1
|
Xiao YQ, Fang KX, Zhang Z, Zhang C, Li YJ, Wang BC, Zhang BJ, Jiang YQ, Zhang M, Tan Y, Xiao WJ, Lu LQ. Hyperconjugation-Driven Isodesmic Reaction of Indoles and Anilines: Reaction Discovery, Mechanism Study, and Antitumor Application. Angew Chem Int Ed Engl 2024; 63:e202408426. [PMID: 39177728 DOI: 10.1002/anie.202408426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
Isodesmic reactions, in which chemical bonds are redistributed between substrates and products, provide a general and powerful strategy for both biological and chemical synthesis. However, most isodesmic reactions involve either metathesis or functional-group transfer. Here, we serendipitously discovered a novel isodesmic reaction of indoles and anilines that proceeds intramolecularly under weakly acidic conditions. In this process, the five-membered ring of the indole motif is broken and a new indole motif is constructed on the aniline side, accompanied by the formation of a new aniline motif. Mechanistic studies revealed the pivotal role of σ→π* hyperconjugation on the nitrogen atom of the indole motif in driving this unusual isodesmic reaction. Furthermore, we successfully synthesized a diverse series of polycyclic indole derivatives; among quinolines, potential antitumor agents were identified using cellular and in vivo experiments, thereby demonstrating the synthetic utility of the developed methodology.
Collapse
Affiliation(s)
- Yu-Qing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
| | - Kai-Xin Fang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
| | - Chen Zhang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Yu-Jie Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
| | - Bao-Cheng Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
| | - Bin-Jun Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
| | - Yu-Qing Jiang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Miao Zhang
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
- Wuhan Institute of Photochemistry and Technology, 430082, Wuhan, Hubei, P. R. China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, 430079, Wuhan, Hubei, China
- Wuhan Institute of Photochemistry and Technology, 430082, Wuhan, Hubei, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, Henan, China
| |
Collapse
|
2
|
Liang RX, Cai HJ, Mao MH, Bai XP, Du BY, Jia YX. Copper-Catalyzed Dearomative [3 + 2] Annulation of Indoles with 2-Iodoacetic Acid. Org Lett 2024. [PMID: 39495490 DOI: 10.1021/acs.orglett.4c03213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
An efficient copper-catalyzed dearomative [3 + 2] annulation of indoles with 2-iodoacetic acid is developed. By employing Cu(OTf)2/2,2'-bis(2-oxazoline) as the catalyst and LPO as the oxidant, a series of indoline-fused butyrolactones were synthesized in moderate to good yields. The reaction features mild conditions, a broad substrate scope, and readily available starting materials. Furthermore, synthetic transformations of the products were conducted to demonstrate the practical utility of this reaction.
Collapse
Affiliation(s)
- Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Hu-Jie Cai
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Ming-Hua Mao
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Xue-Pei Bai
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Bao-Yu Du
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
3
|
Liu T, Luo Y, Liu Y. Construction of fused heterocycles by visible-light induced dearomatization of nonactivated arenes. Org Biomol Chem 2024. [PMID: 39469871 DOI: 10.1039/d4ob01530d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
A diverse array of fused [6-6-5] tricyclic heterocycles has been synthesized via the dimerization and dearomative cyclization of benzene derivatives under visible light irradiation. The initiation of the cascade process is likely from aryloxy radicals, engendered through proton-coupled electron transfer by the photoexcited vinylidene ortho-quinone methide (VQM) and a Brønsted base.
Collapse
Affiliation(s)
- Tianyu Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yong Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
4
|
Raji Reddy C, Srinivasu E, Theja A, Subbarao M, Enagandhula D, Sridhar B. Ag-Catalyzed Domino Decarboxylative Alkylation/Dearomative Annulation: Entry to Fused-Pyrido[4,3- b]Indolones. Org Lett 2024; 26:9146-9150. [PMID: 39387659 DOI: 10.1021/acs.orglett.4c03556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Here we report the development of unprecedented silver-catalyzed intramolecular annulations of N-acrolyl-2-(3-indolyl) benzimidazoles with alkyl carboxylic acids to construct complex fused-pentacyclic alkaloid scaffolds. Divergent reactivities are noticed with altered groups at C2-indole of the substrate. The reaction proceeds through decarboxylative alkylation, followed by dearomative annulation in a domino manner with excellent diastereoselectivity. Owing to the reactivity of the tert-OH group, these aza-enriched scaffolds can be further functionalized.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Ejjirotu Srinivasu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Agnuru Theja
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Muppidi Subbarao
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Damodar Enagandhula
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Balasubramanian Sridhar
- Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| |
Collapse
|
5
|
Qiao X, Zhai S, Xu J, He H, He X, Hu L, Gao S. Asymmetric Photoinduced Excited-State Nazarov Reaction. J Am Chem Soc 2024; 146:29150-29158. [PMID: 39383449 DOI: 10.1021/jacs.4c11481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
We report herein the first asymmetric photoinduced excited-state Nazarov reaction of non-aromatic dicyclic divinyl ketones by using hydrogen-bonding catalysis. The enantioselectivity of photoinduced electrocyclization is highly dependent on the structural features of the substrate and its interaction with chiral catalysts. For the simple dicyclic divinyl ketone substrates, there is no discernible selectivity of the hydrogen bond coordination between the thiourea and carbonyl groups of the substrates in the ground state. However, we found that the direction of the electrocyclization was well controlled in each coordination model and the N,N'-dimethylamine motif acts as a base in the regioselective deprotonation process, which leads to the formation of two stereoisomers with high enantioselectivity. Photolysis of dicyclic divinyl ketones bearing a 1,3-dioxolane motif in the presence of bifunctional hybrid peptide-thiourea chiral catalysts gave the tricyclic cis-hydrofluorenones with good enantioselectivity. Mechanistic and DFT studies suggested that the amide and thiourea groups in the bifunctional chiral catalysts play a key role as H-bond donors, which coordinate with both the carbonyl group and the 1,3-dioxolane motif to provide a more favorable chiral species, and control the direction of the electrocyclization. Due to the presence of the rigid 1,3-dioxolane ring, the deprotonation/protonation process occurs regiospecifically with high driving force. This photo-electrocyclization is mild (room temperature and neutral solution), which results a broad reaction scope and functional group tolerance and demonstrates its synthetic potential in organic synthesis.
Collapse
Affiliation(s)
- Xuelong Qiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shaojun Zhai
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, Wuhu Hospital Affiliated to East China Normal University, East China Normal University, Shanghai 200062, China
| | - Jiwei Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Haibing He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiao He
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, Wuhu Hospital Affiliated to East China Normal University, East China Normal University, Shanghai 200062, China
| | - Lianrui Hu
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, Wuhu Hospital Affiliated to East China Normal University, East China Normal University, Shanghai 200062, China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, Wuhu Hospital Affiliated to East China Normal University, East China Normal University, Shanghai 200062, China
| |
Collapse
|
6
|
Liu Y, Chu M, Li X, Cao Z, Zhao X, Yin Y, Jiang Z. Photoredox Catalytic Deracemization Enabled Enantioselective and Modular Access to Axially Chiral N-Arylquinazolinones. Angew Chem Int Ed Engl 2024; 63:e202411236. [PMID: 39045910 DOI: 10.1002/anie.202411236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024]
Abstract
Visible light-driven photocatalytic deracemization is highly esteemed as an ideal tool for organic synthesis due to its exceptional atom economy and synthetic efficiency. Consequently, successful instances of deracemization of allenes have been established, where the activated energy of photosensitizer should surpass that of the substrates, representing an intrinsic requirement. Accordingly, this method is not applicable for axially chiral molecules with significantly high triplet energies. In this study, we present a photoredox catalytic deracemization approach that enables the efficient synthesis of valuable yet challenging-to-access axially chiral 2-azaarene-functionalized quinazolinones. The substrate scope is extensive, allowing for both 3-axis and unmet 1-axis assembly through facile oxidation of diverse central chiral 2,3-dihydroquinazolin-4(1H)-ones that can be easily prepared and achieve enantiomer enrichment via deracemization. Mechanistic studies reveal the importance of photosensitizer selection in attaining excellent chemoselectivity and highlight the indispensability of a chiral Brønsted acid in enabling highly enantioselective protonation to accomplish efficient deracemization.
