasis on their potential role as antitumoral agents. In particular, we critically examined the problems associated with the clinical translation of these molecules, trying to highlight the main aspects that should be taken into account during the phases of drug design and development. Indeed, taking advantage of the successes and failures, and the more recent technological progresses in the field, it would be possible to hypothesize the development of these molecules in the future that would represent a valid option for those cancers still missing effective therapies.
Collapse
Affiliation(s)
| | | | - Pasquale Zizza
- Translational Oncology Research Unit, IRCCS—Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Roma, Italy; (S.I.); (A.B.)
| |
Collapse
|
3
|
De Rache A, Marquevielle J, Bouaziz S, Vialet B, Andreola ML, Mergny JL, Amrane S. Structure of a DNA G-quadruplex that Modulates SP1 Binding Sites Architecture in HIV-1 Promoter. J Mol Biol 2024; 436:168359. [PMID: 37952768 DOI: 10.1016/j.jmb.2023.168359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Nucleic acid sequences containing guanine tracts are able to form non-canonical DNA or RNA structures known as G-quadruplexes (or G4s). These structures, based on the stacking of G-tetrads, are involved in various biological processes such as gene expression regulation. Here, we investigated a G4 forming sequence, HIVpro2, derived from the HIV-1 promoter. This motif is located 60 nucleotides upstream of the proviral Transcription Starting Site (TSS) and overlaps with two SP1 transcription factor binding sites. Using NMR spectroscopy, we determined that HIVpro2 forms a hybrid type G4 structure with a core that is interrupted by a single nucleotide bulge. An additional reverse-Hoogsteen AT base pair is stacked on top of the tetrad. SP1 transcription factor is known to regulate transcription activity of many genes through the recognition of Guanine-rich duplex motifs. Here, the formation of HIVpro2 G4 may modulate SP1 binding sites architecture by competing with the formation of the canonical duplex structure. Such DNA structural switch potentially participates to the regulation of viral transcription and may also interfere with HIV-1 reactivation or viral latency.
Collapse
Affiliation(s)
- Aurore De Rache
- Université de Bordeaux, Bordeaux, France; ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France; Department of Chemistry, U. Namur, 61 rue de Bruxelles, B5000 Namur, Belgium
| | - Julien Marquevielle
- Université de Bordeaux, Bordeaux, France; ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France
| | | | - Brune Vialet
- Université de Bordeaux, Bordeaux, France; ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France
| | - Marie-Line Andreola
- Université de Bordeaux, Bordeaux, France; MFP Laboratory, UMR5234, CNRS, Bordeaux, France
| | - Jean-Louis Mergny
- Laboratoire d'Optique & Biosciences, École Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Samir Amrane
- Université de Bordeaux, Bordeaux, France; ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France.
| |
Collapse
|
4
|
Galceran F, Digirolamo FA, Rengifo M, Reigada C, Saye M, Maciel BJ, Estecho IG, Errasti AE, Pereira CA, Miranda MR. Identifying inhibitors of Trypanosoma cruzi nucleoside diphosphate kinase 1 as potential repurposed drugs for Chagas' disease. Biochem Pharmacol 2023; 216:115766. [PMID: 37634596 DOI: 10.1016/j.bcp.2023.115766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Trypanosoma cruzi is the causative agent of Chagas' disease, an endemic and neglected disease. The treatment is limited to only two drugs, benznidazole (BZL) and nifurtimox (NFX), introduced more than fifty years ago and no new advances have been made since then. Nucleoside diphosphate kinases (NDPK) are key metabolic enzymes which have gained interest as drug targets of pathogen organisms. Taking advantage of the computer-assisted drug repurposing approaches, in the present work we initiate a search of potential T. cruzi nucleoside diphosphate kinase 1 (TcNDPK1) inhibitors over an ∼ 12,000 compound structures database to find drugs targeted to this enzyme with trypanocidal activity. Four medicines were selected and evaluated in vitro, ketorolac (KET, an anti-inflamatory), dutasteride (DUT, used to treat benign prostatic hyperplasia), nebivolol and telmisartan (NEB and TEL, used to treat high blood pressure). The four compounds were weak inhibitors and presented different trypanocidal effect on epimastigotes, trypomastigotes and intracellular stages. NEB and TEL were the most active drugs with increased effect on intracellular stages, (IC50 = 2.25 µM and 13.21 µM respectively), and selectivity indexes of 13.01 and 8.59 respectively, showing comparable effect to BZL, the first line drug for Chagas' disease treatment. In addition, both presented positive interactions when combined with BZL. Finally, transgenic epimastigotes with increased expression of TcNDPK1 were more resistant to TEL and NEB, suggesting that TcNDPK1 is at least one of the molecular targets. In view of the results, NEB and TEL could be repurposed medicines for Chagas' disease therapy.
