1
|
Hoffmann RW. Overcoming (some) rules in synthesis design. Chem Soc Rev 2025. [PMID: 40018825 DOI: 10.1039/d4cs01120a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The experience gained in the development of science is codified in dogmas, rules, and directives. Such originally helpful rules are not necessarily cast in concrete, as they may become obsolete because of newer challenges and developments. This is manifested by breakthroughs violating such rules. Three examples concerning synthesis design in Organic Chemistry are discussed in this essay.
Collapse
Affiliation(s)
- Reinhard W Hoffmann
- Fachbereich Chemie der Philipps Universität Marburg, Hans Meerwein Str.4, D-35032 Marburg, Germany.
| |
Collapse
|
2
|
Li L, Fu J, Liu N. Advances in the Structures, Pharmacological Activities, and Biosynthesis of Plant Diterpenoids. J Microbiol Biotechnol 2024; 34:1563-1579. [PMID: 39081244 PMCID: PMC11380518 DOI: 10.4014/jmb.2402.02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 08/29/2024]
Abstract
More and more diterpenoids have attracted extensive attention due to the diverse chemical structures and excellent biological activities, and have been developed into clinical drugs or consumer products. The vast majority of diterpenoids are derived from plants. With the long-term development of plant medicinal materials, the natural resources of many plant diterpenoids are decreasing, and the biosynthetic mechanism of key active components has increasingly become a research hotspot. Using synthetic biology to engineer microorganisms into "cell factories" to produce the desired compounds is an essential means to solve these problems. In this review, we depict the plant-derived diterpenoids from chemical structure, biological activities, and biosynthetic pathways. We use representative plant diterpenes as examples to expound the research progress on their biosynthesis, and summarize the heterologous production of plant diterpenoids in microorganisms in recent years, hoping to lay the foundation for the development and application of plant diterpenoids in the future.
Collapse
Affiliation(s)
- Leilei Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jia Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Nan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
3
|
Pan L, Schneider F, Ottenbruch M, Wiechert R, List T, Schoch P, Mertes B, Gaich T. A general strategy for the synthesis of taxane diterpenes. Nature 2024; 632:543-549. [PMID: 38862025 DOI: 10.1038/s41586-024-07675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The carbon skeleton of any organic molecule serves as the foundation for its three-dimensional structure, playing a pivotal role in determining its physical and biological properties1. As such, taxane diterpenes are one of the most well-known natural product families, primarily owing to the success of their most prominent compound, paclitaxel, an effective anticancer therapeutic for more than 25 years2-6. In contrast to classical taxanes, the bioactivity of cyclotaxanes (also referred to as complex taxanes) remains significantly underexplored. The carbon skeletons of these two groups of taxanes differ significantly, and so would typically their own distinct synthetic approaches. Here we report a versatile synthetic strategy based on the interconversion of complex molecular frameworks, providing general access to the wider taxane diterpene family. A range of classical and cyclotaxane frameworks was prepared including, among others, the total syntheses of taxinine K (2), canataxapropellane (5) and dipropellane C from a single advanced intermediate. The synthetic approach deliberately eschews biomimicry, emphasizing instead the power of stereoelectronic control in orchestrating the interconversion of polycyclic frameworks.
Collapse
Affiliation(s)
- Lu Pan
- University of Konstanz, Department of Chemistry, Konstanz, Germany.
| | - Fabian Schneider
- University of Konstanz, Department of Chemistry, Konstanz, Germany
- Scripps Research, La Jolla, CA, USA
| | | | - Rainer Wiechert
- University of Konstanz, Department of Chemistry, Konstanz, Germany
- Department of Chemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Tatjana List
- University of Konstanz, Department of Chemistry, Konstanz, Germany
| | - Philipp Schoch
- University of Konstanz, Department of Chemistry, Konstanz, Germany
| | - Bastian Mertes
- University of Konstanz, Department of Chemistry, Konstanz, Germany
| | - Tanja Gaich
- University of Konstanz, Department of Chemistry, Konstanz, Germany.
