1
|
Hommel K, Kauth AMA, Kirupakaran A, Theisen S, Hayduk M, Niemeyer FC, Beuck C, Zadmard R, Bayer P, Jan Ravoo B, Voskuhl J, Schrader T, Knauer SK. Functional Linkers Support Targeting of Multivalent Tweezers to Taspase1. Chemistry 2024; 30:e202401542. [PMID: 38958349 DOI: 10.1002/chem.202401542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Taspase 1 is a unique protease not only pivotal for embryonic development but also implicated in leukemias and solid tumors. As such, this enzyme is a promising while still challenging therapeutic target, and with its protein structure featuring a flexible loop preceding the active site a versatile model system for drug development. Supramolecular ligands provide a promising complementary approach to traditional small-molecule inhibitors. Recently, the multivalent arrangement of molecular tweezers allowed the successful targeting of Taspase 1's surface loop. With this study we now want to take the next logic step und utilize functional linker systems that not only allow the implementation of novel properties but also engage in protein surface binding. Consequently, we chose two different linker types differing from the original divalent assembly: a backbone with aggregation-induced emission (AIE) properties to enable monitoring of binding and a calix[4]arene scaffold initially pre-positioning the supramolecular binding units. With a series of four AIE-equipped ligands with stepwise increased valency we demonstrated that the functionalized AIE linkers approach ligand binding affinities in the nanomolar range and allow efficient proteolytic inhibition of Taspase 1. Moreover, implementation of the calix[4]arene backbone further enhanced the ligands' inhibitory potential, pointing to a specific linker contribution.
Collapse
Affiliation(s)
- Katrin Hommel
- Molecular Biology II, Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Alisa-Maite A Kauth
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Abbna Kirupakaran
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Sebastian Theisen
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Matthias Hayduk
- Faculty of Chemistry (Organic Chemistry II), Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Felix C Niemeyer
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Reza Zadmard
- Department of Organic Chemistry, Chemistry and Chemical Engineering Research Center of Iran (CCERCI), P. O. Box 14335-186, Tehran, Iran
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry II), Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Thomas Schrader
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Shirley K Knauer
- Molecular Biology II, Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| |
Collapse
|
2
|
Alfonso I. Supramolecular chemical biology: designed receptors and dynamic chemical systems. Chem Commun (Camb) 2024; 60:9692-9703. [PMID: 39129537 DOI: 10.1039/d4cc03163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Supramolecular chemistry focuses on the study of species joined by non-covalent interactions, and therefore on dynamic and relatively ill-defined structures. Despite being a well-developed field, it has to face important challenges when dealing with the selective recognition of biomolecules in highly competitive biomimetic media. However, supramolecular interactions reside at the core of chemical biology systems, since many processes in nature are governed by weak, non-covalent, strongly dynamic contacts. Therefore, there is a natural connection between these two research fields, which are not frequently related or share interests. In this feature article, I will highlight our most recent results in the molecular recognition of biologically relevant species, following different conceptual approaches from the most conventional design of elaborated receptors to the less popular dynamic combinatorial chemistry methodology. Selected illustrative examples from other groups will be also included. The discussion has been focused mainly on systems with potential biomedical applications.
Collapse
Affiliation(s)
- Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), The Spanish National Research Council (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
3
|
Niu J, Yu J, Wu X, Zhang YM, Chen Y, Yu Z, Liu Y. Host-guest binding between cucurbit[8]uril and amphiphilic peptides achieved tunable supramolecular aggregates for cancer diagnosis. Chem Sci 2024; 15:13779-13787. [PMID: 39211500 PMCID: PMC11351706 DOI: 10.1039/d4sc04261a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
The manipulation of biocompatible supramolecular nanostructures at subcellular and cellular levels has become one of the increasingly significant topics but remains a formidable challenge in chemical and biological science. In this work, a controllable supramolecular aggregate based on host-guest competitive binding is elaborately constructed using cucurbit[8]uril, methionine-containing amphiphilic peptide, and perylene diimide, displaying in situ oxidation-driven macrocycle-confined fluorescence enhancement for cell imaging and morphological reconstruction for cancer cell death. The experimental results demonstrate that cucurbit[8]uril possesses a high binding affinity with the methionine peptide, while this value sharply decreases after the methionine residue is oxidized to sulfoxide or sulfone. Therefore, perylene diimide can be competitively included by cucurbit[8]uril in the co-assemblies, eventually resulting in a 10-fold fluorescence enhancement and the conversion of topological morphology from nano-sized particles to micron-sized sheets. Moreover, the obtained ternary assemblies can be oxidized by endogenous reactive oxygen species in cancer cells, thus not only providing enhanced fluorescence for cell imaging, but also leading to endoplasmic reticulum dysfunction and significant cell death. Therefore, the controllable and oxidation-responsive morphological transformation based on the host-guest competitive binding in biological media can be viewed as a feasible means for efficient disease theragnosis.