Collapse
Affiliation(s)
- Facundo Galceran
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Fabio A Digirolamo
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Marcos Rengifo
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Chantal Reigada
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Melisa Saye
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Belen J Maciel
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Ivana G Estecho
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea E Errasti
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudio A Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Mariana R Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Pandey A, Roy S, Srivatsan SG. Probing the Competition between Duplex, G-Quadruplex and i-Motif Structures of the Oncogenic c-Myc DNA Promoter Region. Chem Asian J 2023; 18:e202300510. [PMID: 37541298 DOI: 10.1002/asia.202300510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/09/2023] [Indexed: 08/06/2023]
Abstract
Development of probe systems that provide unique spectral signatures for duplex, G-quadruplex (GQ) and i-motif (iM) structures is very important to understand the relative propensity of a G-rich-C-rich promoter region to form these structures. Here, we devise a platform using a combination of two environment-sensitive nucleoside analogs namely, 5-fluorobenzofuran-modified 2'-deoxyuridine (FBF-dU) and 5-fluoro-2'-deoxyuridine (F-dU) to study the structures adopted by a promoter region of the c-Myc oncogene. FBF-dU serves as a dual-purpose probe containing a fluorescent and 19 F NMR label. When incorporated into the C-rich sequence, it reports the formation of different iMs via changes in its fluorescence properties and 19 F signal. F-dU incorporated into the G-rich ON reports the formation of a GQ structure whose 19 F signal is clearly different from the signals obtained for iMs. Rewardingly, the labeled ONs when mixed with respective complementary strands allows us to determine the relative population of different structures formed by the c-Myc promoter by the virtue of the probe's ability to produce distinct and resolved 19 F signatures for different structures. Our results indicate that at physiological pH and temperature the c-Myc promoter forms duplex, random coil and GQ structures, and does not form an iM. Whereas at acidic pH, the mixture largely forms iM and GQ structures. Taken together, our system will complement existing tools and provide unprecedented insights on the population equilibrium and dynamics of nucleic acid structures under different conditions.
Collapse
Affiliation(s)
- Akanksha Pandey
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sarupa Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
6
|
Liu Y, Li J, Zhang Y, Wang Y, Chen J, Bian Y, Xia Y, Yang MH, Zheng K, Wang KB, Kong LY. Structure of the Major G-Quadruplex in the Human EGFR Oncogene Promoter Adopts a Unique Folding Topology with a Distinctive Snap-Back Loop. J Am Chem Soc 2023; 145:16228-16237. [PMID: 37460135 DOI: 10.1021/jacs.3c05214] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting therapy has been demonstrated to have limited efficacy or utility in glioblastoma, colorectal cancer, and hepatocellular carcinoma. Therefore, there is a high demand for the development of new targets to inhibit EGFR signaling. Herein, we found that the EGFR oncogene proximal promoter sequence forms a unique type of snap-back loop containing G-quadruplex (G4), which can be targeted by small molecules. For the first time, we determined the NMR solution structure of this snap-back EGFR-G4, a three-tetrad-core, parallel-stranded G4 with naturally occurring flanking residues at both the 5'-end and 3'-end. The snap-back loop located at the 3'-end region forms a stable capping structure through two stacked G-triads connected by multiple potential hydrogen bonds. Notably, the flanking residues are consistently absent in reported snap-back G4s, raising the question of whether such structures truly exist under in vivo conditions. The resolved EGFR-G4 structure has eliminated the doubt and showed distinct structural features that distinguish it from the previously reported snap-back G4s, which lack the flanking residues. Furthermore, we found that the snap-back EGFR-G4 structure is highly stable and can form on an elongated DNA template to inhibit DNA polymerase. The unprecedented high-resolution EGFR-G4 structure has thus contributed a promising molecular target for developing alternative EGFR signaling inhibitors in cancer therapeutics. Meanwhile, the two stacked triads may provide an attractive site for specific small-molecule targeting.
Collapse
Affiliation(s)
- Yushuang Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Jinzhu Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yongqiang Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yingying Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Juannan Chen
- School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yuting Bian
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yuanzheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Ming-Hua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Kewei Zheng
- School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Kai-Bo Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| |
Collapse
|
7
|
He C, Peng J, Li Z, Yang Q, Zhang Y, Luo X, Liu Z, Feng G, Fang J. Engineering a Red Fluorescent Protein Chromophore for Visualization of RNA G-Quadruplexes. Biochemistry 2023. [PMID: 37376793 DOI: 10.1021/acs.biochem.3c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Synthetic red fluorescent protein (RFP) chromophores have emerged as valuable tools for biological imaging and therapeutic applications, but their application in the visualization of endogenous RNA G-quadruplexes (G4s) in living cells has been rarely reported so far. Here, by integrating the group of the excellent G4 dye ThT, we modulate RFP chromophores to create a novel fluorescent probe DEBIT with red emission. DEBIT selectively recognizes the G4 structure with the advantage of strong binding affinity, high selectivity, and excellent photostability. Using DEBIT as a fluorescent indicator, the real-time monitoring of RNA G4 in biological systems can be achieved. In summary, our work expands the application of synthetic RFP chromophores and provides an essential dye category to the classical G4 probes.