| |
Collapse
|
4
|
Saadh MJ, Mustafa MA, Malathi H, Ahluwalia G, Kaur S, Al-Dulaimi MAAH, Alubiady MHS, Zain Al-Abdeen SH, Shakier HG, Ali MS, Ahmad I, Abosaoda MK. Targeting the pancreatic tumor microenvironment by plant-derived products and their nanoformulations. Med Oncol 2024; 41:201. [PMID: 39001987 DOI: 10.1007/s12032-024-02443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
Pancreatic cancer remains a significant health issue with limited treatment options. The tumor stroma, a complex environment made up of different cells and proteins, plays a crucial role in tumor growth and chemoresistance. Targeting tumor stroma, consisting of diverse non-tumor cells such as fibroblasts, extracellular matrix (ECM), immune cells, and also pre-vascular cells is encouraging for remodeling solid cancers, such as pancreatic cancer. Remodeling the stroma of pancreas tumors can be suggested as a strategy for reducing resistance to chemo/immunotherapy. Several studies have shown that phytochemicals from plants can affect the tumor environment and have anti-cancer properties. By targeting key pathways involved in stromal activation, phytochemicals may disrupt communication between the tumor and stroma and make tumor cells more sensitive to different treatments. Additionally, phytochemicals have immunomodulatory and anti-angiogenic properties, all of which contribute to their potential in treating pancreatic cancer. This review will provide a detailed look at how phytochemicals impact the tumor stroma and their effects on pancreatic tumor growth, spread, and response to treatment. It will also explore the potential of combining phytochemicals with other treatment options like chemotherapy, immunotherapy, and radiation.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Gunveen Ahluwalia
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | - Sumeet Kaur
- Department of Applied Sciences, Chandigarh Engineering Colleges, Chandigarh Group of Colleges, Jhanjeri, 140307, Mohali, Punjab, India
| | | | | | | | | | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Moon DO. Interplay between paclitaxel, gap junctions, and kinases: unraveling mechanisms of action and resistance in cancer therapy. Mol Biol Rep 2024; 51:472. [PMID: 38551726 DOI: 10.1007/s11033-024-09411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
This comprehensive review elucidates the multifaceted roles of paclitaxel, a key chemotherapeutic agent, in cancer therapy, with a focus on its interactions with gap junctions and related kinases. Paclitaxel, with its complex diterpene structure, mediates its anticancer effects predominantly through specific interactions with β-tubulin, instigating cell cycle arrest and triggering various cell death pathways, including apoptosis, pyroptosis, ferroptosis, and necroptosis. The paper systematically delineates the chemical attributes and action mechanisms of paclitaxel and its analogs, underscoring their capacity to disrupt microtubule dynamics, thereby leading to mitotic arrest and subsequent cell death induction. It also scrutinizes the pivotal role of gap junctions, composed of connexin proteins, in the modulation of cancer cell behavior and chemoresistance, especially in the milieu of paclitaxel administration. The review articulates how gap junctions can either suppress tumors or contribute to cancer progression, thereby influencing chemotherapy outcomes. Furthermore, the paper provides an in-depth analysis of how paclitaxel modulates gap junction-associated kinases via phosphorylation, influencing the drug's therapeutic efficacy and resistance profiles. By integrating insights from numerous key studies, the review offers a comprehensive understanding of the interplay between paclitaxel, gap junctions, and kinases, shedding light on potential approaches to augment paclitaxel's anti-tumor effectiveness and counteract chemoresistance in cancer treatment.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si, Gyeongsangbuk-do, 38453, Republic of Korea.
| |
Collapse
|
6
|
Yan P, Stegbauer S, Wu Q, Kolodzeiski E, Stein CJ, Lu P, Bach T. Enantioselective Intramolecular ortho Photocycloaddition Reactions of 2-Acetonaphthones. Angew Chem Int Ed Engl 2024; 63:e202318126. [PMID: 38275271 DOI: 10.1002/anie.202318126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/27/2024]
Abstract
2-Acetonaphthones, which bear an alkenyl group tethered to its C1 carbon atom via an oxygen atom, were found to undergo an enantioselective intramolecular ortho photocycloaddition reaction. A chiral oxazaborolidine Lewis acid leads to a bathochromic absorption shift of the substrate and enables an efficient enantioface differentiation. Visible light irradiation (λ=450 nm) triggers the reaction which is tolerant of various groups at almost any position except carbon atom C8 (16 examples, 53-99 % yield, 80-97 % ee). Consecutive reactions were explored including a sensitized rearrangement to tetrahydrobiphenylenes, which occurred with full retention of configuration. Evidence was collected that the catalytic photocycloaddition occurs via triplet intermediates, and the binding mode of the acetonaphthone to the chiral Lewis acid was elucidated by DFT calculations.
