1
|
Moreno-Alcántar G, Drexler M, Casini A. Assembling a new generation of radiopharmaceuticals with supramolecular theranostics. Nat Rev Chem 2024; 8:893-914. [PMID: 39468298 DOI: 10.1038/s41570-024-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Supramolecular chemistry has been used to tackle some of the major challenges in modern science, including cancer therapy and diagnosis. Supramolecular platforms provide synthetic flexibility, rapid generation through self-assembly, facile labelling, unique topologies, tunable reversibility of the enabling noncovalent interactions, and opportunities for host-guest chemistry and mechanical bonding. In this Review, we summarize recent advances in the design and radiopharmaceutical application of discrete self-assembled coordination complexes and mechanically interlocked molecules - namely, metallacages and rotaxanes, respectively - as well as in situ-forming supramolecular aggregates, specifically pinpointing their potential as next-generation radiotheranostic agents. The outlook of such supramolecular constructs for potential applications in the clinic is discussed.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Marike Drexler
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Angela Casini
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany.
- Munich Data Science Institute (MDSI), Technical University of Munich, Garching bei München, Germany.
| |
Collapse
|
2
|
Deblonde GJP. Biogeochemistry of Actinides: Recent Progress and Perspective. ACS ENVIRONMENTAL AU 2024; 4:292-306. [PMID: 39582760 PMCID: PMC11583103 DOI: 10.1021/acsenvironau.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Actinides are elements that are often feared because of their radioactive nature and potentially devastating consequences to humans and the environment if not managed properly. As such, their chemical interactions with the biosphere and geochemical environment, i.e., their "biogeochemistry," must be studied and understood in detail. In this Review, a summary of the past discoveries and recent advances in the field of actinide biogeochemistry is provided with a particular emphasis on actinides other than thorium and uranium (i.e., actinium, neptunium, plutonium, americium, curium, berkelium, and californium) as they originate from anthropogenic activities and can be mobile in the environment. The nuclear properties of actinide isotopes found in the environment and used in research are reviewed with historical context. Then, the coordination chemistry properties of actinide ions are contrasted with those of common metal ions naturally present in the environment. The typical chelators that can impact the biogeochemistry of actinides are then reviewed. Then, the role of metalloproteins in the biogeochemistry of actinides is put into perspective since recent advances in the field may have ramifications in radiochemistry and for the long-term management of nuclear waste. Metalloproteins are ubiquitous ligands in nature but, as discussed in this Review, they have largely been overlooked for actinide chemistry, especially when compared to traditional environmental chelators. Without discounting the importance of abundant and natural actinide ions (i.e., Th4+ and UO2 2+), the main focus of this review is on trivalent actinides because of their prevalence in the fields of nuclear fuel cycles, radioactive waste management, heavy element research, and, more recently, nuclear medicine. Additionally, trivalent actinides share chemical similarities with the rare earth elements, and recent breakthroughs in the field of lanthanide-binding chelators may spill into the field of actinide biogeochemistry, as discussed hereafter.
Collapse
Affiliation(s)
- Gauthier J.-P. Deblonde
- Physical and Life Sciences
Directorate, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| |
Collapse
|
3
|
Zubenko AD, Pashanova AV, Mosaleva SP, Chernikova EY, Karnoukhova VA, Fedyanin IV, Egorova BV, Shchukina AA, Fedorov YV, Fedorova OA. Double-Armed 18- and 21-Membered Macrocycles as Potential Chelators for Lead and Bismuth Radiopharmaceuticals. Inorg Chem 2024; 63:21652-21669. [PMID: 39475211 DOI: 10.1021/acs.inorgchem.4c03116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
With increasing clinical applications and interest in targeted alpha therapy, there is growing interest in developing alternative chelating agents for [212Pb]Pb2+ and [212/213Bi]Bi3+ that exhibit rapid radiolabeling kinetics and kinetic inertness. Herein we report the synthesis and detailed investigation of diacetate and dipicolinate 18- and 21-membered macrocyclic chelators BADA-18, BADA-21, BADPA-18, and BADPA-21 for the complexation of Pb2+ and Bi3+ ions with potential use in the preparation of radiopharmaceuticals. The formation of mononuclear complexes was established by using ESI-mass spectrometry, and their stability constants were determined by potentiometric titration. A thorough study of the structure of the metal complexes was carried out by using X-ray diffraction and NMR spectroscopy. It was shown how the stability of the complex is influenced by an increase in the size of the macrocycle, the replacement of acetate arms with picolinate ones, the rigidity of the ligand, as well as the type of conformation (syn- or anti-) of the metal complex. The new ligands were radiolabeled with [210Pb]Pb2+ and [207Bi]Bi3+, and the in vitro stability of the resulting complexes in a competitive environment of serum and biologically significant metal ions was assessed. Rapid complex formation in 1-2 min at room temperature, as well as the high kinetic inertness of the complexes Pb(BADPA-18) and Bi(BADPA-18) in biological media, demonstrate its potential for use in targeted radionuclide therapy.
Collapse
Affiliation(s)
- Anastasia D Zubenko
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 st. Vavilova, 28, GSP-1, Moscow 119991, Russian Federation
| | - Anna V Pashanova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 st. Vavilova, 28, GSP-1, Moscow 119991, Russian Federation
| | - Sofia P Mosaleva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 st. Vavilova, 28, GSP-1, Moscow 119991, Russian Federation
- D. I. Mendeleev University of Chemistry and Technology of Russia, 125047 Miusskaya sqr., 9, Moscow 119991, Russian Federation
| | - Ekaterina Y Chernikova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 st. Vavilova, 28, GSP-1, Moscow 119991, Russian Federation
| | - Valentina A Karnoukhova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 st. Vavilova, 28, GSP-1, Moscow 119991, Russian Federation
| | - Ivan V Fedyanin
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 st. Vavilova, 28, GSP-1, Moscow 119991, Russian Federation
| | - Bayirta V Egorova
- Lomonosov Moscow State University, 119991 Leninskie Gory, 1/3, Moscow 119991, Russian Federation
| | - Anna A Shchukina
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 st. Vavilova, 28, GSP-1, Moscow 119991, Russian Federation
| | - Yury V Fedorov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 st. Vavilova, 28, GSP-1, Moscow 119991, Russian Federation
| | - Olga A Fedorova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 st. Vavilova, 28, GSP-1, Moscow 119991, Russian Federation
- D. I. Mendeleev University of Chemistry and Technology of Russia, 125047 Miusskaya sqr., 9, Moscow 119991, Russian Federation
| |
Collapse
|
4
|
Ria T, Roy R, Mandal US, Sk UH. Prospects of nano-theranostic approaches against breast and cervical cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189227. [PMID: 39612962 DOI: 10.1016/j.bbcan.2024.189227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
The bottleneck on therapeutics and diagnostics is removed by an alternate approach known as theranostics which combines both therapeutics and diagnostics within a single platform. Due to this "all in one" nature of theranostics, it is now extensively applied in the medicinal field mainly in cancer treatment over the conventional therapy. Recently, FDA approval of lutetium 177 (177Lu) DOTATATE and 177Lu-PSMA-based radionuclide theranostics are clinically used and very few theranostics specific to breast cancer are in clinical trials. In this review, we are willing to draw special attention to the application of theranostics in the most relevant cancers in women, the breast and the cervical as these cancers affect women harshly but talked very silently due to the social restrictions and discriminations mainly in rural areas of developing and under developing countries. This approach not only combines therapeutics and diagnostics but targeting moieties can also be accommodated for the precise medication. Herein, our main objective is to enlighten the broader aspects of different kinds of theranostic devices based on radioisotopes, nanoparticles, graphene quantum dots, dendrimers and their fruitful application against breast and cervical cancer. The development of synthetic nano-theranostics was reported by accommodating therapeutic drugs, imaging probes and targeting ligands through conjugation or encapsulation. The imaging modalities like optical fluorescence, photosensitizers and radiotracers are used to get the diagnostic images through NIR, PET, MRI and CT/SPECT to detect the progress of cancer non-invasively and also at the same time targeting ligands such as antibodies, proteins and peptides in attachment with the theranostics enhances the therapeutic efficacy in addition to the clarity in diagnostics. The applications of theranostics from the last decade with their present scenario in clinics and future perspectives, as well as the pitfalls with the hurdles that still leave questions to rethink from the root are also been discussed in this review.