Collapse
Affiliation(s)
- Yilin Liu
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Mengqi Chu
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Xiangtao Li
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Zheng Cao
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Xiaowei Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, P. R. China, 475004
| | - Yanli Yin
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, Henan, P. R., China, 451001
| | - Zhiyong Jiang
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, P. R. China, 475004
| |
Collapse
|
7
|
Li HY, Yang XL, Shen S, Niu X. Visible Light-Induced 6π-Heterocyclization/Dehydroaromatization for Synthesis of Indoloquinolinone Skeletons. J Org Chem 2024; 89:14887-14897. [PMID: 39365141 DOI: 10.1021/acs.joc.4c01653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
In this work, we report a protocol for the synthesis of an indoloquinolinone skeleton using visible light-induced energy transfer. This method avoids the premodification of substrates and exhibits high yields. For gram-scale reactions, only 0.01 mol % (100 ppm) of photosensitizer is required for rapid conversion. Mechanistic studies revealed that this reaction differs from conventional 6π photocyclization reactions; undergoing a process involving 6π cyclization due to energy transfer and dehydrogenation due to product self-catalysis has been experienced.
Collapse
Affiliation(s)
- Hao-Yuan Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Shigang Shen
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiaoying Niu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
8
|
Yao CZ, Tu XQ, Zhao ZY, Fan SH, Jiang HJ, Li Q, Yu J. Enantioselective Organocatalyzed Cascade Dearomatizing Spirocycloaddition Reactions of Indole-Ynones. Org Lett 2024; 26:8713-8718. [PMID: 39364785 DOI: 10.1021/acs.orglett.4c03015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
An intramolecular organocatalytic cascade dearomatizing spirocycloaddition reaction of indole-ynone compounds containing O-silyl-naphthol substituents has been developed with the use of a chiral bifunctional thiourea. This process was able to provide various structurally diverse polycyclic spiroindolines in high yields (up to 98%) with excellent stereoselectivities (>20:1 dr, up to 98% ee) involving the formation of carbonylvinylidene ortho-quinone methide intermediates.
Collapse
Affiliation(s)
- Chuan-Zhi Yao
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Xue-Qin Tu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Zi-Yuan Zhao
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Sheng-Hui Fan
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Hua-Jie Jiang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Qiankun Li
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| | - Jie Yu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China
| |
Collapse
|
9
|
He C, Song W, Wei D, Zhao W, Yu Q, Tang J, Ning Y, Murali K, Sivaguru P, de Ruiter G, Bi X. Rhodium-Catalyzed Asymmetric Cyclopropanation of Indoles with N-Triftosylhydrazones. Angew Chem Int Ed Engl 2024:e202408220. [PMID: 39363722 DOI: 10.1002/anie.202408220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Herein we report a general rhodium-catalyzed asymmetric intermolecular dearomative cyclopropanation of indoles using trifluoromethyl N-triftosylhydrazones as carbene precursors. The reaction enables the rapid construction of diverse cyclopropane-fused indolines bearing a trifluoromethylated quaternary stereocenter with high enantioselectivity (up to 99 % ee). This mild method exhibits broad substrate scope, tolerating various functional groups, and can even be utilized for the late-stage diversification of complex bioactive molecules. DFT calculations suggest that the formation of a key zwitterionic intermediate is responsible for the chiral induction. Overall, this approach opens up new possibilities for asymmetric cyclopropanation of challenging aromatic heterocyclic compounds.
Collapse
Affiliation(s)
- Caicai He
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Song
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Dandan Wei
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Zhao
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qianfei Yu
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jiaqi Tang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yongquan Ning
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Karunanidhi Murali
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Tay G, Nishimura S, Oguri H. Direct photochemical intramolecular [4 + 2] cycloadditions of dehydrosecodine-type substrates for the synthesis of the iboga-type scaffold and divergent [2 + 2] cycloadditions employing micro-flow system. Chem Sci 2024:d4sc02597k. [PMID: 39345776 PMCID: PMC11423653 DOI: 10.1039/d4sc02597k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/15/2024] [Indexed: 10/01/2024] Open
Abstract
Photocyclisation reactions offer a convenient and versatile method for constructing complex polycyclic scaffolds, particularly in the synthesis of natural products. While the [2 + 2] photocycloaddition reaction is well-established and extensively reported, the [4 + 2] counterpart via direct photochemical means remains challenging and relatively unexplored. In this work, we devised the rapid assembly of the iboga-type scaffold through photochemical intramolecular Diels-Alder reaction using a common biomimetic dehydrosecodine-type intermediate having vinyl indole and dihydropyridine (DHP) sub-units. Exploiting a micro-flow system, the medicinally important iboga-type scaffold was obtained up to 77% yield under mild, neutral conditions at room temperature. This study demonstrated the site-selective activation of the DHP moiety by direct UV-LED irradiation, eliminating the need for external photocatalysts or photosensitisers and showing good tolerance to a wide range of stabilised dehydrosecodine-type substrates. By adjusting the spatial arrangement of the DHP ring and the vinyl indole group, this versatile photochemical approach efficiently facilitates both [4 + 2] and [2 + 2] cyclisations, assembling architecturally complex multicyclic scaffolds. Precise photoactivation of the DHP subunit, generating short-lived biradical species, enabled the new way of harnessing the hidden but innately pre-encoded reactivity of the polyunsaturated dehydrosecodine-type intermediate. These photo-mediated [4 + 2] cyclisation and divergent [2 + 2] cycloadditions are distinct from biosynthetic processes, which are mainly mediated through concerted thermal cycloadditions.
Collapse
Affiliation(s)
- Gavin Tay
- Department of Chemistry, Graduate School of Science, The University of Tokyo Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Soushi Nishimura
- Department of Chemistry, Graduate School of Science, The University of Tokyo Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Hiroki Oguri
- Department of Chemistry, Graduate School of Science, The University of Tokyo Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
11
|
Gu X, Shen J, Xu Z, Liu J, Shi M, Wei Y. Visible-Light-Mediated Activation of Remote C(sp 3)-H Bonds by Carbon-Centered Biradical via Intramolecular 1,5- or 1,6-Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2024; 63:e202409463. [PMID: 39031578 DOI: 10.1002/anie.202409463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
In this study, we introduce a novel intramolecular hydrogen atom transfer (HAT) reaction that efficiently yields azetidine, oxetane, and indoline derivatives through a mechanism resembling the carbon analogue of the Norrish-Yang reaction. This process is facilitated by excited triplet-state carbon-centered biradicals, enabling the 1,5-HAT reaction by suppressing the critical 1,4-biradical intermediates from undergoing the Norrish Type II cleavage reaction, and pioneering unprecedented 1,6-HAT reactions initiated by excited triplet-state alkenes. We demonstrate the synthetic utility and compatibility of this method across various functional groups, validated through scope evaluation, large-scale synthesis, and derivatization. Our findings are supported by control experiments, deuterium labeling, kinetic studies, cyclic voltammetry, Stern-Volmer experiments, and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xintao Gu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jiahao Shen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ziyu Xu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jiaxin Liu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
12
|
Beduru S, Huple DB, Kutateladze AG. Complexity-Building Exhaustive Dearomatization of Benzenoid Aromatics within an ESIPT-Initiated Three-Step Photochemical Cascade. Angew Chem Int Ed Engl 2024:e202415176. [PMID: 39265085 DOI: 10.1002/anie.202415176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Dearomative cycloadditions offer rapid access to complex 3D molecular architectures, commonly via a sp2-to-sp3 rehybridization of two atoms of an aromatic ring. Here we report that the 6e π-system of a benzenoid aromatic pendant could be exhaustively depleted within a single photochemical cascade. An implementation of this approach involves the initial dearomative [4+2] cycloaddition of the Excited State Intramolecular Proton Transfer (ESIPT)-generated azaxylylene, followed by two consecutive [2+2] cycloadditions of auxiliary π moieties strategically positioned in the photoprecursor. Such photochemical cascade fully dearomatizes the benzenoid aromatic ring, saturating all six sp2 atoms to yield a complex sp3-rich scaffold with high control of its 3D molecular shape, rendering it a robust platform for rapid systematic mapping of underexplored chemical space. Significant growth of molecular complexity-starting with a modular synthesis of photoprecursors from readily available building blocks-is quantified by Böttcher score calculations.