Collapse
Affiliation(s)
- Peng Yan
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Simone Stegbauer
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, D-85747, Garching, Germany
| | - Qinqin Wu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Elena Kolodzeiski
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, D-85747, Garching, Germany
| | - Christopher J Stein
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, D-85747, Garching, Germany
| | - Ping Lu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, D-85747, Garching, Germany
| |
Collapse
|
7
|
Xiao Z, Yang Q, Lin X, Li FR, Zhang X, Xu HM, Wang Z, Wang J, Dong LB. Cytochrome P450-Mediated Skeleton Rearrangement of Taxadiene in an Engineered Escherichia coli System. Org Lett 2024; 26:1640-1644. [PMID: 38382064 DOI: 10.1021/acs.orglett.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In this study, we constructed a taxadiene overproduction platform and identified a cytochrome P450, CYP701A8, that activates the inert C-H bonds in taxadiene to produce three oxidized products (1-3). Compound 1 possesses a newly identified 1 (15→11) abeotaxane skeleton, while 3 features a distinctive 6/10-fused carbocyclic core with an α,β-unsaturated ketone moiety. Our quantum computations suggested a carbocation-driven rearrangement in the formation of 1. These results support CYP701A8 as a promising biocatalyst for the generation of novel taxane diterpenoids.
Collapse
Affiliation(s)
- Zhixi Xiao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qian Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoxu Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fang-Ru Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaowei Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui-Min Xu
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing 211198, China
| | - Zengyuan Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Wang
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing 211198, China
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
8
|
Klucznik T, Syntrivanis LD, Baś S, Mikulak-Klucznik B, Moskal M, Szymkuć S, Mlynarski J, Gadina L, Beker W, Burke MD, Tiefenbacher K, Grzybowski BA. Computational prediction of complex cationic rearrangement outcomes. Nature 2024; 625:508-515. [PMID: 37967579 PMCID: PMC10864989 DOI: 10.1038/s41586-023-06854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Recent years have seen revived interest in computer-assisted organic synthesis1,2. The use of reaction- and neural-network algorithms that can plan multistep synthetic pathways have revolutionized this field1,3-7, including examples leading to advanced natural products6,7. Such methods typically operate on full, literature-derived 'substrate(s)-to-product' reaction rules and cannot be easily extended to the analysis of reaction mechanisms. Here we show that computers equipped with a comprehensive knowledge-base of mechanistic steps augmented by physical-organic chemistry rules, as well as quantum mechanical and kinetic calculations, can use a reaction-network approach to analyse the mechanisms of some of the most complex organic transformations: namely, cationic rearrangements. Such rearrangements are a cornerstone of organic chemistry textbooks and entail notable changes in the molecule's carbon skeleton8-12. The algorithm we describe and deploy at https://HopCat.allchemy.net/ generates, within minutes, networks of possible mechanistic steps, traces plausible step sequences and calculates expected product distributions. We validate this algorithm by three sets of experiments whose analysis would probably prove challenging even to highly trained chemists: (1) predicting the outcomes of tail-to-head terpene (THT) cyclizations in which substantially different outcomes are encoded in modular precursors differing in minute structural details; (2) comparing the outcome of THT cyclizations in solution or in a supramolecular capsule; and (3) analysing complex reaction mixtures. Our results support a vision in which computers no longer just manipulate known reaction types1-7 but will help rationalize and discover new, mechanistically complex transformations.
Collapse
Affiliation(s)
- Tomasz Klucznik
- Allchemy, Highland, IN, USA
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Leonidas-Dimitrios Syntrivanis
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Basel, Basel, Switzerland.
| | - Sebastian Baś
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Barbara Mikulak-Klucznik
- Allchemy, Highland, IN, USA
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Jacek Mlynarski
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Louis Gadina
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Beker
- Allchemy, Highland, IN, USA.
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Martin D Burke
- Roger Adams Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Molecule Maker Laboratory Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Molecule Maker Laboratory at the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Bartosz A Grzybowski
- Allchemy, Highland, IN, USA.
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland.
- IBS Center for Algorithmic and Robotized Synthesis, CARS, Eonyang-eup, Ulju-gun, Ulsan, South Korea.