Collapse
Affiliation(s)
- Tasnim Ria
- Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata 700 026, India
| | - Rubi Roy
- Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata 700 026, India
| | - Uma Sankar Mandal
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Ugir Hossain Sk
- Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata 700 026, India.
| |
Collapse
|
5
|
Gao Y, Licup GL, Bigham NP, Cantu DC, Wilson JJ. Chelator-Assisted Precipitation-Based Separation of the Rare Earth Elements Neodymium and Dysprosium from Aqueous Solutions. Angew Chem Int Ed Engl 2024; 63:e202410233. [PMID: 39030817 DOI: 10.1002/anie.202410233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
The rare earth elements (REEs) are critical resources for many clean energy technologies, but are difficult to obtain in their elementally pure forms because of their nearly identical chemical properties. Here, an analogue of macropa, G-macropa, was synthesized and employed for an aqueous precipitation-based separation of Nd3+ and Dy3+. G-macropa maintains the same thermodynamic preference for the large REEs as macropa, but shows smaller thermodynamic stability constants. Molecular dynamics studies demonstrate that the binding affinity differences of these chelators for Nd3+ and Dy3+ is a consequence of the presence or absence of an inner-sphere water molecule, which alters the donor strength of the macrocyclic ethers. Leveraging the small REE affinity of G-macropa, we demonstrate that within aqueous solutions of Nd3+, Dy3+, and G-macropa, the addition of HCO3 - selectively precipitates Dy2(CO3)3, leaving the Nd3+-G-macropa complex in solution. With this method, remarkably high separation factors of 841 and 741 are achieved for 50 : 50 and 75 : 25 mixtures. Further studies involving Nd3+:Dy3+ ratios of 95 : 5 in authentic magnet waste also afford an efficient separation as well. Lastly, G-macropa is recovered via crystallization with HCl and used for subsequent extractions, demonstrating its good recyclability.
Collapse
Affiliation(s)
- Yangyang Gao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, 93106, United States
| | - Gerra L Licup
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, 89557, United States
| | - Nicholas P Bigham
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, United States
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, 89557, United States
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, 93106, United States
| |
Collapse
|
6
|
Öztürk I, Gervasoni S, Guccione C, Bosin A, Vargiu AV, Ruggerone P, Malloci G. Force Fields, Quantum-Mechanical- and Molecular-Dynamics-Based Descriptors of Radiometal-Chelator Complexes. Molecules 2024; 29:4416. [PMID: 39339411 PMCID: PMC11434398 DOI: 10.3390/molecules29184416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Radiopharmaceuticals are currently a key tool in cancer diagnosis and therapy. Metal-based radiopharmaceuticals are characterized by a radiometal-chelator moiety linked to a bio-vector that binds the biological target (e.g., a protein overexpressed in a particular tumor). The right match between radiometal and chelator influences the stability of the complex and the drug's efficacy. Therefore, the coupling of the radioactive element to the correct chelator requires consideration of several features of the radiometal, such as its oxidation state, ionic radius, and coordination geometry. In this work, we systematically investigated about 120 radiometal-chelator complexes taken from the Cambridge Structural Database. We considered 25 radiometals and about 30 chelators, featuring both cyclic and acyclic geometries. We used quantum mechanics methods at the density functional theoretical level to generate the general AMBER force field parameters and to perform 1 µs-long all-atom molecular dynamics simulations in explicit water solution. From these calculations, we extracted several key molecular descriptors accounting for both electronic- and dynamical-based properties. The whole workflow was carefully validated, and selected test-cases were investigated in detail. Molecular descriptors and force field parameters for the complexes considered in this study are made freely available, thus enabling their use in predictive models, molecular modelling, and molecular dynamics investigations of the interaction of compounds with macromolecular targets. Our work provides new insights in understanding the properties of radiometal-chelator complexes, with a direct impact for rational drug design of this important class of drugs.
Collapse
Affiliation(s)
| | - Silvia Gervasoni
- Department of Physics, University of Cagliari, I-09042 Monserrato (CA), Italy; (I.Ö.); (C.G.); (A.B.); (A.V.V.); (P.R.)
| | | | | | | | | | - Giuliano Malloci
- Department of Physics, University of Cagliari, I-09042 Monserrato (CA), Italy; (I.Ö.); (C.G.); (A.B.); (A.V.V.); (P.R.)
| |
Collapse
|
7
|
Lee KK, Chakraborty M, Hu A, Kanagasundaram T, Thorek DLJ, Wilson JJ. Chelation of [ 111In]In 3+ with the dual-size-selective macrocycles py-macrodipa and py 2-macrodipa. Dalton Trans 2024; 53:14634-14647. [PMID: 39163366 PMCID: PMC11663299 DOI: 10.1039/d4dt02146k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Indium-111 (111In) is a diagnostic radiometal that is important in nuclear medicine for single-photon emission computed tomography (SPECT). In order to apply this radiometal, it needs to be stably chelated and conjugated to a targeting vector that delivers it to diseased tissue. Identifying effective chelators that are capable of binding and retaining [111In]In3+in vivo is an important research area. In this study, two 18-membered macrocyclic chelators, py-macrodipa and py2-macrodipa, were investigated for their ability to form stable coordination complexes with In3+ and to be effectively radiolabeled with [111In]In3+. The In3+ complexes of these two chelators were characterized by NMR spectroscopy, X-ray crystallography, and density functional theory calculations. These studies show that both py-macrodipa and py2-macrodipa form 8-coordinate In3+ complexes and attain an asymmetric conformation, consistent with prior studies on this ligand class with small rare earth metal ions. Spectrophotometric titrations were carried out to determine the thermodynamic stability constants (log KML) of [In(py-macrodipa)]+ and [In(py2-macrodipa)]+, which were found to be 18.96(6) and 19.53(5), respectively, where the values in parentheses are the errors of the last significant figures obtained from the standard deviation from three independent replicates. Radiolabeling studies showed that py-macrodipa and py2-macrodipa can quantitatively be radiolabeled with [111In]In3+ at 25 °C within 5 min, even at ligand concentrations as low as 1 μM. The in vitro stability of the radiolabeled complexes was investigated in human serum at 37 °C, revealing that ∼90% of [111In][In(py-macrodipa)]+ and [111In][In(py2-macrodipa)]+ remained intact after 7 days. The biodistribution of these radiolabeled complexes in mice was investigated, showing lower uptake in the kidneys, liver, and blood at the 24 h mark compared to [111In]InCl3. These results demonstrate the potential of py-macrodipa and py2-macrodipa as chelators for [111In]In3+, suggesting their value for SPECT radiopharmaceuticals.