Collapse
Affiliation(s)
- Chang He
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jiasheng Peng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zheng Li
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qinghui Yang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ying Zhang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xingyu Luo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Zekai Liu
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Guangfu Feng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Fang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
8
|
Guan L, Zhou Y, Li X, Mao Y, Li A, Fu Y, Liu W, Dong S, Liang Z, Zhang Y, Zhao Q, Zhang L. ON-OFF Fluorescent Cyanine Dye Based on a Benzothiophenyl Rotor Enables Selective Illumination of G-Quadruplexes in Mitochondria. Anal Chem 2023. [PMID: 37290004 DOI: 10.1021/acs.analchem.3c01153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conventional cyanine dyes exist as "always-on" fluorescent probes leading to inevitable background signals which often limit their performance and scope of applications. To develop specific fluorescent probes with high sensitivity and robust OFF/ON switching for targeting G4s, we introduced aromatic heterocycles through conjugation with polymethine chains to construct a rotor-π system. Here, a universal strategy is presented to synthesize pentamethine cyanines with different aromatic heterocycle substituents on the meso-polymethine chain. In these probes, SN-Cy5-S is self-quenched in aqueous solution due to H-aggregation. The structure indicates that SN-Cy5-S with a flexible meso-benzothiophenyl rotor conjugated to the cyanine backbone matches adaptively with G-tetrad planes, enhancing π-π stacking and resulting in triggered fluorescence. This allows recognition of G-quadruplexes due to the synergy of disaggregation-induced emission (DIE) and inhibited twisted intramolecular charge-transfer effects. This combination leads to a robust lighting-up fluorescence response for c-myc G4 with superior fluorescence enhancement (98-fold), allowing for a low detection limit of 1.51 nM, which is much more sensitive than the previously reported DIE-based G4 probes (22-83.5 nM). In addition, the superior imaging properties and rapid internalization time (5 min) in mitochondria allow SN-Cy5-S to also have a high potential for mitochondrially targeting anti-cancer therapy.
Collapse
Affiliation(s)
- Li Guan
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yanyan Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongbao Mao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Anyang Li
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yile Fu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wen Liu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sheying Dong
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
9
|
Sharma N, Madan B, Khan MS, Sandhu KS, Raghuram N. Weighted gene co-expression network analysis of nitrogen (N)-responsive genes and the putative role of G-quadruplexes in N use efficiency (NUE) in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1135675. [PMID: 37351205 PMCID: PMC10282765 DOI: 10.3389/fpls.2023.1135675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/10/2023] [Indexed: 06/24/2023]
Abstract
Rice is an important target to improve crop nitrogen (N) use efficiency (NUE), and the identification and shortlisting of the candidate genes are still in progress. We analyzed data from 16 published N-responsive transcriptomes/microarrays to identify, eight datasets that contained the maximum number of 3020 common genes, referred to as N-responsive genes. These include different classes of transcription factors, transporters, miRNA targets, kinases and events of post-translational modifications. A Weighted gene co-expression network analysis (WGCNA) with all the 3020 N-responsive genes revealed 15 co-expression modules and their annotated biological roles. Protein-protein interaction network analysis of the main module revealed the hub genes and their functional annotation revealed their involvement in the ubiquitin process. Further, the occurrences of G-quadruplex sequences were examined, which are known to play important roles in epigenetic regulation but are hitherto unknown in N-response/NUE. Out of the 3020 N-responsive genes studied, 2298 contained G-quadruplex sequences. We compared these N-responsive genes containing G-quadruplex sequences with the 3601 genes we previously identified as NUE-related (for being both N-responsive and yield-associated). This analysis revealed 389 (17%) NUE-related genes containing G-quadruplex sequences. These genes may be involved in the epigenetic regulation of NUE, while the rest of the 83% (1811) genes may regulate NUE through genetic mechanisms and/or other epigenetic means besides G-quadruplexes. A few potentially important genes/processes identified as associated with NUE were experimentally validated in a pair of rice genotypes contrasting for NUE. The results from the WGCNA and G4 sequence analysis of N-responsive genes helped identify and shortlist six genes as candidates to improve NUE. Further, the hitherto unavailable segregation of genetic and epigenetic gene targets could aid in informed interventions through genetic and epigenetic means of crop improvement.