- Department of Chemistry, UNIST, Eonyang-eup, Ulju-gun, Ulsan, South Korea.
| |
Collapse
|
9
|
Gómez-Suárez A, Neumann CN. Stereochemistry in All Its Shapes and Forms: The 56 th Bürgenstock Conference. Angew Chem Int Ed Engl 2023; 62:e202309468. [PMID: 37590448 DOI: 10.1002/anie.202309468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 08/19/2023]
Abstract
Acknowledging the crucial role of stereochemistry in fields as diverse as total synthesis, synthetic methodology, spectroscopy, and the study of the origin of life, the 56th SCS Conference on Stereochemistry, better known as the BÃ1/4rgenstock Conference, brought together a diverse range of chemistry expertise in Brunnen, Switzerland.
Collapse
Affiliation(s)
- Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Constanze N Neumann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
10
|
Anand U, Dey A, Chandel AKS, Sanyal R, Mishra A, Pandey DK, De Falco V, Upadhyay A, Kandimalla R, Chaudhary A, Dhanjal JK, Dewanjee S, Vallamkondu J, Pérez de la Lastra JM. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis 2023; 10:1367-1401. [PMID: 37397557 PMCID: PMC10310991 DOI: 10.1016/j.gendis.2022.02.007] [Citation(s) in RCA: 379] [Impact Index Per Article: 189.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022] Open
Abstract
Cancer is an abnormal state of cells where they undergo uncontrolled proliferation and produce aggressive malignancies that causes millions of deaths every year. With the new understanding of the molecular mechanism(s) of disease progression, our knowledge about the disease is snowballing, leading to the evolution of many new therapeutic regimes and their successive trials. In the past few decades, various combinations of therapies have been proposed and are presently employed in the treatment of diverse cancers. Targeted drug therapy, immunotherapy, and personalized medicines are now largely being employed, which were not common a few years back. The field of cancer discoveries and therapeutics are evolving fast as cancer type-specific biomarkers are progressively being identified and several types of cancers are nowadays undergoing systematic therapies, extending patients' disease-free survival thereafter. Although growing evidence shows that a systematic and targeted approach could be the future of cancer medicine, chemotherapy remains a largely opted therapeutic option despite its known side effects on the patient's physical and psychological health. Chemotherapeutic agents/pharmaceuticals served a great purpose over the past few decades and have remained the frontline choice for advanced-stage malignancies where surgery and/or radiation therapy cannot be prescribed due to specific reasons. The present report succinctly reviews the existing and contemporary advancements in chemotherapy and assesses the status of the enrolled drugs/pharmaceuticals; it also comprehensively discusses the emerging role of specific/targeted therapeutic strategies that are presently being employed to achieve better clinical success/survival rate in cancer patients.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Arvind K. Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Rupa Sanyal
- Department of Botany, Bhairab Ganguly College (affiliated to West Bengal State University), Kolkata, West Bengal 700056, India
| | - Amarnath Mishra
- Faculty of Science and Technology, Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida 201313, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Valentina De Falco
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Naples 80131, Italy
| | - Arun Upadhyay
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandar Sindari, Kishangarh Ajmer, Rajasthan 305817, India
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana 506007, India
| | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, Haryana 132001, India
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-D), Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Jayalakshmi Vallamkondu
- Department of Physics, National Institute of Technology-Warangal, Warangal, Telangana 506004, India
| | - José M. Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, San Cristóbal de La Laguna 38206, Tenerife, Spain
| |
Collapse
|
11
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
12
|
Influence of Long-Term Agar-Slant Preservation at 4 °C on the Recombinant Enzyme Activity of Engineered Yeast. FERMENTATION 2023. [DOI: 10.3390/fermentation9020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Strain preservation to maintain stable vitality and the recombinant enzyme activity plays a crucial role in industrial fermentation. A Pichia pastoris strain is routinely stored at −80 °C in a glycerol vial and activated on an antibiotic-containing YPD agar plate before being used for fermentation. Alternatively, the activated strain should be preserved in the agar slant at 2~4 °C (low-temperature storage) for a short period before use. To maximize the utilization of the low-temperature storage for fermentation, we evaluated this method by observing the capacity of both the vitality and the recombinant enzyme activity of the strain at different preservation durations. We found that engineered yeast could be preserved by low-temperature storage for at least 30 months without losing its vitality and biomass enzyme activity by the end of fermentation and could be directly used for the seed cultivation of fermentation, which is more time-saving than strain recovery from −80 °C in a glycerol vial. Moreover, the antibiotic added to the agar slant could be omitted if the heterologous gene was integrated into the host chromosome. Our approach may greatly elevate the production efficiency of the strain.