Collapse
Affiliation(s)
- Kevin K Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| | - Mou Chakraborty
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Aohan Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| | - Thines Kanagasundaram
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| | - Daniel L J Thorek
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, 63110, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| |
Collapse
|
8
|
Colliard I, Deblonde GJP. From +I to +IV, Alkalis to Actinides: Capturing Cations across the Periodic Table with Keggin Polyoxometalate Ligands. Inorg Chem 2024; 63:16293-16303. [PMID: 39173120 DOI: 10.1021/acs.inorgchem.4c02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Coordination chemistry trends across the periodic table are often difficult to probe experimentally due to limitations in finding a versatile but consistent chelating platform that can accommodate various elements without changing its coordination mode. Herein, we present new metal/ligand systems covering a wide range of ionic radii, charges, and elements. Five different ligands derived from the Keggin structure (HBW11O398-, PW11O397-, SiW11O398-, GeW11O398-, and GaW11O399-) were successfully crystallized with six different cations (Na+, Sr2+, Ba2+, La3+, Ce4+, and Th4+) and characterized by single-crystal X-ray diffraction. Twenty-five new compounds were obtained by using Cs+ as the counterion, yielding a consistent base formula of Csx[M(XW11O39)2]·nH2O. Despite having a similar first-coordination sphere geometry (i.e., 8-coordinated), the nature of the central cation was found to impact the long-range geometry of the complexes. This unique crystallographic data set shows that, despite the traditional consensus, the local geometry of the cation (i.e., metal-oxygen bond distance) is not enough to depict the full impact of the complexed metal ion. The bending and twisting of the complexes, as well as ligand-ligand distances, were all impacted by the nature of the central cation. We also observed that counterions play a critical role by stabilizing the geometry of the M(XW11)2 complex and directing complex-complex interactions in the lattice. We also define certain structural limits for this type of complex, with the large Ba2+ ion seemingly approaching those limits. This study thus lays the foundation for capturing the coordination chemistry of other rarer elements across the periodic table such as Ra2+, Ac3+, Bk4+, Cf3+, etc.
Collapse
Affiliation(s)
- Ian Colliard
- Physical and Life Sciences Directorate, Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Material Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Gauthier J-P Deblonde
- Physical and Life Sciences Directorate, Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
9
|
Simms ME, Li Z, Sibley MM, Ivanov AS, Lara CM, Johnstone TC, Kertesz V, Fears A, White FD, Thorek DLJ, Thiele NA. PYTA: a universal chelator for advancing the theranostic palette of nuclear medicine. Chem Sci 2024; 15:11279-11286. [PMID: 39055008 PMCID: PMC11268510 DOI: 10.1039/d3sc06854d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
To clinically advance the growing arsenal of radiometals available to image and treat cancer, chelators with versatile binding properties are needed. Herein, we evaluated the ability of the py2[18]dieneN6 macrocycle PYTA to interchangeably bind and stabilize 225Ac3+, [177Lu]Lu3+, [111In]In3+ and [44Sc]Sc3+, a chemically diverse set of radionuclides that can be used complementarily for targeted alpha therapy, beta therapy, single-photon emission computed tomography (SPECT) imaging, and positron emission tomography (PET) imaging, respectively. Through NMR spectroscopy and X-ray diffraction, we show that PYTA possesses an unusual degree of flexibility for a macrocyclic chelator, undergoing dramatic conformational changes that enable it to optimally satisfy the disparate coordination properties of each metal ion. Subsequent radiolabeling studies revealed that PYTA quantitatively binds all 4 radiometals at room temperature in just minutes at pH 6. Furthermore, these complexes were found to be stable in human serum over 2 half-lives. These results surpass those obtained for 2 state-of-the-art chelators for nuclear medicine, DOTA and macropa. The stability of 225Ac-PYTA and [44Sc]Sc-PYTA, the complexes having the most disparity with respect to metal-ion size, was further probed in mice. The resulting PET images (44Sc) and ex vivo biodistribution profiles (44Sc and 225Ac) of the PYTA complexes differed dramatically from those of unchelated [44Sc]Sc3+ and 225Ac3+. These differences provide evidence that PYTA retains this size-divergent pair of radionuclides in vivo. Collectively, these studies establish PYTA as a new workhorse chelator for nuclear medicine and warrant its further investigation in targeted constructs.
Collapse
Affiliation(s)
- Megan E Simms
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Zhiyao Li
- Department of Radiology, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
| | - Megan M Sibley
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Caroline M Lara
- Department of Biological Sciences, University of Notre Dame Notre Dame IN 46556 USA
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California Santa Cruz Santa Cruz CA 95064 USA
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Amanda Fears
- Department of Radiology, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
| | - Frankie D White
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Daniel L J Thorek
- Department of Radiology, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Department of Biomedical Engineering, Washington University in St. Louis St. Louis MO 63110 USA
- Oncologic Imaging Program, Siteman Cancer Center, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
10
|
Lapi SE, Scott PJH, Scott AM, Windhorst AD, Zeglis BM, Abdel-Wahab M, Baum RP, Buatti JM, Giammarile F, Kiess AP, Jalilian A, Knoll P, Korde A, Kunikowska J, Lee ST, Paez D, Urbain JL, Zhang J, Lewis JS. Recent advances and impending challenges for the radiopharmaceutical sciences in oncology. Lancet Oncol 2024; 25:e236-e249. [PMID: 38821098 PMCID: PMC11340123 DOI: 10.1016/s1470-2045(24)00030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 06/02/2024]
Abstract
This paper is the first of a Series on theranostics that summarises the current landscape of the radiopharmaceutical sciences as they pertain to oncology. In this Series paper, we describe exciting developments in radiochemistry and the production of radionuclides, the development and translation of theranostics, and the application of artificial intelligence to our field. These developments are catalysing growth in the use of radiopharmaceuticals to the benefit of patients worldwide. We also highlight some of the key issues to be addressed in the coming years to realise the full potential of radiopharmaceuticals to treat cancer.
Collapse
Affiliation(s)
- Suzanne E Lapi
- Departments of Radiology and Chemistry, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, AL, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia; Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia; Department of Surgery, Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands; Cancer Center Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York City, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA; Department of Radiology, Weill Cornell Medical College, New York City, NY, USA
| | - May Abdel-Wahab
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Richard P Baum
- Deutsche Klinik für Diagnostik (DKD Helios Klinik) Wiesbaden, Curanosticum MVZ Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Germany
| | - John M Buatti
- Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Francesco Giammarile
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria; Centre Leon Bérard, Lyon, France
| | - Ana P Kiess
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amirreza Jalilian
- Radiochemistry and Radiotechnology Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Peter Knoll
- Dosimetry and Medical Radiation Physics Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Aruna Korde
- Radiochemistry and Radiotechnology Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Jolanta Kunikowska
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Sze Ting Lee
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia; Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia; Department of Surgery, Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Diana Paez
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Jean-Luc Urbain
- Department of Radiology-Nuclear Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jingjing Zhang
- Department of Diagnostic Radiology, National University of Singapore, Singapore; Clinical Imaging Research Centre, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA; Department of Radiology, Weill Cornell Medical College, New York City, NY, USA; Department of Pharmacology, Weill Cornell Medical College, New York City, NY, USA.
| |
Collapse
|
11
|
Suzuki H, Kannaka K, Uehara T. Approaches to Reducing Normal Tissue Radiation from Radiolabeled Antibodies. Pharmaceuticals (Basel) 2024; 17:508. [PMID: 38675468 PMCID: PMC11053530 DOI: 10.3390/ph17040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Radiolabeled antibodies are powerful tools for both imaging and therapy in the field of nuclear medicine. Radiolabeling methods that do not release radionuclides from parent antibodies are essential for radiolabeling antibodies, and practical radiolabeling protocols that provide high in vivo stability have been established for many radionuclides, with a few exceptions. However, several limitations remain, including undesirable side effects on the biodistribution profiles of antibodies. This review summarizes the numerous efforts made to tackle this problem and the recent advances, mainly in preclinical studies. These include pretargeting approaches, engineered antibody fragments and constructs, the secondary injection of clearing agents, and the insertion of metabolizable linkages. Finally, we discuss the potential of these approaches and their prospects for further clinical application.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Laboratory of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; (K.K.); (T.U.)