Collapse
Affiliation(s)
- Narendra Sharma
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Bhumika Madan
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - M. Suhail Khan
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Kuljeet S. Sandhu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) - Mohali, Nagar, Punjab, India
| | - Nandula Raghuram
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| |
Collapse
|
10
|
Xiao Y, Yi H, Zhu J, Chen S, Wang G, Liao Y, Lei Y, Chen L, Zhang X, Ye F. Evaluation of DNA adduct damage using G-quadruplex-based DNAzyme. Bioact Mater 2023; 23:45-52. [DOI: 10.1016/j.bioactmat.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/15/2022] [Accepted: 10/02/2022] [Indexed: 11/11/2022] Open
|
11
|
Roy SS, Sharma S, Rizvi ZA, Sinha D, Gupta D, Rophina M, Sehgal P, Sadhu S, Tripathy MR, Samal S, Maiti S, Scaria V, Sivasubbu S, Awasthi A, Harshan KH, Jain S, Chowdhury S. G4-binding drugs, chlorpromazine and prochlorperazine, repurposed against COVID-19 infection in hamsters. Front Mol Biosci 2023; 10:1133123. [PMID: 37006620 PMCID: PMC10061221 DOI: 10.3389/fmolb.2023.1133123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has caused millions of infections and deaths worldwide. Limited treatment options and the threat from emerging variants underline the need for novel and widely accessible therapeutics. G-quadruplexes (G4s) are nucleic acid secondary structures known to affect many cellular processes including viral replication and transcription. We identified heretofore not reported G4s with remarkably low mutation frequency across >5 million SARS-CoV-2 genomes. The G4 structure was targeted using FDA-approved drugs that can bind G4s - Chlorpromazine (CPZ) and Prochlorperazine (PCZ). We found significant inhibition in lung pathology and lung viral load of SARS-CoV-2 challenged hamsters when treated with CPZ or PCZ that was comparable to the widely used antiviral drug Remdesivir. In support, in vitro G4 binding, inhibition of reverse transcription from RNA isolated from COVID-infected humans, and attenuated viral replication and infectivity in Vero cell cultures were clear in case of both CPZ and PCZ. Apart from the wide accessibility of CPZ/PCZ, targeting relatively invariant nucleic acid structures poses an attractive strategy against viruses like SARS-CoV-2, which spread fast and accumulate mutations quickly.
Collapse
Affiliation(s)
- Shuvra Shekhar Roy
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shalu Sharma
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Zaigham Abbas Rizvi
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Dipanjali Sinha
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Divya Gupta
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Mercy Rophina
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Paras Sehgal
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srikanth Sadhu
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Manas Ranjan Tripathy
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Sweety Samal
- Translational Health Science and Technology Institute, Faridabad, 411008, India
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-National Chemical Laboratory, Pune, 121001, India
| | - Vinod Scaria
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amit Awasthi
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Krishnan H. Harshan
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Sanjeev Jain
- Molecular Genetics Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Shantanu Chowdhury
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- *Correspondence: Shantanu Chowdhury,
| |
Collapse
|
12
|
Huang XZ, Pang MJ, Li JY, Chen HY, Sun JX, Song YX, Ni HJ, Ye SY, Bai S, Li TH, Wang XY, Lu JY, Yang JJ, Sun X, Mills JC, Miao ZF, Wang ZN. Single-cell sequencing of ascites fluid illustrates heterogeneity and therapy-induced evolution during gastric cancer peritoneal metastasis. Nat Commun 2023; 14:822. [PMID: 36788228 PMCID: PMC9929081 DOI: 10.1038/s41467-023-36310-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Peritoneal metastasis is the leading cause of death for gastrointestinal cancers. The native and therapy-induced ascites ecosystems are not fully understood. Here, we characterize single-cell transcriptomes of 191,987 ascites cancer/immune cells from 35 patients with/without gastric cancer peritoneal metastasis (GCPM). During GCPM progression, an increase is seen of monocyte-like dendritic cells (DCs) that are pro-angiogenic with reduced antigen-presenting capacity and correlate with poor gastric cancer (GC) prognosis. We also describe the evolution of monocyte-like DCs and regulatory and proliferative T cells following therapy. Moreover, we track GC evolution, identifying high-plasticity GC clusters that exhibit a propensity to shift to a high-proliferative phenotype. Transitions occur via the recently described, autophagy-dependent plasticity program, paligenosis. Two autophagy-related genes (MARCKS and TXNIP) mark high-plasticity GC with poorer prognosis, and autophagy inhibitors induce apoptosis in patient-derived organoids. Our findings provide insights into the developmental trajectories of cancer/immune cells underlying GCPM progression and therapy resistance.