Collapse
Affiliation(s)
- Srinivas Beduru
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208
| | - Deepak B Huple
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208
| | - Andrei G Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208
| |
Collapse
|
13
|
Liu S, Xu T, Liu Y, Wang Y. Dearomative Intramolecular meta-Thermocycloadditions of Benzene Rings via Wheland Intermediates. Angew Chem Int Ed Engl 2024; 63:e202407841. [PMID: 38837571 DOI: 10.1002/anie.202407841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Dearomative cycloadditions are powerful synthetic transformations utilizing aromatic compounds for cycloaddition reactions. They have been extensively applied to the synthesis of biologically relevant compounds not only because of the complexity generated from simplicity but also the atom- and step-economy. For the most studied yet challenging benzene ring systems, ortho- and para-cycloadditions have been realized both photochemically and thermally, while the meta-cycloadditions are still limited to the photochemical processes tracing back to the 1960s. Herein, we for the first time realized the thermal cycloadditions of benzene rings with alkenes in a meta fashion via Wheland intermediates. A broad spectrum of readily available C(sp2)-rich aniline-tethered enynes were transformed into C(sp3)-rich 3D complex polycyclic architectures simply by stirring in TFA. Moreover, the reaction could be performed in gram-scales and the products could be diversely elaborated.
Collapse
Affiliation(s)
- Shupeng Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Tianyi Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Yuting Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Youliang Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| |
Collapse
|
14
|
Hou L, Yang L, Yang G, Luo Z, Xiao W, Yang L, Wang F, Gong LZ, Liu X, Cao W, Feng X. Catalytic Asymmetric Dearomative [2 + 2] Photocycloaddition/Ring-Expansion Sequence of Indoles with Diversified Alkenes. J Am Chem Soc 2024; 146:23457-23466. [PMID: 38993029 DOI: 10.1021/jacs.4c06780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Developing novel strategies for catalytic asymmetric dearomatization (CADA) reactions is highly valuable. Visible light-mediated photocatalysis is demonstrated to be a powerful tool to activate aromatic compounds for further synthetic transformations. Herein, a catalytic asymmetric dearomative [2 + 2] photocycloaddition/ring-expansion sequence of indoles with simple alkenes was reported, providing a facile access to enantioenriched cyclopenta[b]indoles with good to high yields and enantioselectivities by means of chiral lanthanide photocatalysis. This protocol exhibited a broad substrate scope and good functional group tolerance, as well as potential applications in the synthesis of bioactive molecules. Mechanistic studies, including control experiments, UV-vis absorption spectroscopy, emission spectroscopy, and DFT calculations, were carried out, shedding insights into the reaction mechanism and the origin of enantioselectivity.
Collapse
Affiliation(s)
- Liuzhen Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Longqing Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Gaofei Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhe Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wanlong Xiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Linhan Yang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610061, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610061, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
15
|
Peng LY, Jin R, Zhang SR, Liu XY, Fang WH, Cui G. Roles of Nonadiabatic Processes, Reaction Mechanism, and Selectivity in Cu-Catalyzed [2 + 2] Photocycloaddition of Norbornene and Acetone to Oxetane. J Org Chem 2024; 89:11334-11346. [PMID: 39094225 DOI: 10.1021/acs.joc.4c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Oxetane has been extensively studied for its applications in medicinal chemistry and as a reactive intermediate in synthesis. Experiments report a Cu-catalyzed [2 + 2] photocycloaddition of acetone and norbornene to oxetane, which is proposed to deviate from the conventional Paternò-Büchi reaction. However, its mechanism at the atomic level is not clear. In this study, we used a combination of multistate complete active space second-order perturbation theory (MS-CASPT2) and density functional theory to systematically investigate the reaction mechanism and elucidate the factors contributing to the diastereomeric selectivity. Initially, the formation of the TpCu(Norb) complex is achieved by strong interaction between tris(pyrazolyl)borate Cu(I) (TpCu) and norbornene in the ground state (S0). Upon photoexcitation, TpCu(Norb) eventually decays to the T1 state, in which TpCu(Norb) attacks acetone to initiate subsequent reactions and produces final endo- or exo-oxetane products. All these reactions initially involve the C-C bond formation in the T1 state thereto leading to a ring-opening intermediate. This intermediate then undergoes a nonradiative transition to the S0 state, producing a five-membered ring intermediate, from which the C-O bond is formed, leading to the experimentally dominant exo-product. In contrast, the endo-oxetane formation requires a rearrangement process after the C-C bond is formed because of the large steric effects. As a consequence, the different reaction pathways generating exo- and endo-products exhibit large differences in the free-energy barriers, which results in a diastereomeric selectivity observed experimentally. Additionally, the nonradiative transition is found to play an important role in facilitating these reaction steps. The present computational study provides valuable mechanistic insights into Cu-catalyzed photocycloaddition reactions.
Collapse
Affiliation(s)
- Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Rui Jin
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shi-Ru Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
16
|
Zhang QB, Li F, Pan B, Yu L, Yue XG. Visible-Light-Mediated [2+2] Photocycloadditions of Alkynes. Chemistry 2024; 30:e202401501. [PMID: 38806409 DOI: 10.1002/chem.202401501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
Visible-light-mediated [2+2] photocycloaddition reaction can be considered an ideal solution due to its green and sustainable properties, and is one of the most efficient methods to synthesize four-membered ring motifs. Although research on the [2+2] photocycloaddition of alkynes is challenging because of the diminished reactivity of alkynes, and the more significant ring strain of the products, remarkable achievements have been made in this field. In this article, we highlight the recent advances in visible-light-mediated [2+2] photocycloaddition reactions of alkynes, with focus on the reaction mechanism and the late-stage synthetic applications. Advances in obtaining cyclobutenes, azetines, and oxetene active intermediates continue to be breakthroughs in this fascinating field of research.
Collapse
Affiliation(s)
- Qing-Bao Zhang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| | - Feng Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| | - Bin Pan
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| | - Lei Yu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| | - Xiang-Guo Yue
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| |
Collapse
|
17
|
Zheng Y, Dong QX, Wen SY, Ran H, Huang HM. Di-π-ethane Rearrangement of Cyano Groups via Energy-Transfer Catalysis. J Am Chem Soc 2024; 146:18210-18217. [PMID: 38788197 DOI: 10.1021/jacs.4c04370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Molecular rearrangement occupies a pivotal position among fundamental transformations in synthetic chemistry. Radical translocation has emerged as a prevalent synthetic tool, efficiently facilitating the migration of diverse functional groups. In contrast, the development of di-π-methane rearrangement remains limited, particularly in terms of the translocation of cyano functional groups. This is primarily attributed to the energetically unfavorable three-membered-ring transition state. Herein, we introduce an unprecedented di-π-ethane rearrangement enabled by energy-transfer catalysis under visible light conditions. This innovative open-shell rearrangement boasts broad tolerance toward a range of functional groups, encompassing even complex drug and natural product derivatives. Overall, the reported di-π-ethane rearrangement represents a complementary strategy to the development of radical translocation enabled by energy-transfer catalysis.