| | | | | |
Collapse
|
12
|
Yang M, Liu H, Lou J, Zhang J, Zuo C, Zhu M, Zhang X, Yin Y, Zhang Y, Qin S, Zhang H, Fan X, Dang Y, Cheng C, Cheng Z, Yu F. Alpha-Emitter Radium-223 Induces STING-Dependent Pyroptosis to Trigger Robust Antitumor Immunity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307448. [PMID: 37845027 DOI: 10.1002/smll.202307448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Radium-223 (223 Ra) is the first-in-class alpha-emitter to mediate tumor eradication, which is commonly thought to kill tumor cells by directly cleaving double-strand DNA. However, the immunogenic characteristics and cell death modalities triggered by 223 Ra remain unclear. Here, it is reported that the 223 Ra irradiation induces the pro-inflammatory damage-associated molecular patterns including calreticulin, HMGB1, and HSP70, hallmarks of tumor immunogenicity. Moreover, therapeutic 223 Ra retards tumor progression by triggering pyroptosis, an immunogenic cell death. Mechanically, 223 Ra-induced DNA damage leads to the activation of stimulator of interferon genes (STING)-mediated DNA sensing pathway, which is critical for NLRP3 inflammasome-dependent pyroptosis and subsequent DCs maturation as well as T cell activation. These findings establish an essential role of STING in mediating alpha-emitter 223 Ra-induced antitumor immunity, which provides the basis for the development of novel cancer therapeutic strategies and combinatory therapy.
Collapse
Affiliation(s)
- Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Haipeng Liu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jingjing Lou
- Department of Nuclear Medicine, Pudong Medical Center, Fudan University, Shanghai, 201399, China
| | - Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Changjing Zuo
- Department of Nuclear Medicine, the First Affiliated Hospital of Navy Medical University (Changhai Hospital), Shanghai, 200433, China
| | - Mengqin Zhu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaoyi Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yuzhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yu Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Shanshan Qin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yifang Dang
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Chao Cheng
- Department of Nuclear Medicine, the First Affiliated Hospital of Navy Medical University (Changhai Hospital), Shanghai, 200433, China
| | - Zhen Cheng
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
13
|
Morgan KA, Wichmann CW, Osellame LD, Cao Z, Guo N, Scott AM, Donnelly PS. Tumor targeted alpha particle therapy with an actinium-225 labelled antibody for carbonic anhydrase IX. Chem Sci 2024; 15:3372-3381. [PMID: 38425522 PMCID: PMC10901495 DOI: 10.1039/d3sc06365h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Selective antibody targeted delivery of α particle emitting actinium-225 to tumors has significant therapeutic potential. This work highlights the design and synthesis of a new bifunctional macrocyclic diazacrown ether chelator, H2MacropaSqOEt, that can be conjugated to antibodies and forms stable complexes with actinium-225. The macrocyclic diazacrown ether chelator incorporates a linker comprised of a short polyethylene glycol fragment and a squaramide ester that allows selective reaction with lysine residues on antibodies to form stable vinylogous amide linkages. This new H2MacropaSqOEt chelator was used to modify a monoclonal antibody, girentuximab (hG250), that binds to carbonic anhydrase IX, an enzyme that is overexpressed on the surface of cancers such as clear cell renal cell carcinoma. This new antibody conjugate (H2MacropaSq-hG250) had an average chelator to antibody ratio of 4 : 1 and retained high affinity for carbonic anhydrase IX. H2MacropaSq-hG250 was radiolabeled quantitatively with [225Ac]AcIII within one minute at room temperature with micromolar concentrations of antibody and the radioactive complex is stable in human serum for >7 days. Evaluation of [225Ac]Ac(MacropaSq-hG250) in a mouse xenograft model, that overexpresses carbonic anhydrase IX, demonstrated a highly significant therapeutic response. It is likely that H2MacropaSqOEt could be used to modify other antibodies providing a readily adaptable platform for other actinium-225 based therapeutics.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Melbourne Australia
| | - Christian W Wichmann
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
- Department of Molecular Imaging and Therapy Austin Health Melbourne Australia
| | - Laura D Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
| | - Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
- Department of Molecular Imaging and Therapy Austin Health Melbourne Australia
- Department of Medicine, University of Melbourne Melbourne Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Melbourne Australia
| |
Collapse
|
14
|
White FD, Thiele NA, Simms ME, Cary SK. Structure and bonding of a radium coordination compound in the solid state. Nat Chem 2024; 16:168-172. [PMID: 37945833 DOI: 10.1038/s41557-023-01366-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
The structure and bonding of radium (Ra) is poorly understood because of challenges arising from its scarcity and radioactivity. Here we report the synthesis of a molecular Ra2+ complex using 226Ra and the organic ligand dibenzo-30-crown-10, and its characterization in the solid state by single-crystal X-ray diffraction. The crystal structure of the Ra2+ complex shows an 11-coordinate arrangement comprising the 10 donor O atoms of dibenzo-30-crown-10 and that of a bound water molecule. Under identical crystallization conditions, barium (Ba2+) yielded a 10-coordinate 'Pac-Man'-shaped structure lacking water. Furthermore, the bond distance between the Ra centre and the O atom of the coordinated water is substantially longer than would be predicted from the ionic radius of Ra2+ and by analogy with Ba2+, supporting greater water lability in Ra2+ complexes than in their Ba2+ counterparts. Barium often serves as a non-radioactive surrogate for radium, but our findings show that Ra2+ chemistry cannot always be predicted using Ba2+.
Collapse
Affiliation(s)
- Frankie D White
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Megan E Simms
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Samantha K Cary
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
15
|
Ghosh S, Lee SJ, Hsu JC, Chakraborty S, Chakravarty R, Cai W. Cancer Brachytherapy at the Nanoscale: An Emerging Paradigm. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:4-26. [PMID: 38274040 PMCID: PMC10806911 DOI: 10.1021/cbmi.3c00092] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 11/01/2023] [Indexed: 01/27/2024]
Abstract
Brachytherapy is an established treatment modality that has been globally utilized for the therapy of malignant solid tumors. However, classic therapeutic sealed sources used in brachytherapy must be surgically implanted directly into the tumor site and removed after the requisite period of treatment. In order to avoid the trauma involved in the surgical procedures and prevent undesirable radioactive distribution at the cancerous site, well-dispersed radiolabeled nanomaterials are now being explored for brachytherapy applications. This emerging field has been coined "nanoscale brachytherapy". Despite present-day advancements, an ongoing challenge is obtaining an advanced, functional nanomaterial that concurrently incorporates features of high radiolabeling yield, short labeling time, good radiolabeling stability, and long tumor retention time without leakage of radioactivity to the nontargeted organs. Further, attachment of suitable targeting ligands to the nanoplatforms would widen the nanoscale brachytherapy approach to tumors expressing various phenotypes. Molecular imaging using radiolabeled nanoplatforms enables noninvasive visualization of cellular functions and biological processes in vivo. In vivo imaging also aids in visualizing the localization and retention of the radiolabeled nanoplatforms at the tumor site for the requisite time period to render safe and effective therapy. Herein, we review the advancements over the last several years in the synthesis and use of functionalized radiolabeled nanoplatforms as a noninvasive substitute to standard brachytherapy sources. The limitations of present-day brachytherapy sealed sources are analyzed, while highlighting the advantages of using radiolabeled nanoparticles (NPs) for this purpose. The recent progress in the development of different radiolabeling methods, delivery techniques and nanoparticle internalization mechanisms are discussed. The preclinical studies performed to date are summarized with an emphasis on the current challenges toward the future translation of nanoscale brachytherapy in routine clinical practices.