Collapse
Affiliation(s)
- Xuan-Zhang Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Min-Jiao Pang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jia-Yi Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Han-Yu Chen
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yong-Xi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Hong-Jie Ni
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Shi-Yu Ye
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Shi Bai
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Teng-Hui Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xin-Yu Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China.,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jing-Yuan Lu
- Eight-year system, Institute of innovation, China Medical University, Shenyang, Liaoning province, Shenyang, Liaoning, China
| | - Jin-Jia Yang
- Eight-year system, Institute of innovation, China Medical University, Shenyang, Liaoning province, Shenyang, Liaoning, China
| | - Xun Sun
- Department of Immunology, China Medical University, Shenyang, Liaoning, China
| | - Jason C Mills
- Section of Gastroenterology & Hepatology, Department of Medicine, Baylor College of Medicine, 535E Anderson-Jones Building, One Baylor Plaza, Houston, TX, USA. .,Department of Pathology & Immunology, Baylor College of Medicine, 535E Anderson-Jones Building, One Baylor Plaza, Houston, TX, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, 535E Anderson-Jones Building, One Baylor Plaza, Houston, TX, USA.
| | - Zhi-Feng Miao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China. .,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China. .,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China. .,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning, China. .,Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
13
|
Wang X, Chen S, Zhao Z, Chen F, Huang Y, Guo X, Lei L, Wang W, Luo Y, Yu H, Wang J. Genomic G-quadruplex folding triggers a cytokine-mediated inflammatory feedback loop to aggravate inflammatory diseases. iScience 2022; 25:105312. [PMID: 36304116 PMCID: PMC9593248 DOI: 10.1016/j.isci.2022.105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/14/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
DNA G-quadruplex is a non-canonical secondary structure that could epigenetically regulate gene expression. To investigate the regulating role of G-quadruplex, we devised an integrating method to perform the algorithm profiling and genome-wide analysis for the dynamic change of genomic G-quadruplex and RNA profiles in rat nucleus pulposus cells by inducing G-quadruplex folding with multiple stabilizers. A group of genes potentially regulated by G-quadruplex and involved in the inflammation process has been identified. We found that G-quadruplex folding triggers inflammation response by upregulating inflammatory cytokines, which could promote G-quadruplex folding in a manner of positive feedback loop. Moreover, we confirmed that G-quadruplex is a marker indicating elevated inflammatory status and G-quadruplex folding facilitates the development of inflammatory diseases using in vivo intervertebral disc degeneration models. The crosstalk between G-quadruplex and inflammatory cytokines plays a vital role in regulating inflammation-derived diseases, which may provide new insights into the blocking target.
Collapse
Affiliation(s)
- Xiaolin Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shunlun Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.,Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhuoyang Zhao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.,Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Fan Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yuming Huang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xingyu Guo
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Linchuan Lei
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Wantao Wang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yanxin Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huichuan Yu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianru Wang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
14
|
Khatik SY, Srivatsan SG. Environment-Sensitive Nucleoside Probe Unravels the Complex Structural Dynamics of i-Motif DNAs. Bioconjug Chem 2022; 33:1515-1526. [PMID: 35819865 DOI: 10.1021/acs.bioconjchem.2c00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although evidence for the existence and biological role of i-motif (iM) DNA structures in cells is emerging, probing their structural polymorphism and identifying physiologically active conformations using currently available tools remain a major challenge. Here, we describe the development of an innovative device to investigate the conformation equilibrium of different iMs formed by C-rich telomeric repeat and oncogenic B-raf promoter sequences using a new conformation-sensitive dual-purpose nucleoside probe. The nucleoside is composed of a trifluoromethyl-benzofuran-2-yl moiety at the C5 position of 2'-deoxyuridine, which functions as a responsive fluorescent and 19F NMR probe. While the fluorescent component is useful in monitoring and estimating the folding process, the 19F label provides spectral signatures for various iMs, thereby enabling a systematic analysis of their complex population equilibrium under different conditions (e.g., pH, temperature, metal ions, and cell lysate). Distinct 19F signals exhibited by the iMs formed by the human telomeric repeat helped in calculating their relative population. A battery of fluorescence and 19F NMR studies using native and mutated B-raf oligonucleotides gave valuable insights into the iM structure landscape and its dependence on environmental conditions and also helped in predicting the structure of the major iM conformation. Overall, our findings indicate that the probe is highly suitable for studying complex nucleic acid systems.