Collapse
Affiliation(s)
- Yu Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qi-Xin Dong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shu-Ya Wen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hui Ran
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
18
|
Shi L, Liu L, Lei X, Wang Y, Fang Y, Jiao P. Dearomative pyrrole (3+2) reaction with geminal bromonitroalkane: synthesis of 2,3-dihydropyrroles. Chem Commun (Camb) 2024; 60:6953-6956. [PMID: 38887875 DOI: 10.1039/d4cc01437e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Dearomative 1,3-dipolar cycloadditions of 1-Boc-pyrroles with in situ generated silver α-bromo alkylidenenitronates delivered a series of 3a,6a-dihydro-4-Boc-pyrrolo[2,3-d]isoxazole-2-oxides (17-91% yields) under very mild conditions. N-Deoxygenation of the cycloaddition product gave a dihydro-pyrrolo[2,3-d]isoxazole, elaborations of which produced various functionalized 2,3-dihydropyrroles and pyrrolidines, showcasing the potential utilities of our new strategy of pyrrole dearomatization.
Collapse
Affiliation(s)
- Lin Shi
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Lidong Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Xingyu Lei
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yihan Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yeguang Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Peng Jiao
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
19
|
Li M, Huang XL, Zhang ZY, Wang Z, Wu Z, Yang H, Shen WJ, Cheng YZ, You SL. Gd(III)-Catalyzed Regio-, Diastereo-, and Enantioselective [4 + 2] Photocycloaddition of Naphthalene Derivatives. J Am Chem Soc 2024; 146:16982-16989. [PMID: 38870424 DOI: 10.1021/jacs.4c05288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Catalytic asymmetric dearomatization (CADA) reactions have evolved into an efficient strategy for accessing chiral polycyclic and spirocyclic scaffolds from readily available planar aromatics. Despite the significant developments, the CADA reaction of naphthalenes remains underdeveloped. Herein, we report a Gd(III)-catalyzed asymmetric dearomatization reaction of naphthalene with a chiral PyBox ligand via visible-light-enabled [4 + 2] cycloaddition. This reaction features application of a chiral Gd/PyBox complex, which regulates the reactivity and selectivity simultaneously, in excited-state catalysis. A wide range of functional groups is compatible with this protocol, giving the highly enantioenriched bridged polycycles in excellent yields (up to 96%) and selectivity (up to >20:1 chemoselectivity, >20:1 dr, >99% ee). The synthetic utility is demonstrated by a 2 mmol scale reaction, removal of directing group, and diversifications of products. Preliminary mechanistic experiments are performed to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Muzi Li
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xu-Lun Huang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zuo-Yu Zhang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zhiping Wang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zhuo Wu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Hui Yang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Jie Shen
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yuan-Zheng Cheng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
20
|
Ji P, Duan K, Li M, Wang Z, Meng X, Zhang Y, Wang W. Photochemical dearomative skeletal modifications of heteroaromatics. Chem Soc Rev 2024; 53:6600-6624. [PMID: 38817197 PMCID: PMC11181993 DOI: 10.1039/d4cs00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Indexed: 06/01/2024]
Abstract
Dearomatization has emerged as a powerful tool for rapid construction of 3D molecular architectures from simple, abundant, and planar (hetero)arenes. The field has evolved beyond simple dearomatization driven by new synthetic technology development. With the renaissance of photocatalysis and expansion of the activation mode, the last few years have witnessed impressive developments in innovative photochemical dearomatization methodologies, enabling skeletal modifications of dearomatized structures. They offer truly efficient and useful tools for facile construction of highly complex structures, which are viable for natural product synthesis and drug discovery. In this review, we aim to provide a mechanistically insightful overview on these innovations based on the degree of skeletal alteration, categorized into dearomative functionalization and skeletal editing, and to highlight their synthetic utilities.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | - Kuaikuai Duan
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Menglong Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Zhiyuan Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Meng
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| | - Yueteng Zhang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| |
Collapse
|
21
|
Liu S, Yang Y, Song Q, Liu Z, Lu Y, Wang Z, Sivaguru P, Bi X. Tunable molecular editing of indoles with fluoroalkyl carbenes. Nat Chem 2024; 16:988-997. [PMID: 38443494 DOI: 10.1038/s41557-024-01468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
Building molecular complexity from simple feedstocks through precise peripheral and skeletal modifications is central to modern organic synthesis. Nevertheless, a controllable strategy through which both the core skeleton and the periphery of an aromatic heterocycle can be modified with a common substrate remains elusive, despite its potential to maximize structural diversity and applications. Here we report a carbene-initiated chemodivergent molecular editing of indoles that allows both skeletal and peripheral editing by trapping an electrophilic fluoroalkyl carbene generated in situ from fluoroalkyl N-triftosylhydrazones. A variety of fluorine-containing N-heterocyclic scaffolds have been efficiently achieved through tunable chemoselective editing reactions at the skeleton or periphery of indoles, including one-carbon insertion, C3 gem-difluoroolefination, tandem cyclopropanation and N1 gem-difluoroolefination, and cyclopropanation. The power of this chemodivergent molecular editing strategy has been highlighted through the modification of the skeleton or periphery of natural products in a controllable and chemoselective manner. The reaction mechanism and origins of the chemo- and regioselectivity have been probed by both experimental and theoretical methods.
Collapse
Affiliation(s)
- Shaopeng Liu
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Yong Yang
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun, China.
| | - Ying Lu
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Zhanjing Wang
- Department of Chemistry, Northeast Normal University, Changchun, China
| | | | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China.
| |
Collapse
|
22
|
Tian D, Shi W, Sun X, Zhao X, Yin Y, Jiang Z. Catalytic asymmetric [4 + 2] dearomative photocycloadditions of anthracene and its derivatives with alkenylazaarenes. Nat Commun 2024; 15:4563. [PMID: 38811663 PMCID: PMC11137010 DOI: 10.1038/s41467-024-48982-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Photocatalysis through energy transfer has been investigated for the facilitation of [4 + 2] cycloaddition reactions. However, the high reactivity of radical species poses a challenging obstacle to achieving enantiocontrol with chiral catalysts, as no enantioselective examples have been reported thus far. Here, we present the development of catalytic asymmetric [4 + 2] dearomative photocycloaddition involving anthracene and its derivatives with alkenylazaarenes. This accomplishment is achieved by utilizing a cooperative photosensitizer and chiral Brønsted acid catalysis platform. Importantly, this process enables the activation of anthracene substrates through energy transfer from triplet DPZ, thereby initiating a precise and stereoselective sequential transformation. The significance of our work is highlighted by the synthesis of a diverse range of pharmaceutical valuable cycloadducts incorporating attractive azaarenes, all obtained with high yields, ees, and drs. The broad substrate scope is further underscored by successful construction of all-carbon quaternary stereocenters and diverse adjacent stereocenters.
Collapse
Affiliation(s)
- Dong Tian
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng, Henan, P. R. China
| | - Wenshuo Shi
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng, Henan, P. R. China
| | - Xin Sun
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng, Henan, P. R. China.
| | - Xiaowei Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng, Henan, P. R. China
| | - Yanli Yin
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China.