Collapse
Affiliation(s)
- Jie Niu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Jie Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Xuan Wu
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou Jiangsu 225002 P. R. China
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
4
|
Giugliano G, Gajo M, Marforio TD, Zerbetto F, Mattioli EJ, Calvaresi M. Identification of Potential Drug Targets of Calix[4]arene by Reverse Docking. Chemistry 2024; 30:e202400871. [PMID: 38777795 DOI: 10.1002/chem.202400871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Calixarenes are displaying great potential for the development of new drug delivery systems, diagnostic imaging, biosensing devices and inhibitors of biological processes. In particular, calixarene derivatives are able to interact with many different enzymes and function as inhibitors. By screening of the potential drug target database (PDTD) with a reverse docking procedure, we identify and discuss a selection of 100 proteins that interact strongly with calix[4]arene. We also discover that leucine (23.5 %), isoleucine (11.3 %), phenylalanines (11.3 %) and valine (9.5 %) are the most frequent binding residues followed by hydrophobic cysteines and methionines and aromatic histidines, tyrosines and tryptophanes. Top binders are peroxisome proliferator-activated receptors that already are targeted by commercial drugs, demonstrating the practical interest in calix[4]arene. Nuclear receptors, potassium channel, several carrier proteins, a variety of cancer-related proteins and viral proteins are prominent in the list. It is concluded that calix[4]arene, which is characterized by facile access, well-defined conformational characteristics, and ease of functionalization at both the lower and higher rims, could be a potential lead compound for the development of enzyme inhibitors and theranostic platforms.
Collapse
Affiliation(s)
- Giulia Giugliano
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Margherita Gajo
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Tainah Dorina Marforio
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Francesco Zerbetto
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Edoardo Jun Mattioli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| |
Collapse
|
5
|
Ajmal M, Memon SA, Shaikh H, Memon S, Shah S. The p-diethanolaminomethylcalix[4]arene-incorporated polyacrylonitrile-based facilitated-transport-nanofiber mat for O 2/N 2 separation. NANOSCALE ADVANCES 2024; 6:3573-3581. [PMID: 38989527 PMCID: PMC11232553 DOI: 10.1039/d4na00019f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024]
Abstract
Separation of gases from air mixture is one of the most challenging and laborious separations due to the remarkably uniform molecular size of gas molecules. Therefore, the present study aimed to synthesize polyacrylonitrile-based nanofibers mat(NM) impregnated with p-diethanolaminomethylcalix[4]arene (PAN/p-DEAC4 NM) for the separation of two crucial gases O2 and N2. The affinity of the prepared PAN/p-DEAC4 NM for O2 was examined by optimizing the loading concentration of p-DEAC4 in the range from 5% to 20% (w/v). The results showed remarkable performance of the PAN/p-DEAC4 NM for O2/N2 separation with a superior O2/N2 selectivity of 12.75 and excellent permeance of 10.2 GPU for O2 and 0.8 GPU for N2 at 2 bar. The PAN/p-DEAC4 NM followed a facilitated transport mechanism for the separation of gases and it was revealed that the p-DEAC4 platform in the PAN NM is facilitating the transport of O2 due to its greater affinity towards O2. BET analysis revealed that the prepared NM possesses non-porous morphology with a surface area of 12.69 m2 g-1. SEM micrographs also confirmed the formation of defect-free NM. Thus, this study presents a unique perspective and direction for fabricating highly permeable nanofiber mats for O2/N2 separation.