Collapse
Affiliation(s)
- Sanchita Ghosh
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sophia J. Lee
- Departments
of Radiology and Medical Physics, University
of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jessica C. Hsu
- Departments
of Radiology and Medical Physics, University
of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Sudipta Chakraborty
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Rubel Chakravarty
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Weibo Cai
- Departments
of Radiology and Medical Physics, University
of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
16
|
Gilhula JC, Xu L, White FD, Adelman SL, Aldrich KE, Batista ER, Dan D, Jones ZR, Kozimor SA, Mason HE, Meyer RL, Thiele NA, Yang P, Yuan M. Advances in heavy alkaline earth chemistry provide insight into complexation of weakly polarizing Ra 2+, Ba 2+, and Sr 2+ cations. SCIENCE ADVANCES 2024; 10:eadj8765. [PMID: 38181087 PMCID: PMC10776001 DOI: 10.1126/sciadv.adj8765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
Numerous technologies-with catalytic, therapeutic, and diagnostic applications-would benefit from improved chelation strategies for heavy alkaline earth elements: Ra2+, Ba2+, and Sr2+. Unfortunately, chelating these metals is challenging because of their large size and weak polarizing power. We found 18-crown-6-tetracarboxylic acid (H4COCO) bound Ra2+, Ba2+, and Sr2+ to form M(HxCOCO)x-2. Upon isolating radioactive 223Ra from its parent radionuclides (227Ac and 227Th), 223Ra2+ reacted with the fully deprotonated COCO4- chelator to generate Ra(COCO)2-(aq) (log KRa(COCO)2- = 5.97 ± 0.01), a rare example of a molecular radium complex. Comparative analyses with Sr2+ and Ba2+ congeners informed on what attributes engendered success in heavy alkaline earth complexation. Chelators with high negative charge [-4 for Ra(COCO)2-(aq)] and many donor atoms [≥11 in Ra(COCO)2-(aq)] provided a framework for stable complex formation. These conditions achieved steric saturation and overcame the weak polarization powers associated with these large dicationic metals.
Collapse
Affiliation(s)
| | - Lei Xu
- Los Alamos National Laboratory, Los Alamos, NM 87545 (USA)
| | | | | | | | | | - David Dan
- Los Alamos National Laboratory, Los Alamos, NM 87545 (USA)
| | | | | | | | - Rachel L. Meyer
- Los Alamos National Laboratory, Los Alamos, NM 87545 (USA)
- Department of Chemistry, University of Rochester, Rochester, NY 14627 (USA)
| | - Nikki A. Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA)
| | - Ping Yang
- Los Alamos National Laboratory, Los Alamos, NM 87545 (USA)
| | - Mingbin Yuan
- Los Alamos National Laboratory, Los Alamos, NM 87545 (USA)
| |
Collapse
|
17
|
Simms ME, Sibley MM, Driscoll DM, Kertesz V, Damron JT, Ivanov AS, White FD, Thiele NA. Reining in Radium for Nuclear Medicine: Extra-Large Chelator Development for an Extra-Large Ion. Inorg Chem 2023; 62:20834-20843. [PMID: 37811965 DOI: 10.1021/acs.inorgchem.3c02985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Targeted α therapy (TAT) of soft-tissue cancers using the α particle-emitting radionuclide 223Ra holds great potential because of its favorable nuclear properties, adequate availability, and established clinical use for treating metastatic prostate cancer of the bone. Despite these advantages, the use of 223Ra has been largely overshadowed by other α emitters due to its challenging chelation chemistry. A key criterion that needs to be met for a radionuclide to be used in TAT is its stable attachment to a targeting vector via a bifunctional chelator. The low charge density of Ra2+ arising from its large ionic radius weakens its electrostatic binding interactions with chelators, leading to insufficient complex stability in vivo. In this study, we synthesized and evaluated macropa-XL as a novel chelator for 223Ra. It bears a large 21-crown-7 macrocyclic core and two picolinate pendent groups, which we hypothesized would effectively saturate the large coordination sphere of the Ra2+ ion. The structural chemistry of macropa-XL was first established with the nonradioactive Ba2+ ion using X-ray diffraction and X-ray absorption spectroscopy, which revealed the formation of an 11-coordinate complex in a rare anti pendent-arm configuration. Subsequently, the stability constant of the [Ra(macropa-XL)] complex was determined via competitive cation exchange with 223Ra and 224Ra radiotracers and compared with that of macropa, the current state-of-the-art chelator for Ra2+. A moderate log KML value of 8.12 was measured for [Ra(macropa-XL)], which is approximately 1.5 log K units lower than the stability constant of [Ra(macropa)]. This relative decrease in Ra2+ complex stability for macropa-XL versus macropa was further probed using density functional theory calculations. Additionally, macropa-XL was radiolabeled with 223Ra, and the kinetic stability of the resulting complex was evaluated in human serum. Although macropa-XL could effectively bind 223Ra under mild conditions, the complex appeared to be unstable to transchelation. Collectively, this study sheds additional light on the chelation chemistry of the exotic Ra2+ ion and contributes to the small, but growing, number of chelator development efforts for 223Ra-based TAT.
Collapse
Affiliation(s)
- Megan E Simms
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Megan M Sibley
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Darren M Driscoll
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Joshua T Damron
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Frankie D White
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
18
|
Marlin A, Koller A, Madarasi E, Cordier M, Esteban-Gómez D, Platas-Iglesias C, Tircsó G, Boros E, Patinec V, Tripier R. H 3nota Derivatives Possessing Picolyl and Picolinate Pendants for Ga 3+ Coordination and 67Ga 3+ Radiolabeling. Inorg Chem 2023; 62:20634-20645. [PMID: 37552617 DOI: 10.1021/acs.inorgchem.3c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
We synthesized, thanks to the regiospecific N-functionalization using an orthoamide intermediate, two 1,4,7-triazacyclononane derivatives containing an acetate arm and either a methylpyridine or a picolinic acid group, respectively, Hnoapy and H2noapa, as new Ga3+ chelators for potential use in nuclear medicine. The corresponding Ga3+ complexes were synthesized and structurally characterized in solution by 1H and 13C NMR. The [Ga(noapy)]2+ complex appears to exist in solution as two diasteroisomeric pairs of enantiomers, as confirmed by density functional theory (DFT) calculations, while for [Ga(noapa)]+, a single species is present in solution. Solid-state investigations were possible for the [Ga(noapa)]+ complex, which crystallized from water as a pair of enantiomers. The average length of the N-Ga bonds of 2.090 Å is identical with that found for the [Ga(nota)] complex, showing that the presence of the picolinate arm does not hinder the coordination of the ligand to the metal ion. Protonation constants of noapy- and noapa2- were determined by potentiometric titrations, providing an overall basicity ∑log KiH (i = 1-4) that increases in the order noapy- < noapa2- < nota3- with increases in the negative charge of the ligand. Stability constants determined by pH-potentiometric titrations supplemented with 71Ga NMR data show that the stabilities of [Ga(noapy)]2+ and [Ga(noapa)]+ are lower compared to that of [Ga(nota)] but higher than those of other standards such as [Ga(aazta)]-. 67Ga radiolabeling studies were performed in order to demonstrate the potential of these chelators for 67/68Ga-based radiopharmaceuticals. The labelings of Hnoapy and H2noapa were nearly identical, outperforming H3nota. Stability studies were conducted in phosphate-buffered saline and in the presence of human serum transferrin, revealing no significant decomplexation of [67Ga][Ga(noapy)]2+ and [67Ga][Ga(noapa)]+ compared to [67Ga][Ga(nota)]. Finally, all complexes were found to be highly hydrophilic, with calculated log D7.4 values of -3.42 ± 0.05, -3.34 ± 0.04, and -3.00 ± 0.23 for Hnoapy, H2noapa, and H3nota, respectively, correlating with the charge of each complex and the electrostatic potentials obtained with DFT.