Collapse
|
13
|
Perea MA, Wang B, Wyler BC, Ham JS, O’Connor NR, Nagasawa S, Kimura Y, Manske C, Scherübl M, Nguyen JM, Sarpong R. General Synthetic Approach to Diverse Taxane Cores. J Am Chem Soc 2022; 144:21398-21407. [PMID: 36346461 PMCID: PMC9901290 DOI: 10.1021/jacs.2c10272] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemical synthesis of natural products is typically inspired by the structure and function of a target molecule. When both factors are of interest, such as in the case of taxane diterpenoids, a synthesis can both serve as a platform for synthetic strategy development and enable new biological exploration. Guided by this paradigm, we present here a unified enantiospecific approach to diverse taxane cores from the feedstock monoterpenoid (S)-carvone. Key to the success of our approach was the use of a skeletal remodeling strategy which began with the divergent reorganization and convergent coupling of two carvone-derived fragments, facilitated by Pd-catalyzed C-C bond cleavage tactics. This coupling was followed by additional restructuring using a Sm(II)-mediated rearrangement and a bioinspired, visible-light induced, transannular [2 + 2] photocycloaddition. Overall, this divergent monoterpenoid remodeling/convergent fragment coupling approach to complex diterpenoid synthesis provides access to structurally disparate taxane cores which have set the stage for the preparation of a wide range of taxanes.
Collapse
Affiliation(s)
| | | | - Benjamin C. Wyler
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jin Su Ham
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nicholas R. O’Connor
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Shota Nagasawa
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yuto Kimura
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Carolin Manske
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Maximilian Scherübl
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Johny M. Nguyen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Proessdorf J, Jandl C, Pickl T, Bach T. Arene Activation through Iminium Ions: Product Diversity from Intramolecular Photocycloaddition Reactions. Angew Chem Int Ed Engl 2022; 61:e202208329. [PMID: 35920713 PMCID: PMC9826208 DOI: 10.1002/anie.202208329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 01/11/2023]
Abstract
While 2-alk-ω-enyloxy-sustituted benzaldehydes do not display any photochemical reactivity at the arene core, the respective iminium perchlorates were found to undergo efficient reactions either upon direct irradiation (λ=366 nm) or under sensitizing conditions (λ=420 nm, 2.5 mol% thioxanthen-9-one). Three pathways were found: (a) Most commonly, the reaction led to benzoxacyclic products in which the olefin in the tether underwent a formal, yet unprecedented carboformylation (13 examples, 44-99 % yield). The cascade process occurred with high diastereoselectivity and was found to be stereoconvergent. (b) If a substituent resides in the 3-position of the benzene ring, a meta photocycloaddition was observed which produced tetracyclic skeletons with five stereogenic centers in excellent regio- and diastereoselectivity (2 examples, 58-79 % yield). (c) If the tether was internally substituted at the alkene, an arene photocycloaddition was avoided and an azetidine was formed in an aza Paternò-Büchi reaction (2 examples, 95-98 % yield).