Collapse
Affiliation(s)
- Mehwish Ajmal
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan +92-322-3047472
| | - Saeed Ahmed Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan +92-322-3047472
| | - Huma Shaikh
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan +92-322-3047472
| | - Shahabuddin Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan +92-322-3047472
| | - Shahnila Shah
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro 76080 Pakistan +92-322-3047472
| |
Collapse
|
6
|
Salazar Marcano DE, Lentink S, Chen JJ, Anyushin AV, Moussawi MA, Bustos J, Van Meerbeek B, Nyman M, Parac-Vogt TN. Supramolecular Self-Assembly of Proteins Promoted by Hybrid Polyoxometalates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312009. [PMID: 38213017 DOI: 10.1002/smll.202312009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 01/13/2024]
Abstract
Controlling the formation of supramolecular protein assemblies and endowing them with new properties that can lead to novel functional materials is an important but challenging task. In this work, a new hybrid polyoxometalate is designed to induce controlled intermolecular bridging between biotin-binding proteins. Such bridging interactions lead to the formation of supramolecular protein assemblies incorporating metal-oxo clusters that go from several nanometers in diameter up to the micron range. Insights into the self-assembly process and the nature of the resulting biohybrid materials are obtained by a combination of Small Angle X-ray Scattering (SAXS), Transmission Electron Microscopy (TEM), and Dynamic Light Scattering (DLS), along with fluorescence, UV-vis, and Circular Dichroism (CD) spectroscopy. The formation of hybrid supramolecular assemblies is determined to be driven by biotin binding to the protein and electrostatic interactions between the anionic metal-oxo cluster and the protein, both of which also influence the stability of the resulting assemblies. As a result, the rate of formation, size, and stability of the supramolecular assemblies can be tuned by controlling the electrostatic interactions between the cluster and the protein (e.g., through varying the ionic strength of the solution), thereby paving the way toward biomaterials with tunable assembly and disassembly properties.
Collapse
Affiliation(s)
| | - Sarah Lentink
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Jieh-Jang Chen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | | | - Mhamad Aly Moussawi
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Jenna Bustos
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry, KU Leuven, Kapucijnenvoer 7, Leuven, 3000, Belgium
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | | |
Collapse
|
7
|
Nazarova A, Shiabiev I, Shibaeva K, Mostovaya O, Mukhametzyanov T, Khannanov A, Evtugyn V, Zelenikhin P, Shi X, Shen M, Padnya P, Stoikov I. Thiacalixarene Carboxylic Acid Derivatives as Inhibitors of Lysozyme Fibrillation. Int J Mol Sci 2024; 25:4721. [PMID: 38731940 PMCID: PMC11083589 DOI: 10.3390/ijms25094721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Amyloid fibroproliferation leads to organ damage and is associated with a number of neurodegenerative diseases affecting populations worldwide. There are several ways to protect against fibril formation, including inhibition. A variety of organic compounds based on molecular recognition of amino acids within the protein have been proposed for the design of such inhibitors. However, the role of macrocyclic compounds, i.e., thiacalix[4]arenes, in inhibiting fibrillation is still almost unknown. In the present work, the use of water-soluble thiacalix[4]arene derivatives for the inhibition of hen egg-white lysozyme (HEWL) amyloid fibrillation is proposed for the first time. The binding of HEWL by the synthesized thiacalix[4]arenes (logKa = 5.05-5.13, 1:1 stoichiometry) leads to the formation of stable supramolecular systems capable of stabilizing the protein structure and protecting against fibrillation by 29-45%. The macrocycle conformation has little effect on protein binding strength, and the native HEWL secondary structure does not change via interaction. The synthesized compounds are non-toxic to the A549 cell line in the range of 0.5-250 µg/mL. The results obtained may be useful for further investigation of the anti-amyloidogenic role of thiacalix[4]arenes, and also open up future prospects for the creation of new ways to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Igor Shiabiev
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Ksenia Shibaeva
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Olga Mostovaya
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Timur Mukhametzyanov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Arthur Khannanov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Vladimir Evtugyn
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Pavel Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Pavel Padnya
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Ivan Stoikov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| |
Collapse
|
8
|
Porfetye AT, Stege P, Rebollido-Rios R, Hoffmann D, Schrader T, Vetter IR. How Do Molecular Tweezers Bind to Proteins? Lessons from X-ray Crystallography. Molecules 2024; 29:1764. [PMID: 38675584 PMCID: PMC11051928 DOI: 10.3390/molecules29081764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
To understand the biological relevance and mode of action of artificial protein ligands, crystal structures with their protein targets are essential. Here, we describe and investigate all known crystal structures that contain a so-called "molecular tweezer" or one of its derivatives with an attached natural ligand on the respective target protein. The aromatic ring system of these compounds is able to include lysine and arginine side chains, supported by one or two phosphate groups that are attached to the half-moon-shaped molecule. Due to their marked preference for basic amino acids and the fully reversible binding mode, molecular tweezers are able to counteract pathologic protein aggregation and are currently being developed as disease-modifying therapies against neurodegenerative diseases such as Alzheimer's and Parkinson's disease. We analyzed the corresponding crystal structures with 14-3-3 proteins in complex with mono- and diphosphate tweezers. Furthermore, we solved crystal structures of two different tweezer variants in complex with the enzyme Δ1-Pyrroline-5-carboxyl-dehydrogenase (P5CDH) and found that the tweezers are bound to a lysine and methionine side chain, respectively. The different binding modes and their implications for affinity and specificity are discussed, as well as the general problems in crystallizing protein complexes with artificial ligands.