Collapse
Affiliation(s)
- Axia Marlin
- CEMCA, Université Brest, UMR 6521, CNRS, 6 avenue Victor le Gorgeu, 29238 Brest, France
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Angus Koller
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Enikö Madarasi
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Doctoral School of Chemistry at the University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Marie Cordier
- Institut des Sciences Chimiques de Rennes, Université Rennes, UMR 6226, CNRS, F-35000 Rennes, France
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Universidade da Coruña, Campus da Zapateira, rúa da Fraga 10, 15008A Coruña, Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Universidade da Coruña, Campus da Zapateira, rúa da Fraga 10, 15008A Coruña, Spain
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Véronique Patinec
- CEMCA, Université Brest, UMR 6521, CNRS, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Raphaël Tripier
- CEMCA, Université Brest, UMR 6521, CNRS, 6 avenue Victor le Gorgeu, 29238 Brest, France
| |
Collapse
|
19
|
Blei M, Waurick L, Reissig F, Kopka K, Stumpf T, Drobot B, Kretzschmar J, Mamat C. Equilibrium Thermodynamics of Macropa Complexes with Selected Metal Isotopes of Radiopharmaceutical Interest. Inorg Chem 2023; 62:20699-20709. [PMID: 37702665 PMCID: PMC10731647 DOI: 10.1021/acs.inorgchem.3c01983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 09/14/2023]
Abstract
To pursue the design of in vivo stable chelating systems for radiometals, a concise and straightforward method toolbox was developed combining NMR, isothermal titration calorimetry (ITC), and europium time-resolved laser-induced fluorescence spectroscopy (Eu-TRLFS). For this purpose, the macropa chelator was chosen, and Lu3+, La3+, Pb2+, Ra2+, and Ba2+ were chosen as radiopharmaceutically relevant metal ions. They differ in charge (2+ and 3+) and coordination properties (main group vs lanthanides). 1H NMR was used to determine four pKa values (±0.15; carboxylate functions, 2.40 and 3.13; amino functions, 6.80 and 7.73). Eu-TRLFS was used to validate the exclusive existence of the 1:1 Mn+/ligand complex in the chosen pH range at tracer level concentrations. ITC measurements were accomplished to determine the resulting stability constants of the desired complexes, with log K values ranging from 18.5 for the Pb-mcp complex to 7.3 for the Lu-mcp complex. Density-functional-theory-calculated structures nicely mirror the complexes' order of stabilities by bonding features. Radiolabeling with macropa using ligand concentrations from 10-3 to 10-6 M was accomplished by pointing out the complex formation and stability (212Pb > 133La > 131Ba ≈ 224Ra > 177Lu) by means of normal-phase thin-layer chromatography analyses.
Collapse
Affiliation(s)
- Magdalena
K. Blei
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany
- TU
Dresden, Faculty of Chemistry and Food Chemistry, D-01062 Dresden, Germany
| | - Lukas Waurick
- TU
Dresden, Faculty of Chemistry and Food Chemistry, D-01062 Dresden, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Falco Reissig
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany
- TU
Dresden, Faculty of Chemistry and Food Chemistry, D-01062 Dresden, Germany
- National
Center for Tumor Diseases, University Cancer Center, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
- German
Cancer Consortium, Partner Site Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
| | - Thorsten Stumpf
- TU
Dresden, Faculty of Chemistry and Food Chemistry, D-01062 Dresden, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Jerome Kretzschmar
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Constantin Mamat
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany
- TU
Dresden, Faculty of Chemistry and Food Chemistry, D-01062 Dresden, Germany
| |
Collapse
|
20
|
Hu A, Martin KE, Śmiłowicz D, Aluicio-Sarduy E, Cingoranelli SJ, Lapi SE, Engle JW, Boros E, Wilson JJ. Construction of the Bioconjugate Py-Macrodipa-PSMA and Its In Vivo Investigations with Large 132/135La 3+ and Small 47Sc 3+ Radiometal Ions. Eur J Inorg Chem 2023; 26:e202300457. [PMID: 38495596 PMCID: PMC10939043 DOI: 10.1002/ejic.202300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 03/19/2024]
Abstract
To harness radiometals in clinical settings, a chelator forming a stable complex with the metal of interest and targets the desired pathological site is needed. Toward this goal, we previously reported a unique set of chelators that can stably bind to both large and small metal ions, via a conformational switch. Within this chelator class, py-macrodipa is particularly promising based on its ability to stably bind several medicinally valuable radiometals including large 132/135La3+, 213Bi3+, and small 44Sc3+. Here, we report a 10-step organic synthesis of its bifunctional analogue py-macrodipa-NCS, which contains an amine-reactive -NCS group that is amenable for bioconjugation reactions to targeting vectors. The hydrolytic stability of py-macordipa-NCS was assessed, revealing a half-life of 6.0 d in pH 9.0 aqueous buffer. This bifunctional chelator was then conjugated to a prostate-specific membrane antigen (PSMA)-binding moiety, yielding the bioconjugate py-macrodipa-PSMA, which was subsequently radiolabeled with large 132/135La3+ and small 47Sc3+, revealing efficient and quantitative complex formation. The resulting radiocomplexes were injected into mice bearing both PSMA-expressing and PSMA-non-expressing tumor xenografts to determine their biodistribution patterns, revealing delivery of both 132/135La3+ and 47Sc3+ to PSMA+ tumor sites. However, partial radiometal dissociation was observed, suggesting that py-macrodipa-PSMA needs further structural optimization.