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, Henan, P. R. China.
| | - Zhiyong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng, Henan, P. R. China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China.
| |
Collapse
|
23
|
Liu DH, Ma J. Recent Advances in Dearomative Partial Reduction of Benzenoid Arenes. Angew Chem Int Ed Engl 2024; 63:e202402819. [PMID: 38480464 DOI: 10.1002/anie.202402819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 04/11/2024]
Abstract
Dearomative partial reduction is an extraordinary approach for transforming benzenoid arenes and has been well-known for many decades, as exemplified by the dehydrogenation of Birch reduction and the hydroarylation of Crich addition. Despite its remarkable importance in synthesis, this field has experienced slow progress over the last half-century. However, a revival has been observed with the recent introduction of electrochemical and photochemical methods. In this Minireview, we summarize the recent advancements in dearomative partial reduction of benzenoid arenes, including dihydrogenation, hydroalkylation, arylation, alkenylation, amination, borylation and others. Further, the intriguing utilization of dearomative partial reduction in the synthesis of natural products is also emphasized. It is anticipated that this Minireview will stimulate further progress in arene dearomative transformations.
Collapse
Affiliation(s)
- De-Hai Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
24
|
Liu Z, Ji X, Duan L, Deng GJ, Huang H. Accessing pyrrolo[1,2- a]indole derivatives via visible-light-induced dearomatizative cyclization of indoles. Chem Commun (Camb) 2024; 60:4902-4905. [PMID: 38619574 DOI: 10.1039/d4cc01215a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Pyrrolo[1,2-a]indoles are structurally important scaffolds in many natural products and bioactive compounds. Herein, we report a novel synthetic method for pyrrolo[1,2-a]indole derivatives through visible-light-induced cascade dearomatizative cyclization of indoles with external nucleophiles. Moderate yields, good diastereoselectivities, and excellent regioselectivities were generally observed with the resultant indole-fused polycyclic compounds.
Collapse
Affiliation(s)
- Zhaosheng Liu
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Xiaochen Ji
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Lilan Duan
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Huawen Huang
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
25
|
Liao ZY, Gao F, Ye YH, Yu QH, Yang C, Luo QY, Du F, Pan B, Zhong WW, Liang W. Construction of cyclobutane-fused tetracyclic skeletons via substrate-dependent EnT-enabled dearomative [2+2] cycloaddition of benzofurans (benzothiophenes)/maleimides. Chem Commun (Camb) 2024; 60:4455-4458. [PMID: 38563643 DOI: 10.1039/d4cc00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein, a novel and facile organic photosensitizer (thioxanthone)-mediated energy-transfer-enabled (EnT-enabled) dearomative [2+2] cycloaddition of aromatic heterocycles/maleimides for green synthesis of cyclobutane-fused polycyclic skeletons is reported. Mechanistic investigations revealed that different EnT pathways by triplet thioxanthone were initiated when different aromatic heterocycles participated in the reaction, giving the corresponding excited intermediates, which underwent the subsequent intermolecular [2+2] cycloaddition to access the desired highly functionalized cyclobutane-fused polycyclic skeletons.
Collapse
Affiliation(s)
- Zhi-Yu Liao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Fan Gao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Yu-Hang Ye
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Qian-Hui Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Cui Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Qing-Yu Luo
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Fei Du
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Bin Pan
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Wen-Wu Zhong
- Department of Pharmacy, Chongqing Medical and Pharmaceutical College, Shapingba, Chongqing 401334, China.
| | - Wu Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
26
|
Zhu M, Gao YJ, Huang XL, Li M, Zheng C, You SL. Photo-induced intramolecular dearomative [5 + 4] cycloaddition of arenes for the construction of highly strained medium-sized-rings. Nat Commun 2024; 15:2462. [PMID: 38503749 PMCID: PMC10951311 DOI: 10.1038/s41467-024-46647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Medium-sized-ring compounds have been recognized as challenging synthetic targets in organic chemistry. Especially, the difficulty of synthesis will be augmented if an E-olefin moiety is embedded. Recently, photo-induced dearomative cycloaddition reactions that proceed via energy transfer mechanism have witnessed significant developments and provided powerful methods for the organic transformations that are not easily realized under thermal conditions. Herein, we report an intramolecular dearomative [5 + 4] cycloaddition of naphthalene-derived vinylcyclopropanes under visible-light irradiation and a proper triplet photosensitizer. The reaction affords dearomatized polycyclic molecules possessing a nine-membered-ring with an E-olefin moiety in good yields (up to 86%) and stereoselectivity (up to 8.8/1 E/Z). Detailed computational studies reveal the origin behind the favorable formation of the thermodynamically less stable isomers. Diverse derivations of the dearomatized products have also been demonstrated.
Collapse
Affiliation(s)
- Min Zhu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China
| | - Yuan-Jun Gao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
| | - Xu-Lun Huang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China
| | - Muzi Li
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
| | - Chao Zheng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China.
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China.
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China.
| |
Collapse
|
27
|
Huang J, Zhou TP, Sun N, Yu H, Yu X, Liao RZ, Yao W, Dai Z, Wu G, Zhong F. Accessing ladder-shape azetidine-fused indoline pentacycles through intermolecular regiodivergent aza-Paternò-Büchi reactions. Nat Commun 2024; 15:1431. [PMID: 38365864 PMCID: PMC10873392 DOI: 10.1038/s41467-024-45687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
Small molecules with conformationally rigid, three-dimensional geometry are highly desirable in drug development, toward which a direct, simple-to-complexity synthetic logic is still of considerable challenges. Here, we report intermolecular aza-[2 + 2] photocycloaddition (the aza-Paternò-Büchi reaction) of indole that facilely assembles planar building blocks into ladder-shape azetidine-fused indoline pentacycles with contiguous quaternary carbons, divergent head-to-head/head-to-tail regioselectivity, and absolute exo stereoselectivity. These products exhibit marked three-dimensionality, many of which possess 3D score values distributed in the highest 0.5% region with reference to structures from DrugBank database. Mechanistic studies elucidated the origin of the observed regio- and stereoselectivities, which arise from distortion-controlled C-N coupling scenarios. This study expands the synthetic repertoire of energy transfer catalysis for accessing structurally intriguing architectures with high molecular complexity and underexplored topological chemical space.
Collapse
Affiliation(s)
- Jianjian Huang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Tai-Ping Zhou
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Ningning Sun
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Huaibin Yu
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450000, China
| | - Xixiang Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Rong-Zhen Liao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhifeng Dai
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou, 325802, China
| | - Guojiao Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
| |
Collapse
|
28
|
Zhang R, Ma R, Chen R, Wang L, Ma Y. Regioselective C 3Alkylation of Indoles for the Synthesis of Bis(indolyl)methanes and 3-Styryl Indoles. J Org Chem 2024; 89:1846-1857. [PMID: 38214898 DOI: 10.1021/acs.joc.3c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Herein, we describe an efficient transition-metal-free regioselective C3alkylation of indoles for the synthesis of bis(indolyl)methanes and 3-styryl indoles. Nitrobenzene is employed as the oxidant to oxidize the alcohols in the presence of a strong base and the reaction avoids the use of transition metals such as Ru and Mn. The protocol provides a favorable route to access biologically active compounds such as arundine, vibrindole A, and turbomycin B.
Collapse
Affiliation(s)
- Ruiqin Zhang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Renchao Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| | - Rener Chen
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| |
Collapse
|
29
|
Deng Z, Meng L, Bing X, Niu S, Zhang X, Peng J, Luan YX, Chen L, Tang P. Silver-Enabled Dearomative Trifluoromethoxylation of Indoles. J Am Chem Soc 2024; 146:2325-2332. [PMID: 38232384 DOI: 10.1021/jacs.3c11653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The only known method for the dearomative trifluoromethoxylation of indoles is preliminary, with only one substrate successfully undergoing the reaction. In this study, we not only developed a broadly applicable method for indole dearomative trifluoromethoxylation but also achieved divergent trifluoromethoxylation by fine-tuning the reaction conditions. Under optimized conditions, with a silver salt and an easily handled OCF3 reagent, various indoles smoothly underwent dearomatization to afford a diverse array of ditrifluoromethoxylated indolines in 50-84% isolated yields with up to 37:1 diastereoselectivity, and fluorinated trifluoromethoxylated indolines were obtained with exclusive trans selectivity. In addition, the reaction conditions were compatible with other heteroaromatic rings as well as styrene moieties.