Collapse
Affiliation(s)
- Arthur T. Porfetye
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Patricia Stege
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Rocio Rebollido-Rios
- Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Daniel Hoffmann
- Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117 Essen, Germany
| | - Ingrid R. Vetter
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| |
Collapse
|
9
|
Bartocci A, Dumont E. Situating the phosphonated calixarene-cytochrome C association by molecular dynamics simulations. J Chem Phys 2024; 160:105101. [PMID: 38465686 DOI: 10.1063/5.0198522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Protein-calixarenes binding plays an increasingly central role in many applications, spanning from molecular recognition to drug delivery strategies and protein inhibition. These ligands obey a specific bio-supramolecular chemistry, which can be revealed by computational approaches, such as molecular dynamics simulations. In this paper, we rely on all-atom, explicit-solvent molecular dynamics simulations to capture the electrostatically driven association of a phosphonated calix-[4]-arene with cytochome-C, which critically relies on surface-exposed paired lysines. Beyond two binding sites identified in direct agreement with the x-ray structure, the association has a larger structural impact on the protein dynamics. Then, our simulations allow a direct comparison to analogous calixarenes, namely, sulfonato, similarly reported as "molecular glue." Our work can contribute to a robust in silico predictive tool to assess binding sites for any given protein of interest for crystallization, with the specificity of a macromolecular cage whose endo/exo orientation plays a role in the binding.
Collapse
Affiliation(s)
- Alessio Bartocci
- Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento, Italy
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg Cedex 67083, France
| | - Elise Dumont
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, 06108 Nice, France
- Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| |
Collapse
|
10
|
Vuono D, Clarizia G, Ferreri L, Consoli GML, Zampino DC, Scalzo G, Petralia S, Bernardo P. Molecularly Mixed Composite Membranes for Gas Separation Based on Macrocycles Embedded in a Polyimide. Polymers (Basel) 2024; 16:460. [PMID: 38399838 PMCID: PMC10892679 DOI: 10.3390/polym16040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Polyimides are a polymer class that has been extensively investigated as a membrane material for gas separation owing to its interesting permselective properties in a wide range of operation temperatures and pressures. In order to improve their properties, the addition of different filler types is currently studied. p-tert-Butylcalix[n]arene macrocycles (PTBCs) with different cavity sizes (PTBC4, PTBC6, PTBC8) were used as fillers in a commercial thermoplastic polyimide, with a concentration in the range 1-9 wt%, to develop nanocomposite membranes for gas separation. The selected macrocycles are attractive organic compounds owing to their porous structure and affinity with organic polymers. The nanocomposite membranes were prepared in the form of films in which the polymeric matrix is a continuous phase incorporating the dispersed additives. The preparation was carried out according to a pre-mixing approach in a mutual solvent, and the solution casting was followed by a controlled solvent evaporation. The films were characterized by investigating their miscibility, morphology, thermal and spectral properties. The gas transport through these films was examined as a function of the temperature and also time. The results evidenced that the incorporation of the chosen nanoporous fillers can be exploited to enhance molecular transport, offering additional pathways and promoting rearrangements of the polymeric chains.
Collapse
Affiliation(s)
- Danilo Vuono
- Institute on Membrane Technology (ITM-CNR), 87036 Rende, Italy
| | | | - Loredana Ferreri
- Institute of Biomolecular Chemistry (ICB-CNR), 95126 Catania, Italy
| | | | | | - Giuseppina Scalzo
- Institute of Polymers, Composites and Biomaterials (IPCB-CNR), 95126 Catania, Italy
| | - Salvatore Petralia
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Paola Bernardo
- Institute on Membrane Technology (ITM-CNR), 87036 Rende, Italy
| |
Collapse
|
11
|
Noruzi EB, Shaabani B, Eivazzadeh-Keihan R, Aliabadi HAM. Fabrication and investigation of a pentamerous composite based on calix[4]arene functionalized graphene oxide grafted with silk fibroin, cobalt ferrite, and alginate. Int J Biol Macromol 2024; 259:129385. [PMID: 38218273 DOI: 10.1016/j.ijbiomac.2024.129385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/15/2024]
Abstract
This paper presents a new scaffold made from graphene oxide nanosheets, calix[4]arene supramolecules, silk fibroin proteins, cobalt ferrite nanoparticles, and alginate hydrogel (GO-CX[4]/SF/CoFe2O4/Alg). After preparing the composite, we conducted various analyses to examine its structure. These analyses included FTIR, XRD, SEM, EDS, VSM, DLS, and zeta potential tests. Additionally, we performed tests to evaluate the swelling ratio, rheological properties, and compressive mechanical strength of the material. The biological capability of the composite was tested through biocompatiblity, anticancer, hemolysis, antibacterial anti-biofilm assays. Besides, the rheological properties and swelling behaviour of the composite were studied. The results showed that the scaffold is biocompatible with Hu02 cells and the cell viability percentages of 85.23 %, 82.78 %, and 80.18 % for were acquired for 24, 48, and 72 h, respectively. In contrast, the cell viability percentage of BT549 cancer cells were obtained 65.79 %, 60.45 % and 58.16 % for same period which confirmed notable anticancer activity of the product composite. Moreover, a significant antibacterial growth inhibition against E. coli and S. aureus species highlights its potential as an effective antibacterial agent. Furthermore, the observed minimal hemolytic effect (6.56 %) and strong inhibition of P. aeruginosa biofilm formation with a low OD value (0.24) indicate notable hemocompatibility and antibacterial activity.