Collapse
Affiliation(s)
- Aohan Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Kirsten E Martin
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics and Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Shelbie J Cingoranelli
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Jonathan W Engle
- Department of Medical Physics and Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
21
|
Kondo M, Cai Z, Chan C, Forkan N, Reilly RM. [ 225Ac]Ac- and [ 111In]In-DOTA-trastuzumab theranostic pair: cellular dosimetry and cytotoxicity in vitro and tumour and normal tissue uptake in vivo in NRG mice with HER2-positive human breast cancer xenografts. EJNMMI Radiopharm Chem 2023; 8:24. [PMID: 37750937 PMCID: PMC10522541 DOI: 10.1186/s41181-023-00208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Trastuzumab (Herceptin) has improved the outcome for patients with HER2-positive breast cancer (BC) but brain metastases (BM) remain a challenge due to poor uptake of trastuzumab into the brain. Radioimmunotherapy (RIT) with trastuzumab labeled with α-particle emitting, 225Ac may overcome this challenge by increasing the cytotoxic potency on HER2-positive BC cells. Our first aim was to synthesize and characterize [111In]In-DOTA-trastuzumab and [225Ac]Ac-DOTA-trastuzumab as a theranostic pair for imaging and RIT of HER2-positive BC, respectively. A second aim was to estimate the cellular dosimetry of [225Ac]Ac-DOTA-trastuzumab and determine its cytotoxicity in vitro on HER2-positive BC cells. A third aim was to study the tumour and normal tissue uptake of [225Ac]Ac-DOTA-trastuzumab using [111In]In-DOTA-trastuzumab as a radiotracer in vivo in NRG mice with s.c. 164/8-1B/H2N.luc+ human BC tumours that metastasize to the brain. RESULTS Trastuzumab was conjugated to 12.7 ± 1.2 DOTA chelators and labeled with 111In or 225Ac. [111In]In-DOTA-trastuzumab exhibited high affinity specific binding to HER2-positive SK-BR-3 human BC cells (KD = 1.2 ± 0.3 × 10-8 mol/L). Treatment with [225Ac]Ac-DOTA-trastuzumab decreased the surviving fraction (SF) of SK-BR-3 cells dependent on the specific activity (SA) with SF < 0.001 at SA = 0.74 kBq/µg. No surviving colonies were noted at SA = 1.10 kBq/µg or 1.665 kBq/µg. Multiple DNA double-strand breaks (DSBs) were detected in SK-BR-3 cells exposed to [225Ac]Ac-DOTA-trastuzumab by γ-H2AX immunofluorescence microscopy. The time-integrated activity of [111In]In-DOTA-trastuzumab in SK-BR-3 cells was measured and used to estimate the absorbed doses from [225Ac]Ac-DOTA-trastuzumab by Monte Carlo N-Particle simulation for correlation with the SF. The dose required to decrease the SF of SK-BR-3 cells to 0.10 (D10) was 1.10 Gy. Based on the D10 reported for γ-irradiation of SK-BR-3 cells, we estimate that the relative biological effectiveness of the α-particles emitted by 225Ac is 4.4. Biodistribution studies in NRG mice with s.c. 164/8-1B/H2N.luc+ human BC tumours at 48 h post-coinjection of [111In]In-DOTA-trastuzumab and [225Ac]Ac-DOTA-trastuzumab revealed HER2-specific tumour uptake (10.6 ± 0.6% ID/g) but spleen uptake was high (28.9 ± 7.4% ID/g). Tumours were well-visualized by SPECT/CT imaging using [111In]In-DOTA-trastuzumab. CONCLUSION We conclude that [225Ac]Ac-DOTA-trastuzumab exhibited potent and HER2-specific cytotoxicity on SK-BR-3 cells in vitro and HER2-specific uptake in s.c. 164/8-1B/H2N.luc+ human BC tumours in NRG mice, and these tumours were imaged by SPECT/CT with [111In]In-DOTA-trastuzumab. These results are promising for combining [111In]In-DOTA-trastuzumab and [225Ac]Ac-DOTA-trastuzumab as a theranostic pair for imaging and RIT of HER2-positive BC.
Collapse
Affiliation(s)
- Misaki Kondo
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Conrad Chan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Nubaira Forkan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
22
|
Ahmad MG, Balamurali MM, Chanda K. Click-derived multifunctional metal complexes for diverse applications. Chem Soc Rev 2023; 52:5051-5087. [PMID: 37431583 DOI: 10.1039/d3cs00343d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The Click reaction that involves Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) serves as the most potent and highly dependable tool for the development of many complex architectures. It has paved the way for the synthesis of numerous drug molecules with enhanced synthetic flexibility, reliability, specificity and modularity. It is all about bringing two different molecular entities together to achieve the required molecular properties. The utilization of Click chemistry has been well demonstrated in organic synthesis, particularly in reactions that involve biocompatible precursors. In pharmaceutical research, Click chemistry is extensively utilized for drug delivery applications. The exhibited bio-compatibility and dormancy towards other biological components under cellular environments makes Click chemistry an identified boon in bio-medical research. In this review, various click-derived transition metal complexes are discussed in terms of their applications and uniqueness. The scope of this chemistry towards other streams of applied sciences is also discussed.
Collapse
Affiliation(s)
- Md Gulzar Ahmad
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| | - M M Balamurali
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai campus, Chennai 600127, Tamilnadu, India.
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| |
Collapse
|
23
|
Nguyen AT, Kim HK. Recent Developments in PET and SPECT Radiotracers as Radiopharmaceuticals for Hypoxia Tumors. Pharmaceutics 2023; 15:1840. [PMID: 37514026 PMCID: PMC10385036 DOI: 10.3390/pharmaceutics15071840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Hypoxia, a deficiency in the levels of oxygen, is a common feature of most solid tumors and induces many characteristics of cancer. Hypoxia is associated with metastases and strong resistance to radio- and chemotherapy, and can decrease the accuracy of cancer prognosis. Non-invasive imaging methods such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) using hypoxia-targeting radiopharmaceuticals have been used for the detection and therapy of tumor hypoxia. Nitroimidazoles are bioreducible moieties that can be selectively reduced under hypoxic conditions covalently bind to intracellular macromolecules, and are trapped within hypoxic cells and tissues. Recently, there has been a strong motivation to develop PET and SPECT radiotracers as radiopharmaceuticals containing nitroimidazole moieties for the visualization and treatment of hypoxic tumors. In this review, we summarize the development of some novel PET and SPECT radiotracers as radiopharmaceuticals containing nitroimidazoles, as well as their physicochemical properties, in vitro cellular uptake values, in vivo biodistribution, and PET/SPECT imaging results.
Collapse
Affiliation(s)
- Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
24
|
Ha JW, Choi JY, Boo YC. Differential Effects of Histidine and Histidinamide versus Cysteine and Cysteinamide on Copper Ion-Induced Oxidative Stress and Cytotoxicity in HaCaT Keratinocytes. Antioxidants (Basel) 2023; 12:antiox12040801. [PMID: 37107176 PMCID: PMC10135049 DOI: 10.3390/antiox12040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Metal chelators are used for various industrial and medical purposes based on their physicochemical properties and biological activities. In biological systems, copper ions bind to certain enzymes as cofactors to confer catalytic activity or bind to specific proteins for safe storage and transport. However, unbound free copper ions can catalyze the production of reactive oxygen species (ROS), causing oxidative stress and cell death. The present study aims to identify amino acids with copper chelation activities that might mitigate oxidative stress and toxicity in skin cells exposed to copper ions. A total of 20 free amino acids and 20 amidated amino acids were compared for their copper chelation activities in vitro and the cytoprotective effects in cultured HaCaT keratinocytes exposed to CuSO4. Among the free amino acids, cysteine showed the highest copper chelation activity, followed by histidine and glutamic acid. Among the amidated amino acids, cysteinamide showed the highest copper chelation activity, followed by histidinamide and aspartic acid. CuSO4 (0.4–1.0 mM) caused cell death in a concentration-dependent manner. Among the free and amidated amino acids (1.0 mM), only histidine and histidinamide prevented the HaCaT cell death induced by CuSO4 (1.0 mM). Cysteine and cysteinamide had no cytoprotective effects despite their potent copper-chelating activities. EDTA and GHK-Cu, which were used as reference compounds, had no cytoprotective effects either. Histidine and histidinamide suppressed the CuSO4-induced ROS production, glutathione oxidation, lipid peroxidation, and protein carbonylation in HaCaT cells, whereas cysteine and cysteinamide had no such effects. Bovine serum albumin (BSA) showed copper-chelating activity at 0.5–1.0 mM (34–68 mg mL−1). Histidine, histidinamide, and BSA at 0.5–1.0 mM enhanced the viability of cells exposed to CuCl2 or CuSO4 (0.5 mM or 1.0 mM) whereas cysteine and cysteinamide had no such effects. The results of this study suggest that histidine and histidinamide have more advantageous properties than cysteine and cysteinamide in terms of alleviating copper ion-induced toxic effects in the skin.