Collapse
Affiliation(s)
- Johanna Proessdorf
- Department Chemie and Catalysis Research Center (CRC)School of Natural SciencesTechnische Universität MünchenLichtenbergstraße 485747GarchingGermany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC)School of Natural SciencesTechnische Universität MünchenLichtenbergstraße 485747GarchingGermany
| | - Thomas Pickl
- Department Chemie and Catalysis Research Center (CRC)School of Natural SciencesTechnische Universität MünchenLichtenbergstraße 485747GarchingGermany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC)School of Natural SciencesTechnische Universität MünchenLichtenbergstraße 485747GarchingGermany
| |
Collapse
|
15
|
Liao W, Li Y, Wang J, Zhao M, Chen N, Zheng Q, Wan L, Mou Y, Tang J, Wang Z. Natural Products-Based Nanoformulations: A New Approach Targeting CSCs to Cancer Therapy. Int J Nanomedicine 2022; 17:4163-4193. [PMID: 36134202 PMCID: PMC9482958 DOI: 10.2147/ijn.s380697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer stem cells (CSCs) lead to the occurrence and progression of cancer due to their strong tumorigenic, self-renewal, and multidirectional differentiation abilities. Existing cancer treatment methods cannot effectively kill or inhibit CSCs but instead enrich them and produce stronger proliferation, invasion, and metastasis capabilities, resulting in cancer recurrence and treatment resistance, which has become a difficult problem in clinical treatment. Therefore, targeting CSCs may be the most promising approach for comprehensive cancer therapy in the future. A variety of natural products (NP) have significant antitumor effects and have been identified to target and inhibit CSCs. However, pharmacokinetic defects and off-target effects have greatly hindered their clinical translation. NP-based nanoformulations (NPNs) have tremendous potential to overcome the disadvantages of NP against CSCs through site-specific delivery and by improving their pharmacokinetic parameters. In this review, we summarize the recent progress of NPNs targeting CSCs in cancer therapy, looking forward to transforming preclinical research results into clinical applications and bringing new prospects for cancer treatment.
Collapse
Affiliation(s)
- Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Bishan Hospital of Traditional Chinese Medicine, Chongqing, People's Republic of China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Nianzhi Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lina Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Zhilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
16
|
Proessdorf J, Jandl C, Pickl T, Bach T. Arene Activation through Iminium Ions: Product Diversity from Intramolecular Photocycloaddition Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Johanna Proessdorf
- Technische Universität München: Technische Universitat Munchen Department Chemie GERMANY
| | - Christian Jandl
- Technische Universität München: Technische Universitat Munchen Department Chemie GERMANY
| | - Thomas Pickl
- Technische Universität München: Technische Universitat Munchen Department Chemie GERMANY
| | - Thorsten Bach
- Technische Universität München Lehrstuhl für Organische Chemie I Lichtenbergstr. 4 85747 Garching GERMANY
| |
Collapse
|
17
|
Xu J, Elshazly AM, Gewirtz DA. The Cytoprotective, Cytotoxic and Nonprotective Functional Forms of Autophagy Induced by Microtubule Poisons in Tumor Cells—Implications for Autophagy Modulation as a Therapeutic Strategy. Biomedicines 2022; 10:biomedicines10071632. [PMID: 35884937 PMCID: PMC9312878 DOI: 10.3390/biomedicines10071632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Microtubule poisons, as is the case with other antitumor drugs, routinely promote autophagy in tumor cells. However, the nature and function of the autophagy, in terms of whether it is cytoprotective, cytotoxic or nonprotective, cannot be predicted; this likely depends on both the type of drug studied as well as the tumor cell under investigation. In this article, we explore the literature relating to the spectrum of microtubule poisons and the nature of the autophagy induced. We further speculate as to whether autophagy inhibition could be a practical strategy for improving the response to cancer therapy involving these drugs that have microtubule function as a primary target.
Collapse
Affiliation(s)
- Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Ahmed M. Elshazly
- Massey Cancer Center, Department of Pharmacology and Toxicology, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - David A. Gewirtz
- Massey Cancer Center, Department of Pharmacology and Toxicology, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
- Correspondence:
| |
Collapse
|
18
|
Nassar Y, Piva O. Photoredox-catalyzed hydroxymethylation of β-ketoesters: application to the synthesis of [3.3.3] propellane lactones. Org Biomol Chem 2021; 19:9251-9259. [PMID: 34664603 DOI: 10.1039/d1ob01712h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoredox-catalysed hydroxymethylation of β-ketoesters substituted by an allyl subunit on the α-position afforded directly the corresponding bicyclic lactones possessing both a hydroxy group and an unsaturation. A subsequent regioselective iodoetherification led to the formation of original [3.3.3] propellane structures. Substitution of the iodine atom by various nucleophiles afforded highly functionnalized structures including triazolomethyl derivatives.
Collapse
Affiliation(s)
- Youssef Nassar
- Université de Lyon; CNRS; UCBL; UMR 5246 - Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, 43, Boulevard du 11 Novembre 1918-69622, Villeurbanne, France.
| | - Olivier Piva
- Université de Lyon; CNRS; UCBL; UMR 5246 - Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, 43, Boulevard du 11 Novembre 1918-69622, Villeurbanne, France.
| |
Collapse
|