Collapse
Affiliation(s)
- Saddam Y Khatik
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
15
|
Lu X, Wu X, Kuang S, Lei C, Nie Z. Visualization of Deep Tissue G-quadruplexes with a Novel Large Stokes-Shifted Red Fluorescent Benzothiazole Derivative. Anal Chem 2022; 94:10283-10290. [PMID: 35776781 DOI: 10.1021/acs.analchem.2c02049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-quadruplex (G4) is a noncanonical nucleic acid secondary structure that has implications for various physiological and pathological processes and is thus essential to exploring new approaches to G4 detection in live cells. However, the deficiency of molecular imaging tools makes it challenging to visualize the G4 in ex vivo tissue samples. In this study, we established a G4 probe design strategy and presented a red fluorescent benzothiazole derivative, ThT-NA, to detect and image G4 structures in living cells and tissue samples. By enhancing the electron-donating group of thioflavin T (ThT) and optimizing molecular structure, ThT-NA shows excellent photophysical properties, including red emission (610 nm), a large Stokes shift (>100 nm), high sensitivity selectivity toward G4s (1600-fold fluorescence turn-on ratio) and robust two-photon fluorescence emission. Therefore, these features enable ThT-NA to reveal the endogenous RNA G4 distribution in living cells and differentiate the cell cycle by monitoring the changes of RNA G4 folding. Significantly, to the best of our knowledge, ThT-NA is the first benzothiazole-derived G4 probe that has been developed for imaging G4s in ex vivo cancer tissue samples by two-photon microscopy techniques.
Collapse
Affiliation(s)
- Xu Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Xianhua Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Shi Kuang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
16
|
Mendes E, Bahls B, Aljnadi IM, Paulo A. Indoloquinolines as scaffolds for the design of potent G-quadruplex ligands. Bioorg Med Chem Lett 2022; 72:128862. [PMID: 35716866 DOI: 10.1016/j.bmcl.2022.128862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
Indoloquinolines are natural alkaloids with known affinity to DNA and antiproliferative activity against bacteria, parasites, and cancer cells. Due to their non-chiral skeleton, their total synthesis is easy to achieve and throughout the years, many derivatives have been studied for their potential as drugs. Herein we review the indoloquinolines and bioisosters that have been designed, synthesised, and evaluated for their selective binding to G-quadruplex nucleic acid structures, as well as the reported effects in cancer cells. The data collected so far strongly suggest that indoloquinolines are good scaffolds for the development of drugs and probes targeting the G-quadruplex structures, but they also show that this scaffold is still underexplored.
Collapse
Affiliation(s)
- Eduarda Mendes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Bárbara Bahls
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Israa M Aljnadi
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Alexandra Paulo
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal.
| |
Collapse
|
17
|
Emerging mechanisms of telomerase reactivation in cancer. Trends Cancer 2022; 8:632-641. [PMID: 35568649 PMCID: PMC7614490 DOI: 10.1016/j.trecan.2022.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
Mutations in the promoter of human telomerase reverse transcriptase (hTERT) result in hyperactivation of hTERT. Notably, all mutations are G>A transitions, frequently found in a wide range of cancer types, and causally associated with cancer progression. Initially, the mutations were understood to reactivate hTERT by generating novel E26 transformation-specific (ETS) binding sites. Recent work reveals the role of DNA secondary structure G-quadruplexes, telomere binding factor(s), and chromatin looping in hTERT regulation. Here, we discuss these emerging findings in relation to the clinically significant promoter mutations to provide a broader understanding of the context-dependent outcomes that result in hTERT activation in normal and pathogenic conditions.
Collapse
|
18
|
Wang KB, Liu Y, Li Y, Dickerhoff J, Li J, Yang MH, Yang D, Kong LY. Oxidative Damage Induces a Vacancy G-Quadruplex That Binds Guanine Metabolites: Solution Structure of a cGMP Fill-in Vacancy G-Quadruplex in the Oxidized BLM Gene Promoter. J Am Chem Soc 2022; 144:6361-6372. [PMID: 35352895 PMCID: PMC9904417 DOI: 10.1021/jacs.2c00435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Guanine (G)-oxidation to 8-oxo-7,8-dihydroguanine (OG) by reactive oxygen species in genomic DNA has been implicated with various human diseases. G-quadruplex (G4)-forming sequences in gene promoters are highly susceptible to G-oxidation, which can subsequently cause gene activation. However, the underlying G4 structural changes that result from OG modifications remain poorly understood. Herein, we investigate the effect of G-oxidation on the BLM gene promoter G4. For the first time, we show that OG can induce a G-vacancy-containing G4 (vG4), which can be filled in and stabilized by guanine metabolites and derivatives. We determined the NMR solution structure of the cGMP-fill-in oxidized BLM promoter vG4. This is the first complex structure of an OG-induced vG4 from a human gene promoter sequence with a filled-in guanine metabolite. The high-resolution structure elucidates the structural features of the specific 5'-end cGMP-fill-in for the OG-induced vG4. Interestingly, the OG is removed from the G-core and becomes part of the 3'-end capping structure. A series of guanine metabolites and derivatives are evaluated for fill-in activity to the oxidation-induced vG4. Significantly, cellular guanine metabolites, such as cGMP and GTP, can bind and stabilize the OG-induced vG4, suggesting their potential regulatory role in response to oxidative damage in physiological and pathological processes. Our work thus provides exciting insights into how oxidative damage and cellular metabolites may work together through a G4-based epigenetic feature for gene regulation. Furthermore, the NMR structure can guide the rational design of small-molecule inhibitors that specifically target the oxidation-induced vG4s.