Collapse
Affiliation(s)
- Ehsan Bahojb Noruzi
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran
| | - Behrouz Shaabani
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran.
| | | | | |
Collapse
|
12
|
Qi Y, Ayinla M, Clifford S, Ramström O. Spontaneous and Selective Macrocyclization in Nitroaldol Reaction Systems. J Org Chem 2023. [PMID: 38154053 DOI: 10.1021/acs.joc.3c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Through a dynamic polymerization and self-sorting process, a range of lowellane macrocycles have been efficiently generated in nitroaldol systems composed of aromatic dialdehydes and aliphatic or aromatic dinitroalkanes. All identified macrocycles show a composition of two repeating units, resulting in tetra-β-nitroalcohols of different structures. The effects of the building block structure on the macrocyclization process have been demonstrated, and the influence from the solvent has been explored. In general, the formation of the lowellanes was amplified in response to phase-change effects, although solution-phase structures were, in some cases, favored.
Collapse
Affiliation(s)
- Yunchuan Qi
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Mubarak Ayinla
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Stephen Clifford
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
13
|
Solozabal N, Tapia L, Solà J, Pérez Y, Alfonso I. Molecular Recognition of Tyrosine-Containing Polypeptides with Pseudopeptidic Cages Unraveled by Fluorescence and NMR Spectroscopies. Bioconjug Chem 2023; 34:2345-2357. [PMID: 38078839 PMCID: PMC10859922 DOI: 10.1021/acs.bioconjchem.3c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
The molecular recognition of Tyr-containing peptide copolymers with pseudopeptidic cages has been studied using a combination of fluorescence and NMR spectroscopies. Fluorescence titrations rendered a reasonable estimation of the affinities, despite the presence of dynamic quenching masking the unambiguous detection of the supramolecular complexes. Regarding NMR, the effect of polypeptide (PP) binding on relaxation and diffusion parameters of the cages is much more reliable than the corresponding chemical shift perturbations. To that, purification of the commercial PPs is mandatory to obtain biopolymers with lower polydispersity. Thus, the relaxation/diffusion-filtered 1H spectra of the cages in the absence vs presence of the PPs represent a suitable setup for the fast detection of the noncovalent interactions. Additional key intermolecular NOE cross-peaks supported by molecular models allow the proposal of a structure of the supramolecular species, stabilized by the Tyr encapsulation within the cage cavity and additional attractive polar interactions between the side chains of cage and PP, thus defining a binding epitope with a potential for implementing sequence selectivity. Accordingly, the cages bearing positive/negative residues prefer to bind the peptides having complementary negative/positive side chains close to the target Tyr, suggesting an electrostatic contribution to the interaction. Overall, our results show that both techniques represent a powerful and complementary combination for studying cage-to-PP molecular recognition processes.