Collapse
Affiliation(s)
- Zhijie Deng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lingduan Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao Bing
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shaoxiong Niu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaofeng Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Junqin Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Li Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Pingping Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
30
|
Dutta S, Lee D, Ozols K, Daniliuc CG, Shintani R, Glorius F. Photoredox-Enabled Dearomative [2π + 2σ] Cycloaddition of Phenols. J Am Chem Soc 2024; 146:2789-2797. [PMID: 38236061 DOI: 10.1021/jacs.3c12894] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Dearomative photocycloaddition of monocyclic arenes is an appealing strategy for comprehending the concept of "escape from flatland". This brings the replacement of readily available planar aromatic hydrocarbon units with a 3D fused bicyclic core with sp3-enriched carbon units. Herein, we outline an intermolecular approach for the dearomative photocycloaddition of phenols. In order to circumvent the ground-state aromaticity and to construct conformationally restrained building blocks, bicyclo[1.1.0]butanes were chosen as coupling partners. This dearomative approach renders straightforward access to a bicyclo[2.1.1]hexane unit fused to a cyclic enone moiety, which further contributed as a synthetic linchpin for postmodifications. Mechanistic experiment advocates for a plausible onset from both the reactants, depending on the redox potential.
Collapse
Affiliation(s)
- Subhabrata Dutta
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Donghyeon Lee
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kristers Ozols
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
31
|
Chiminelli M, Scarica G, Serafino A, Marchiò L, Viscardi R, Maestri G. Visible-Light-Promoted Tandem Skeletal Rearrangement/Dearomatization of Heteroaryl Enallenes. Molecules 2024; 29:595. [PMID: 38338340 PMCID: PMC10856172 DOI: 10.3390/molecules29030595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Access to complex three-dimensional molecular architectures via dearomatization of ubiquitous aryl rings is a powerful synthetic tool, which faces, however, an inherent challenge to overcome energetic costs due to the loss of aromatic stabilization energy. Photochemical methods that allow one to populate high-energy states can thus be an ideal strategy to accomplish otherwise prohibitive reaction pathways. We present an original dearomative rearrangement of heteroaryl acryloylallenamides that leads to complex fused tricycles. The visible-light-promoted method occurs under mild conditions and tolerates a variety of functional groups. According to DFT modeling used to rationalize the outcome of the cascade, the reaction involves a sequential [2+2] allene-alkene photocycloaddition, which is followed by a selective retro- [2+2] step that paves the way for the dearomatization of the heteroaryl partner. This scenario is original with respect to the reported photochemical reactivity of similar substrates and thus holds promise for ample future developments.
Collapse
Affiliation(s)
- Maurizio Chiminelli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17°, 43124 Parma, Italy; (M.C.); (G.S.); (A.S.); (L.M.)
| | - Gabriele Scarica
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17°, 43124 Parma, Italy; (M.C.); (G.S.); (A.S.); (L.M.)
| | - Andrea Serafino
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17°, 43124 Parma, Italy; (M.C.); (G.S.); (A.S.); (L.M.)
| | - Luciano Marchiò
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17°, 43124 Parma, Italy; (M.C.); (G.S.); (A.S.); (L.M.)
| | - Rosanna Viscardi
- ENEA, Casaccia Research Center, Santa Maria di Galeria, 00123 Roma, Italy;
| | - Giovanni Maestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17°, 43124 Parma, Italy; (M.C.); (G.S.); (A.S.); (L.M.)
| |
Collapse
|
32
|
Cerveri A, Scarica G, Sparascio S, Hoch M, Chiminelli M, Tegoni M, Protti S, Maestri G. Boosting Energy-Transfer Processes via Dispersion Interactions. Chemistry 2024:e202304010. [PMID: 38224554 DOI: 10.1002/chem.202304010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
The generation of open-shell intermediates under mild conditions has opened broad synthetic opportunities during this century. However, these reactive species often require a case specific and tailored tuning of experimental parameters in order to efficiently convert substrates into products. We report a general approach that can overcome these ubiquitous limitations for several visible-light promoted energy-transfer processes. The use of either naphthalene (5-20 equiv.) or simple binaphthyl derivatives (10-30 mol %) greatly increases their efficiency, giving rise to a new strategy for catalysis. The trend is consistent among different media, photocatalysts, light sources and substrates, allowing one to improve existing methods, to more easily optimize conditions for new ones, and, moreover, to disclose otherwise inaccessible reaction pathways.
Collapse
Affiliation(s)
- Alessandro Cerveri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Gabriele Scarica
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Sara Sparascio
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Hoch
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Maurizio Chiminelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Tegoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, Università di Pavia, Via Taramelli 10, 27100, Pavia, Italy
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
33
|
Adak S, Braley SE, Brown MK. Photochemical Reduction of Quinolines with γ-Terpinene. Org Lett 2024; 26:401-405. [PMID: 38169485 PMCID: PMC11027786 DOI: 10.1021/acs.orglett.3c04096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The saturation of aromatic scaffolds is valuable for the synthesis of complex rings. Herein, we demonstrate a process for photochemical dearomative reduction of quinolines. The process involves capture of a quinoline excited state with γ-terpinene. Importantly, the reaction is chemoselective as other easily reduced functionalities such as halogens or alkenes do not undergo reduction. The mechanism of the reaction has also been investigated. Finally, the generality of the approach towards other substrates is demonstrated.
Collapse
Affiliation(s)
- Souvik Adak
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Sarah E Braley
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
34
|
Luo J, Luo Z, Zhang B, Zhao Q, Liu L, Liu Y. B(C 6 F 5 ) 3 -Catalyzed [2+3]-Cyclative o,m-diC-H Functionalization of Phenols. Chemistry 2023; 29:e202301595. [PMID: 37759356 DOI: 10.1002/chem.202301595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Metal-free catalytic C-H functionalization is highly desired for the construction of C-C bonds. We herein report a highly chemoselective consecutive C-H [2+3]-cyclative functionalization for the simultaneous formation of two C-C bonds with construction of polycyclic phenols catalyzed by commercially available and low-cost B(C6 F5 )3 . This catalytic system tolerates a wide range of substrate scope, providing a series of 2,6,7,8-tetrahydroacenaphthylen-3-ol-type polycyclic compounds efficiently. Several derivatizations of the catalytic products have also been conducted to show the potential application of this method in synthesis of polycyclic compounds.
Collapse
Affiliation(s)
- Jingyan Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhou Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Biqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Qiuyu Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yuanyuan Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
35
|
Chang YC, Salome C, Fessard T, Brown MK. Synthesis of 2-Azanorbornanes via Strain-Release Formal Cycloadditions Initiated by Energy Transfer. Angew Chem Int Ed Engl 2023; 62:e202314700. [PMID: 37963812 PMCID: PMC10760907 DOI: 10.1002/anie.202314700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Indexed: 11/16/2023]
Abstract
Rigid bicycles are becoming more popular in the pharmaceutical industry because they allow for expansion to new and unique chemical spaces. This work describes a new strategy to construct 2-azanorbornanes, which can act as rigid piperidine/pyrrolidine scaffolds with well-defined exit vectors. To achieve the synthesis of 2-azanorbornanes, new strain-release reagent, azahousane, is introduced along with its photosensitized strain-release formal cycloaddition with alkenes. Furthermore, new reactivity between a housane and an imine is disclosed. Both strategies lead to various substituted 2-azanorbornanes with good selectivities.