Collapse
Affiliation(s)
| | | | - Yipu Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Jonathan Dickerhoff
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinzhu Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Ming-Hua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Department of Chemistry, and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People’s Republic of China
| |
Collapse
|
19
|
Mendes E, Aljnadi IM, Bahls B, Victor BL, Paulo A. Major Achievements in the Design of Quadruplex-Interactive Small Molecules. Pharmaceuticals (Basel) 2022; 15:300. [PMID: 35337098 PMCID: PMC8953082 DOI: 10.3390/ph15030300] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
Organic small molecules that can recognize and bind to G-quadruplex and i-Motif nucleic acids have great potential as selective drugs or as tools in drug target discovery programs, or even in the development of nanodevices for medical diagnosis. Hundreds of quadruplex-interactive small molecules have been reported, and the challenges in their design vary with the intended application. Herein, we survey the major achievements on the therapeutic potential of such quadruplex ligands, their mode of binding, effects upon interaction with quadruplexes, and consider the opportunities and challenges for their exploitation in drug discovery.
Collapse
Affiliation(s)
- Eduarda Mendes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| | - Israa M. Aljnadi
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bárbara Bahls
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bruno L. Victor
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Alexandra Paulo
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| |
Collapse
|
20
|
Miranda MR, Sayé M, Reigada C, Galceran F, Rengifo M, Maciel BJ, Digirolamo FA, Pereira CA. Revisiting trypanosomatid nucleoside diphosphate kinases. Mem Inst Oswaldo Cruz 2022; 116:e210339. [PMID: 35170678 PMCID: PMC8833001 DOI: 10.1590/0074-02760210339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND An increasing amount of research has led to the positioning of nucleoside diphosphate kinases (NDPK/NDK) as key metabolic enzymes among all organisms. They contribute to the maintenance the intracellular di- and tri- phosphate nucleoside homeostasis, but they also are involved in widely diverse processes such as gene regulation, apoptosis, signal transduction and many other regulatory roles. OBJETIVE Examine in depth the NDPKs of trypanosomatid parasites responsible for devastating human diseases (e.g., Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp.) which deserve special attention. METHODS The earliest and latest advances in the topic were explored, focusing on trypanosomatid NDPK features, multifunctionality and suitability as molecular drug targets. FINDINGS Trypanosomatid NDPKs appear to play functions different from their host counterparts. Evidences indicate that they would perform key roles in the parasite metabolism such as nucleotide homeostasis, drug resistance, DNA damage responses and gene regulation, as well as host-parasite interactions, infection, virulence and immune evasion, placing them as attractive pharmacological targets. MAIN CONCLUSIONS NDPKs are very interesting multifunctional enzymes. In the present review, the potential of trypanosomatid NDPKs was highlighted, raising awareness of their value not only with respect to parasite biology but also as molecular targets.
Collapse
Affiliation(s)
- Mariana R Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina,+ Corresponding author: /
| | - Melisa Sayé
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Chantal Reigada
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Facundo Galceran
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Marcos Rengifo
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Belen J Maciel
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Fabio A Digirolamo
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Claudio A Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A Lanari, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas, Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| |
Collapse
|
21
|
Zhang Y, Qiu Z, Zhu M, Teng Y. Ginsenoside Compound K Assisted G-Quadruplex Folding and Regulated G-Quadruplex-Containing Transcription. Molecules 2021; 26:molecules26237339. [PMID: 34885920 PMCID: PMC8659241 DOI: 10.3390/molecules26237339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
Ginsenoside compound K (CK) is one of the major metabolites of the bioactive ingredients in Panax ginseng, which presents excellent bioactivity and regulates the expression of important proteins. In this work, the effects of CK on G-quadruplexes (G4s) were quantitatively analyzed in the presence and absence of their complementary sequences. CK was demonstrated to facilitate the formation of G4s, and increase the quantity of G4s in the competition with duplex. Thermodynamic experiments suggested that the electrostatic interactions were important for G4 stabilization by CK. CK was further found to regulate the transcription of G4-containing templates, reduce full-length transcripts, and decrease the transcription efficiency. Our results provide new evidence for the pharmacological study of ginsenosides at the gene level.