Collapse
Affiliation(s)
- Naiara Solozabal
- NMR
Facility, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Lucía Tapia
- Department
of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Jordi Solà
- Department
of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Yolanda Pérez
- NMR
Facility, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Ignacio Alfonso
- Department
of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| |
Collapse
|
14
|
Shiabiev I, Pysin D, Akhmedov A, Babaeva O, Babaev V, Lyubina A, Voloshina A, Petrov K, Padnya P, Stoikov I. Towards Antibacterial Agents: Synthesis and Biological Activity of Multivalent Amide Derivatives of Thiacalix[4]arene with Hydroxyl and Amine Groups. Pharmaceutics 2023; 15:2731. [PMID: 38140072 PMCID: PMC10747887 DOI: 10.3390/pharmaceutics15122731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Antimicrobial resistance to modern antibiotics stimulates the search for new ways to synthesize and modify antimicrobial drugs. The development of synthetic approaches that can easily change different fragments of the molecule is a promising solution to this problem. In this work, a synthetic approach was developed to obtain multivalent thiacalix[4]arene derivatives containing different number of amine and hydroxyl groups. A series of macrocyclic compounds in cone, partial cone, and 1,3-alternate stereoisomeric forms containing -NHCH2CH2R (R = NH2, N(CH3)2, and OH) and -N(CH2CH2OH)2 terminal fragments, and their model non-macrocyclic analogues were obtained. The antibacterial activity against Gram-positive (Staphylococcus aureus, Bacillus cereus, and Enterococcus faecalis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial strains and cytotoxicity of the obtained compounds were studied. Structure-activity relationships were established: (1) the macrocyclic compounds had high antibacterial activity, while the monomeric compounds had low activity; (2) the compounds in cone and partial cone conformations had better antibacterial activity compared to the compounds in 1,3-alternate stereoisomeric form; (3) the macrocyclic compounds containing -NHCH2CH2N(CH3)2 terminal fragments had the highest antibacterial activity; (4) introduction of additional terminal hydroxyl groups led to a significant decrease in antibacterial activity; (5) the compounds in partial cone conformation had significant bactericidal activity against all studied cell strains; the best selectivity was observed for the compounds in cone conformation. The mechanism of antibacterial activity of lead compounds with terminal fragments -NHCH2CH2N(CH3)2 was proved using model negatively charged POPG vesicles, i.e., the addition of these compounds led to an increase in the size and zeta potential of the vesicles. The obtained results open up the possibility of using the synthesized macrocyclic compounds as promising antibacterial agents.
Collapse
Affiliation(s)
- Igor Shiabiev
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| | - Dmitry Pysin
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| | - Alan Akhmedov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| | - Olga Babaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Vasily Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Anna Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia; (O.B.); (V.B.); (A.L.); (A.V.); (K.P.)
| | - Pavel Padnya
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| | - Ivan Stoikov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia; (I.S.); (D.P.); (A.A.)
| |
Collapse
|
15
|
Banerjee A, Kajol, Bajaj G, Singhal NK, Pathak RK. Synthetically Tunable Suprahybrid Nanoparticle Platform for the Efficacious Delivery of Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37927061 DOI: 10.1021/acsami.3c11626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The discovery of lipid-hybrid nanosystems has offered potential solutions to various drug delivery and theranostic challenges. However, in many instances, the commonly used lipids and other components in these systems often pose challenges related to their solubility, physicochemical properties, immune compatibility, and limited synthetic tunability. In this work, we introduce a synthetically tunable supramolecular scaffold with amphiphilic characteristics based on the calix[4]arene macrocyclic system. We designed and synthesized two novel calix[4]arene-polyethylene glycol (PEG) conjugates, termed Cal-P1 and Cal-P2, and these were characterized utilizing a wide range of spectroscopic and analytical methods. The rational design of Cal-P1 and Cal-P2 demonstrates their utility in forming stable blended nanospheres with sustained drug release characteristics. The synergistic blending of PLGA and the calixarene scaffold (Cal-P1 and Cal-P2) in constructing long-lasting and controlled-release nanoparticles (NPs), which are optimized for encapsulating Nile Red dye, and their successful internalization and retention in HeLa cancer cells are demonstrated through in vitro assays. The potential of these NPs as sustained therapeutic carriers is investigated in vivo, showing improved retention compared to free dye with negligible toxicity. The successful design and construction of Cal-P1 and Cal-P2 nanosystems represent a new paradigm for addressing drug loading challenges, opening up opportunities for the development of highly efficient, synthetically tunable alternative adjuvants for drug encapsulation and delivery.
Collapse
Affiliation(s)
- Arka Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Transit Campus: Industrial Training Institute (ITI) Berhampur Engineering School Road, Berhampur 760010, Odisha, India
| | - Kajol
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Transit Campus: Industrial Training Institute (ITI) Berhampur Engineering School Road, Berhampur 760010, Odisha, India
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Transit Campus: Industrial Training Institute (ITI) Berhampur Engineering School Road, Berhampur 760010, Odisha, India
| | - Geetika Bajaj
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab 140306, India
- Department of Biotechnology, Punjab University, Sector 25, Chandigarh 160014, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Rakesh Kumar Pathak
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Transit Campus: Industrial Training Institute (ITI) Berhampur Engineering School Road, Berhampur 760010, Odisha, India
| |
Collapse
|
16
|
Chen XL, Yu SQ, Huang XH, Gong HY. Bismacrocycle: Structures and Applications. Molecules 2023; 28:6043. [PMID: 37630294 PMCID: PMC10458016 DOI: 10.3390/molecules28166043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
In the past half-century, macrocycles with different structures and functions, have played a critical role in supramolecular chemistry. Two macrocyclic moieties can be linked to form bismacrocycle molecules. Compared with monomacrocycle, the unique structures of bismacrocycles led to their specific recognition and assembly properties, also a wide range of applications, including molecular recognition, supramolecular self-assembly, advanced optical material construction, etc. In this review, we focus on the structure of bismacrocycle and their applications. Our goal is to summarize and outline the possible future development directions of bismacrocycle research.