Collapse
Affiliation(s)
- Jae Won Ha
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (J.W.H.); (J.Y.C.)
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Correspondence: ; Tel.: +82-53-420-4946
| |
Collapse
|
25
|
Goel M, Mackeyev Y, Krishnan S. Radiolabeled nanomaterial for cancer diagnostics and therapeutics: principles and concepts. Cancer Nanotechnol 2023; 14:15. [PMID: 36865684 PMCID: PMC9968708 DOI: 10.1186/s12645-023-00165-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
In the last three decades, radiopharmaceuticals have proven their effectiveness for cancer diagnosis and therapy. In parallel, the advances in nanotechnology have fueled a plethora of applications in biology and medicine. A convergence of these disciplines has emerged more recently with the advent of nanotechnology-aided radiopharmaceuticals. Capitalizing on the unique physical and functional properties of nanoparticles, radiolabeled nanomaterials or nano-radiopharmaceuticals have the potential to enhance imaging and therapy of human diseases. This article provides an overview of various radionuclides used in diagnostic, therapeutic, and theranostic applications, radionuclide production through different techniques, conventional radionuclide delivery systems, and advancements in the delivery systems for nanomaterials. The review also provides insights into fundamental concepts necessary to improve currently available radionuclide agents and formulate new nano-radiopharmaceuticals.
Collapse
Affiliation(s)
- Muskan Goel
- Amity School of Applied Sciences, Amity University, Gurugram, Haryana 122413 India
| | - Yuri Mackeyev
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030 USA
| | - Sunil Krishnan
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030 USA
| |
Collapse
|
26
|
Cieslik P, Kubeil M, Zarschler K, Ullrich M, Brandt F, Anger K, Wadepohl H, Kopka K, Bachmann M, Pietzsch J, Stephan H, Comba P. Toward Personalized Medicine: One Chelator for Imaging and Therapy with Lutetium-177 and Actinium-225. J Am Chem Soc 2022; 144:21555-21567. [DOI: 10.1021/jacs.2c08438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Patrick Cieslik
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Manja Kubeil
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Florian Brandt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Karl Anger
- Hochschule für Technik und Wirtschaft Dresden, Friedrich-List-Platz 1, 01069 Dresden, Germany
| | - Hubert Wadepohl
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
- Universität Heidelberg, Interdisciplinary Center for Scientific Computing, INF 205, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Shtykov SN. Coordination Compounds (Chelates) in Analytical Chemistry: Solutions, Sorbents, and Nanoplatforms. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Hu A, Simms ME, Kertesz V, Wilson JJ, Thiele NA. Chelating Rare-Earth Metals (Ln 3+) and 225Ac 3+ with the Dual-Size-Selective Macrocyclic Ligand Py 2-Macrodipa. Inorg Chem 2022; 61:12847-12855. [PMID: 35914099 DOI: 10.1021/acs.inorgchem.2c01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radioisotopes of metallic elements, or radiometals, are widely employed in both therapeutic and diagnostic nuclear medicine. For this application, chelators that efficiently bind the radiometal of interest and form a stable metal-ligand complex with it are required. Toward the development of new chelators for nuclear medicine, we recently reported a novel class of 18-membered macrocyclic chelators that is characterized by their ability to form stable complexes with both large and small rare-earth metals (Ln3+), a property referred to as dual size selectivity. A specific chelator in this class called py-macrodipa, which contains one pyridyl group within its macrocyclic core, was established as a promising candidate for 135La3+, 213Bi3+, and 44Sc3+ chelation. Building upon this prior work, here we report the synthesis and characterization of a new chelator called py2-macrodipa with two pyridyl units fused into the macrocyclic backbone. Its coordination chemistry with the Ln3+ series was investigated by NMR spectroscopy, X-ray crystallography, density functional theory (DFT) calculations, analytical titrations, and transchelation assays. These studies reveal that py2-macrodipa retains the expected dual size selectivity and possesses an enhanced thermodynamic affinity for all Ln3+ compared to py-macrodipa. By contrast, the kinetic stability of Ln3+ complexes with py2-macrodipa is only improved for the light, large Ln3+ ions. Based upon these observations, we further assessed the suitability of py2-macrodipa for use with 225Ac3+, a large radiometal with valuable properties for targeted α therapy. Radiolabeling and stability studies revealed py2-macrodipa to efficiently incorporate 225Ac3+ and to form a complex that is inert in human serum over 3 weeks. Although py2-macrodipa does not surpass the state-of-the-art chelator macropa for 225Ac3+ chelation, it does provide another effective 225Ac3+ chelator. These studies shed light on the fundamental coordination chemistry of the Ln3+ series and may inspire future chelator design efforts.
Collapse
Affiliation(s)
- Aohan Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Megan E Simms
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
29
|
Kadassery KJ, King AP, Fayn S, Baidoo KE, MacMillan SN, Escorcia FE, Wilson JJ. H 2BZmacropa-NCS: A Bifunctional Chelator for Actinium-225 Targeted Alpha Therapy. Bioconjug Chem 2022; 33:1222-1231. [PMID: 35670495 PMCID: PMC9362842 DOI: 10.1021/acs.bioconjchem.2c00190] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Actinium-225 (225Ac) is one of the most promising radionuclides for targeted alpha therapy (TAT). With a half-life of 9.92 days and a decay chain that emits four high-energy α particles, 225Ac is well-suited for TAT when conjugated to macromolecular targeting vectors that exhibit extended in vivo circulation times. The implementation of 225Ac in these targeted constructs, however, requires a suitable chelator that can bind and retain this radionuclide in vivo. Previous work has demonstrated the suitability of a diaza-18-crown-6 macrocyclic chelator H2macropa for this application. Building upon these prior efforts, in this study, two rigid variants of H2macropa, which contain either one (H2BZmacropa) or two (H2BZ2macropa) benzene rings within the macrocyclic core, were synthesized and investigated for their potential use for 225Ac TAT. The coordination chemistry of these ligands with La3+, used as a nonradioactive model for Ac3+, was carried out. Both NMR spectroscopic and X-ray crystallographic studies of the La3+ complexes of these ligands revealed similar structural features to those found for the related complex of H2macropa. Thermodynamic stability constants of the La3+ complexes, however, were found to be 1 and 2 orders of magnitude lower than those of H2macropa for H2BZmacropa and H2BZ2macropa, respectively. The decrease in thermodynamic stability was rationalized via the use of density functional theory calculations. 225Ac radiolabeling and serum stability studies with H2BZmacropa showed that this chelator compares favorably with H2macropa. Based on these promising results, a bifunctional version of this chelator, H2BZmacropa-NCS, was synthesized and conjugated to the antibody codrituzumab (GC33), which targets the liver cancer biomarker glypican-3 (GPC3). The resulting GC33-BZmacropa conjugate and an analogous GC33-macropa conjugate were evaluated for their 225Ac radiolabeling efficiencies, antigen-binding affinities, and in vivo biodistribution in HepG2 liver cancer tumor-bearing mice. Although both conjugates were comparably effective in their radiolabeling efficiencies, [225Ac]Ac-GC33-BZmacropa showed slightly poorer serum stability and biodistribution than [225Ac]Ac-GC33-macropa. Together, these results establish H2BZmacropa-NCS as a new bifunctional chelator for the preparation of 225Ac radiopharmaceuticals.
Collapse
Affiliation(s)
- Karthika J. Kadassery
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - A. Paden King
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Stanley Fayn
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kwamena E. Baidoo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Freddy E. Escorcia
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|