Collapse
Affiliation(s)
| | | | | | - Ye Teng
- Correspondence: ; Tel.: +86-13843132210
| |
Collapse
|
22
|
Rachakonda S, Hoheisel JD, Kumar R. Occurrence, functionality and abundance of the TERT promoter mutations. Int J Cancer 2021; 149:1852-1862. [PMID: 34313327 DOI: 10.1002/ijc.33750] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/14/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
Telomere shortening at chromosomal ends due to the constraints of the DNA replication process acts as a tumor suppressor by restricting the replicative potential in primary cells. Cancers evade that limitation primarily through the reactivation of telomerase via different mechanisms. Mutations within the promoter of the telomerase reverse transcriptase (TERT) gene represent a definite mechanism for the ribonucleic enzyme regeneration predominantly in cancers that arise from tissues with low rates of self-renewal. The promoter mutations cause a moderate increase in TERT transcription and consequent telomerase upregulation to the levels sufficient to delay replicative senescence but not prevent bulk telomere shortening and genomic instability. Since the discovery, a staggering number of studies have resolved the discrete aspects, effects and clinical relevance of the TERT promoter mutations. The promoter mutations link transcription of TERT with oncogenic pathways, associate with markers of poor outcome and define patients with reduced survivals in several cancers. In this review, we discuss the occurrence and impact of the promoter mutations and highlight the mechanism of TERT activation. We further deliberate on the foundational question of the abundance of the TERT promoter mutations and a general dearth of functional mutations within noncoding sequences, as evident from pan-cancer analysis of the whole-genomes. We posit that the favorable genomic constellation within the TERT promoter may be less than a common occurrence in other noncoding functional elements. Besides, the evolutionary constraints limit the functional fraction within the human genome, hence the lack of abundant mutations outside the coding sequences.
Collapse
Affiliation(s)
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
23
|
Wang Z, Wu X. Abnormal function of telomere protein TRF2 induces cell mutation and the effects of environmental tumor‑promoting factors (Review). Oncol Rep 2021; 46:184. [PMID: 34278498 PMCID: PMC8273685 DOI: 10.3892/or.2021.8135] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/14/2021] [Indexed: 01/30/2023] Open
Abstract
Recent studies have found that somatic gene mutations and environmental tumor-promoting factors are both indispensable for tumor formation. Telomeric repeat-binding factor (TRF)2 is the core component of the telomere shelterin complex, which plays an important role in chromosome stability and the maintenance of normal cell physiological states. In recent years, TRF2 and its role in tumor formation have gradually become a research hot topic, which has promoted in-depth discussions into tumorigenesis and treatment strategies, and has achieved promising results. Some cells bypass elimination, due to either aging, apoptosis via mutations or abnormal prolongation of the mitotic cycle, and enter the telomere crisis period, where large-scale DNA reorganization occurs repeatedly, which manifests as the precancerous cell cycle. Finally, at the end of the crisis cycle, the mutation activates either the expression level of telomerase or activates the alternative lengthening of telomere mechanism to extend the local telomeres. Under the protection of TRF2, chromosomes are gradually stabilized, immortal cells are formed and the stagewise mutation-driven transformation of normal cells to cancer cells is completed. In addition, TRF2 also shares the characteristics of environmental tumor-promoting factors. It acts on multiple signal transduction pathway-related proteins associated with cell proliferation, and affects peripheral angiogenesis, inhibits the immune recognition and killing ability of the microenvironment, and maintains the stemness characteristics of tumor cells. TRF2 levels are abnormally elevated by a variety of tumor control proteins, which are more conducive to the protection of telomeres and the survival of tumor cells. In brief, the various regulatory mechanisms which tumor cells rely on to survive are organically integrated around TRF2, forming a regulatory network, which is conducive to the optimization of the survival direction of heterogeneous tumor cells, and promotes their survival and adaptability. In terms of clinical application, TRF2 is expected to become a new type of cancer prognostic marker and a new tumor treatment target. Inhibition of TRF2 overexpression could effectively cut off the core network regulating tumor cell survival, reduce drug resistance, or bypass the mutation under the pressure of tumor treatment selection, which may represent a promising therapeutic strategy for the complete eradication of tumors in the clinical setting. Based on recent research, the aim of the present review was to systematically elaborate on the basic structure and functional characteristics of TRF2 and its role in tumor formation, and to analyze the findings indicating that TRF2 deficiency or overexpression could cause severe damage to telomere function and telomere shortening, and induce DNA damage response and chromosomal instability.
Collapse
Affiliation(s)
- Zhengyi Wang
- Good Clinical Practice Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610071, P.R. China
| | - Xiaoying Wu
- Ministry of Education and Training, Chengdu Second People's Hospital, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|