Collapse
Affiliation(s)
- Xu-Lang Chen
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China; (S.-Q.Y.); (X.-H.H.)
| | - Si-Qian Yu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China; (S.-Q.Y.); (X.-H.H.)
| | - Xiao-Huan Huang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China; (S.-Q.Y.); (X.-H.H.)
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
17
|
Sang P, Cai J. Unnatural helical peptidic foldamers as protein segment mimics. Chem Soc Rev 2023; 52:4843-4877. [PMID: 37401344 PMCID: PMC10389297 DOI: 10.1039/d2cs00395c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 07/05/2023]
Abstract
Unnatural helical peptidic foldamers have attracted considerable attention owing to their unique folding behaviours, diverse artificial protein binding mechanisms, and promising applications in chemical, biological, medical, and material fields. Unlike the conventional α-helix consisting of molecular entities of native α-amino acids, unnatural helical peptidic foldamers are generally comprised of well-defined backbone conformers with unique and unnatural structural parameters. Their folded structures usually arise from unnatural amino acids such as N-substituted glycine, N-substituted-β-alanine, β-amino acid, urea, thiourea, α-aminoxy acid, α-aminoisobutyric acid, aza-amino acid, aromatic amide, γ-amino acid, as well as sulfono-γ-AA amino acid. They can exhibit intriguing and predictable three-dimensional helical structures, generally featuring superior resistance to proteolytic degradation, enhanced bioavailability, and improved chemodiversity, and are promising in mimicking helical segments of various proteins. Although it is impossible to include every piece of research work, we attempt to highlight the research progress in the past 10 years in exploring unnatural peptidic foldamers as protein helical segment mimics, by giving some representative examples and discussing the current challenges and future perspectives. We expect that this review will help elucidate the principles of structural design and applications of existing unnatural helical peptidic foldamers in protein segment mimicry, thereby attracting more researchers to explore and generate novel unnatural peptidic foldamers with unique structural and functional properties, leading to more unprecedented and practical applications.
Collapse
Affiliation(s)
- Peng Sang
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
18
|
Yao SY, Yue YX, Ying AK, Hu XY, Li HB, Cai K, Guo DS. An Antitumor Dual-Responsive Host-Guest Supramolecular Polymer Based on Hypoxia-Cleavable Azocalix[4]arene. Angew Chem Int Ed Engl 2023; 62:e202213578. [PMID: 36353747 DOI: 10.1002/anie.202213578] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 11/11/2022]
Abstract
The exploitation of specific guests which can respond to external stimuli is the main approach for the construction of stimuli-responsive supramolecular polymers (SPs) based on host-guest interactions. Most functional guests, however, fail to manifest stimuli-responses. Herein, a hypoxia-responsive dimeric azocalixarene (D-SAC4A) with outstanding hosting properties was used as the macrocyclic building block for the preparation of host stimuli-responsive SPs. Since azocalixarenes can also be compatible with stimuli-responsive guests, an antitumor drug, camptothecin (CPT), was chosen and linked via a disulfide-containing linker to afford a glutathione (GSH)-responsive ditropic guest (D-CPT). A unique dual-responsive SP was obtained by 1 : 1 mixing of D-SAC4A and D-CPT in water, which further assembled into SP nanoparticles (DSPNs). DSPNs displayed outstanding stability against dilution and biological interferants, as well as precise CPT-release under GSH and hypoxia conditions. In vitro and in vivo experiments demonstrated the good biosafety and tumor-suppressive effects of DSPNs.