Collapse
Affiliation(s)
- Yu-Che Chang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave. Bloomington, IN, 47401, USA
| | - Christophe Salome
- SpiroChem AG, Rosental area, WRO-1047-3, Mattenstrasse 22, 4058, Basel, Switzerland
| | - Thomas Fessard
- SpiroChem AG, Rosental area, WRO-1047-3, Mattenstrasse 22, 4058, Basel, Switzerland
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave. Bloomington, IN, 47401, USA
| |
Collapse
|
36
|
Guo H, Qiu S, Xu P. One-Carbon Ring Expansion of Indoles and Pyrroles: A Straightforward Access to 3-Fluorinated Quinolines and Pyridines. Angew Chem Int Ed Engl 2023:e202317104. [PMID: 38079290 DOI: 10.1002/anie.202317104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Indexed: 12/22/2023]
Abstract
3-Fluorinated quinolines and pyridines are prevalent pharmacophores, yet their synthesis is often challenging. Herein, we demonstrate that dibromofluoromethane as bromofluorocarbene source enables the one-carbon ring expansion of readily available indoles and pyrroles to structurally diverse 3-fluorinated quinolines and pyridines. This straightforward protocol requires only a short reaction time of ten minutes and can be performed under air atmosphere. Preliminary investigations reveal that this strategy can also be applied to the synthesis of other valuable azines by using different 1,1-dibromoalkanes as bromocarbene sources.
Collapse
Affiliation(s)
- Huaixuan Guo
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| | - Shiqin Qiu
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| | - Peng Xu
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| |
Collapse
|
37
|
Liu DH, Nagashima K, Liang H, Yue XL, Chu YP, Chen S, Ma J. Chemoselective Quinoline and Isoquinoline Reduction by Energy Transfer Catalysis Enabled Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2023; 62:e202312203. [PMID: 37803457 DOI: 10.1002/anie.202312203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
(Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encountered significant chemoselectivity challenges. We hereby introduce a highly chemoselective quinoline and isoquinoline reduction protocol operating through selective energy transfer (EnT) catalysis, which enables subsequent hydrogen atom transfer (HAT). The design of this protocol bypasses the conventional metric of reduction reaction, that is, the reductive potential, and instead relies on the triplet energies of the chemical moieties and the kinetic barriers of energy and hydrogen atom transfer events. Many reducing labile functional groups, which were incompatible with previous (hetero)arene reduction reactions, are retained in this reaction. We anticipate that this protocol will trigger the further advancement of chemoselective arene reduction and enable the current arene-rich drug space to escape from flatland.
Collapse
Affiliation(s)
- De-Hai Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kyogo Nagashima
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, USA
| | - Hui Liang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xue-Lin Yue
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yun-Peng Chu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, USA
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
38
|
Ni D, Hu S, Tan X, Yu Y, Li Z, Deng L. Intermolecular Formal Cycloaddition of Indoles with Bicyclo[1.1.0]butanes by Lewis Acid Catalysis. Angew Chem Int Ed Engl 2023; 62:e202308606. [PMID: 37583090 DOI: 10.1002/anie.202308606] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Herein, we develop a new approach to directly access architecturally complex polycyclic indolines from readily available indoles and bicyclo[1.1.0]butanes (BCBs) through formal cycloaddition promoted by commercially available Lewis acids. The reaction proceeded through a stepwise pathway involving a nucleophilic addition of indoles to BCBs followed by an intramolecular Mannich reaction to form rigid indoline-fused polycyclic structures, which resemble polycyclic indole alkaloids. This new reaction tolerated a wide range of indoles and BCBs, thereby allowing the one-step construction of various rigid indoline polycycles containing up to four contiguous quaternary carbon centers.
Collapse
Affiliation(s)
- Dongshun Ni
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Sai Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Xiangyu Tan
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Yang Yu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Zhenghua Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Li Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| |
Collapse
|
39
|
Lu JB, Xu XQ, Ruan ZS, Liu K, Liang RX, Jia YX. Pd-Catalyzed Intramolecular Dearomative [4 + 2] Cycloaddition of Naphthalenes with Arylalkynes. Org Lett 2023; 25:8139-8144. [PMID: 37934112 DOI: 10.1021/acs.orglett.3c03240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A Pd-catalyzed intramolecular dearomative [4 + 2] cycloaddition reaction of naphthalenes with arylalkynes is developed. The protocol provides a straightforward method to access a range of polycyclic dihydronaphthalenes containing two vicinal all-carbon stereocenters in moderate yields under mild conditions in an air atmosphere. The deuterium labeling experiment suggests a pathway involving electrophilic dearomatization followed by Friedel-Crafts cyclization. Several synthetic transformations of the product were conducted to demonstrate the utility of this reaction.
Collapse
Affiliation(s)
- Jin-Bo Lu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Xiao-Qiu Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Zi-Sheng Ruan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Kai Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
40
|
Chang R, Pang Y, Ye J. Divergent Photosensitizer Controlled Reactions of 4-Hydroxycoumarins and Unactivated Olefins: Hydroarylation and Subsequent [2+2] Cycloaddition. Angew Chem Int Ed Engl 2023; 62:e202309897. [PMID: 37749064 DOI: 10.1002/anie.202309897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Herein, we report a photoinduced approach for hydroarylation of unactivated olefins using 4-hydroxycoumarins as the arylating reagent. Key to the success of this reaction is the conversion of nucleophilic 4-hydroxycoumarins into electrophilic carbon radicals via photocatalytic arene oxidation, which not only circumvents the polarity-mismatch issue encountered under ionic conditions but also accommodates a broad substrate scope and inhibits side reactions that were previously observed. Moreover, divergent reactivity was achieved by changing the photocatalyst, enabling a subsequent [2+2] cycloaddition to deliver cyclobutane-fused pentacyclic products that are otherwise challenging to access in high yields and with high diastereoselectivity. Mechanistic studies have elucidated the mechanism of the reactions and the origin of the divergent reactivity.
Collapse
Affiliation(s)
- Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yubing Pang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
41
|
Yu Z, Li J, Cao Y, Dong T, Xiao Y. 3-Trifluoromethyl Pyrrole Synthesis Based on β-CF 3-1,3-Enynamides. J Org Chem 2023; 88:15501-15506. [PMID: 37852275 DOI: 10.1021/acs.joc.3c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A new metal-free method for the rapid, productive, and scalable preparation of 3-trifluoromethyl pyrroles has been developed. It is based on the electrophilic nature of the double bond of β-CF3-1,3-enynamides due to the electron-withdrawing characteristics of the trifluoromethyl groups and the strong nucleophilic nature of alkyl primary amines. Evidence for the highly regioselective 1,4-hydroamination was observed after the isolation and characterization of the allenamide intermediate.
Collapse
Affiliation(s)
- Zongxiang Yu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Jintong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yuxuan Cao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Tingwei Dong
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yuanjing Xiao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| |
Collapse
|
42
|
Han Z, Xue Y, Li X, Hu X, Dong XQ, Sun J, Huang H. Studies on the [4 + 2] cycloaddition and allylic substitution of indole-fused zwitterionic π-allylpalladium. Org Biomol Chem 2023; 21:8162-8169. [PMID: 37782136 DOI: 10.1039/d3ob01451g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The zwitterionic π-allylpalladium species, also known as dipoles, are important synthons widely used in various reactions including cycloaddition and allylic substitution. This study reported the development of a new indole-fused zwitterionic π-allylpalladium precursor compound and its application in [4 + 2] cycloaddition and allylic substitution reactions. As a result, the synthesis of pyrrolo[3,2,1-ij]quinazolin-3-one and 7-vinyl indole compounds was achieved with moderate to good yields. Notably, the allylic substitution reaction exhibited excellent regio- and stereoselectivity.