Collapse
Affiliation(s)
- Shun-Yu Yao
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yu-Xin Yue
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - An-Kang Ying
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Kang Cai
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
19
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
20
|
Bartocci A, Pereira G, Cecchini M, Dumont E. Capturing the Recognition Dynamics of para-Sulfonato-calix[4]arenes by Cytochrome c: Toward a Quantitative Free Energy Assessment. J Chem Inf Model 2022; 62:6739-6748. [PMID: 36054284 DOI: 10.1021/acs.jcim.2c00483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Calix[n]arenes' selective recognition of protein surfaces covers a broad range of timely applications, from controlling protein assembly and crystallization to trapping partially disordered proteins. Here, the interaction of para-sulfonated calix-[4]-arenes with cytochrome c is investigated through all-atom, explicit water molecular dynamics simulations which allow characterization of two binding sites in quantitative agreement with experimental evidence. Free energy calculations based on the MM-PBSA and the attach-pull-release (APR) methods highlight key residues implicated in the recognition process and provide binding free energy results in quantitative agreement with isothermal titration calorimetry. Our study emphasizes the role of MD simulations to capture and describe the "walk" of sulfonated calix-[4]-arenes on the cytochrome c surface, with the arginine R13 as a pivotal interacting residue. Our MD investigation allows, through the quasi-harmonic multibasin (QHMB) method, probing an allosteric reinforcement of several per-residue interactions upon calixarene binding, which suggests a more complex mode of action of these supramolecular auxiliaries.
Collapse
Affiliation(s)
- Alessio Bartocci
- Laboratoire de Chimie, Ecole Normale Superieure de Lyon, F-69342 Lyon, France.,Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg 67083, France
| | - Gilberto Pereira
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg 67083, France.,Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS & University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg 67083, France
| | - Elise Dumont
- Laboratoire de Chimie, Ecole Normale Superieure de Lyon, F-69342 Lyon, France.,Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| |
Collapse
|
21
|
Volpi S, Doolan A, Baldini L, Casnati A, Crowley PB, Sansone F. Complex Formation between Cytochrome c and a Tetra-alanino-calix[4]arene. Int J Mol Sci 2022; 23:ijms232315391. [PMID: 36499717 PMCID: PMC9737847 DOI: 10.3390/ijms232315391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Owing to their remarkable features, calix[n]arenes are being exploited to study different aspects of molecular recognition, including protein complexation. Different complexation modes have been described, depending on the moieties that complement the aromatic cavity, allowing for function regulation and/or controlled assembly of the protein target. Here, a rigid cone calix[4]arene, bearing four anionic alanine units at the upper rim, was tested as a ligand for cytochrome c. Cocrystallization attempts were unfruitful, preventing a solid-state study of the system. Next, the complex was studied using NMR spectroscopy, which revealed the presence of two binding sites at lysine residues with dissociation constants (Kd) in the millimolar range.
Collapse
Affiliation(s)
- Stefano Volpi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Viale delle Scienze, 17/A, 43124 Parma, Italy
| | - Aishling Doolan
- School of Biological and Chemical Sciences, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Laura Baldini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Viale delle Scienze, 17/A, 43124 Parma, Italy
- Correspondence:
| | - Alessandro Casnati
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Viale delle Scienze, 17/A, 43124 Parma, Italy
| | - Peter B. Crowley
- School of Biological and Chemical Sciences, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Francesco Sansone
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Viale delle Scienze, 17/A, 43124 Parma, Italy
| |
Collapse
|
22
|
Cao SY, Zhou Y, Ma YX, Cheng SX, Tang GM, Wang YT. Syntheses, crystal structure, luminescent behaviors and Hirshfeld surface of salts with imidazole and benzimidazole-yl scaffolds. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Nugmanova АR, Yakimova LS, Shibaeva KS, Stoikov II. Metal (Na+, K+, Cs+) Template Effect–Controlled Synthesis of Stereoisomers of Tetrasubstituted (Thia)calix[4]arene Derivatives Containing Sulfonatoalkyl Moieties on the Lower Rim. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
24
|
Albumin/Thiacalix[4]arene Nanoparticles as Potential Therapeutic Systems: Role of the Macrocycle for Stabilization of Monomeric Protein and Self-Assembly with Ciprofloxacin. Int J Mol Sci 2022; 23:ijms231710040. [PMID: 36077448 PMCID: PMC9455997 DOI: 10.3390/ijms231710040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The therapeutic application of serum albumin is determined by the relative content of the monomeric form compared to dimers, tetramers, hexamers, etc. In this paper, we propose and develop an approach to synthesize the cone stereoisomer of p-tert-butylthiacalix[4]arene with sulfobetaine fragments stabilization of monomeric bovine serum albumin and preventing aggregation. Spectral methods (UV-vis, CD, fluorescent spectroscopy, and dynamic light scattering) established the influence of the synthesized compounds on the content of monomeric and aggregated forms of BSA even without the formation of stable thiacalixarene/protein associates. The effect of thiacalixarenes on the efficiency of protein binding with the antibiotic ciprofloxacin was shown by fluorescence spectroscopy. The binding constant increases in the presence of the macrocycles, likely due to the stabilization of monomeric forms of BSA. Our study clearly shows the potential of this macrocycle design as a platform for the development of the fundamentally new approaches for preventing aggregation.
Collapse
|