Collapse
Affiliation(s)
- Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yu Xue
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiang Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xinzhe Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
43
|
Hu YY, Xu XQ, Deng WC, Liang RX, Jia YX. Nickel-Catalyzed Enantioselective Dearomative Heck-Reductive Allylic Defluorination Reaction of Indoles. Org Lett 2023; 25:6122-6127. [PMID: 37578397 DOI: 10.1021/acs.orglett.3c02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Herein, we describe a nickel-catalyzed asymmetric dearomative aryl-difluoroallylation reaction of indoles with α-trifluoromethyl alkenes as an electrophilic coupling partner. The reaction proceeds via a cascade sequence involving dearomative Heck cyclization and reductive allylic defluorination. A series of gem-difluoroallyl substituted indolines are obtained in moderate to good yields (36-77% yield) with excellent enantioselectivity (up to 99% ee). The reaction features broad functional group tolerance, scaled-up synthesis, and late-stage diversification.
Collapse
Affiliation(s)
- Yuan-Yuan Hu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Xiao-Qiu Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Wei-Chao Deng
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
44
|
Liang Y, Paulus F, Daniliuc CG, Glorius F. Catalytic Formal [2π+2σ] Cycloaddition of Aldehydes with Bicyclobutanes: Expedient Access to Polysubstituted 2-Oxabicyclo[2.1.1]hexanes. Angew Chem Int Ed Engl 2023; 62:e202305043. [PMID: 37307521 DOI: 10.1002/anie.202305043] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Synthesis of bicyclic scaffolds has attracted tremendous attention because they are playing an important role as saturated bioisosteres of benzenoids in modern drug discovery. Here, we report a BF3 -catalyzed [2π+2σ] cycloaddition of aldehydes with bicyclo[1.1.0]butanes (BCBs) to access polysubstituted 2-oxabicyclo[2.1.1]hexanes. A new kind of BCB containing an acyl pyrazole group was invented, which not only significantly facilitates the reactions, but can also serve as a handle for diverse downstream transformations. Furthermore, aryl and vinyl epoxides can also be utilized as substrates which undergo cycloaddition with BCBs after in situ rearrangement to aldehydes. We anticipate that our results will promote access to challenging sp3 -rich bicyclic frameworks and the exploration of BCB-based cycloaddition chemistry.
Collapse
Affiliation(s)
- Yujie Liang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Fritz Paulus
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
45
|
Wang M, Zhang M. Diastereoselective construction of carbo-bridged polyheterocycles by a three-component tandem annulation reaction. Org Biomol Chem 2023; 21:6342-6347. [PMID: 37497637 DOI: 10.1039/d3ob01013a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
By a hydroamination-induced tandem annulation process, we herein report a new three-component reaction for room temperature construction of carbo-bridged polyheterocycles with exclusive diastereoselectivity, which features readily available feedstocks, catalyst-free conditions, good substrate and functionality compatibility, no need for transition metal catalysts, and high step and atom efficiency. The products are formed via initial formation of 1,2-dihydro-3H-pyrazol-3-one nucleophiles from but-2-ynedioates and hydrazine followed by 2,4-difunctionalization of N-heteroarenium salts. Given that the obtained products possess structurally important tetrahydroquinoline and pyranopyrazole motifs, the developed chemistry is anticipated to be further applied to the discovery of functional molecules including biomedical ones.
Collapse
Affiliation(s)
- Maorui Wang
- School of Chemistry and Chemical Engineering and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Min Zhang
- School of Chemistry and Chemical Engineering and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
46
|
Wang W, Brown MK. Photosensitized [4+2]- and [2+2]-Cycloaddition Reactions of N-Sulfonylimines. Angew Chem Int Ed Engl 2023; 62:e202305622. [PMID: 37395414 PMCID: PMC10528476 DOI: 10.1002/anie.202305622] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 07/04/2023]
Abstract
The synthesis of polycyclic compounds is of high interest due to the prevalence of these motifs in drugs and natural products. Herein, we report on the stereoselective construction of 3D bicyclic scaffolds and azetidine derivatives by modulation of N-sulfonylimines to achieve either [4+2]- or [2+2]-cycloaddition reactions. The utility of the method was established by further modulation of the product. Mechanistic studies are also included, which support reaction via Dexter energy transfer.
Collapse
Affiliation(s)
- Wang Wang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401, USA
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401, USA
| |
Collapse
|
47
|
Mikhael M, Alektiar SN, Yeung CS, Wickens ZK. Translating Planar Heterocycles into Three-Dimensional Analogs by Photoinduced Hydrocarboxylation. Angew Chem Int Ed Engl 2023; 62:e202303264. [PMID: 37199340 PMCID: PMC10524292 DOI: 10.1002/anie.202303264] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023]
Abstract
The rapid preparation of complex three-dimensional (3D) heterocyclic scaffolds is a key challenge in modern medicinal chemistry. Despite the increased probability of clinical success for small molecule therapeutic candidates with increased 3D complexity, new drug targets remain dominated by flat molecules due to the abundance of coupling reactions available for their construction. In principle, heteroarene hydrofunctionalization reactions offer an opportunity to transform readily accessible planar molecules into more three-dimensionally complex analogs through the introduction of a single molecular vector. Unfortunately, dearomative hydrofunctionalization reactions remain limited. Herein, we report a new strategy to enable the dearomative hydrocarboxylation of indoles and related heterocycles. This reaction represents a rare example of a heteroarene hydrofunctionalization that meets the numerous requirements for broad implementation in drug discovery. The transformation is highly chemoselective, broad in scope, operationally simple, and readily amenable to high-throughput experimentation (HTE). Accordingly, this process will allow existing libraries of heteroaromatic compounds to be translated into diverse 3D analogs and enable exploration of new classes of medicinally relevant molecules.
Collapse
Affiliation(s)
- Myriam Mikhael
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Sara N. Alektiar
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| | - Charles S. Yeung
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin-Madison; Madison, Wisconsin, 53706, United States
| |
Collapse
|
48
|
Dasi R, Villinger A, Brasholz M. Visible light-induced iridium(III)-sensitized [2 + 2] and [3 + 2] photocycloadditions of 2-cyanochromone with alkenes. Org Biomol Chem 2023. [PMID: 37449652 DOI: 10.1039/d3ob00862b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
2-Cyanochromone (1) readily undergoes visible light-induced photocycloadditions with diverse alkene partners mediated by (Ir[dF(CF3)ppy]2(dtbpy))PF6 as the photosensitizer. While mono-, di- and trisubstituted styrenes and acrylonitriles as the reactants lead to [2 + 2] cycloadducts with good regiocontrol and high diastereoselectivity, the use of trialkyl-substituted alkenes allows for the isolation of cyclopentenone-fused chromones resulting from a [3 + 2] cycloaddition process in moderate yields.
Collapse
Affiliation(s)
- Rajesh Dasi
- University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Alexander Villinger
- University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
| | - Malte Brasholz
- University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
49
|
Yoshida Y, Takeuchi H, Nakagawa K, Fujii T, Arichi N, Oishi S, Ohno H, Inuki S. Construction of a Bicyclo[2.2.2]octene Skeleton via a Visible-Light-Mediated Radical Cascade Reaction of Amino Acid Derivatives with N-(2-Phenyl)benzoyl Groups. Org Lett 2023. [PMID: 37366566 DOI: 10.1021/acs.orglett.3c01586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Bridged polycyclic ring systems constitute the core structures of numerous natural products and biologically active molecules. We found that simple biphenyl substrates derived from amino acids participate in a radical cascade reaction under visible light irradiation in the presence of [Ir{dF(CF3)ppy}2(dtbpy)]PF6 to enable the direct construction of bicyclo[2.2.2]octene structures. Isotopic labeling experiments suggested that intramolecular hydrogen atom transfer is involved in the cascade processes.
Collapse
Affiliation(s)
- Yuki Yoshida
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Haruka Takeuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kohei Nakagawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshiki Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
50
|
Bhakat M, Khatua B, Biswas P, Guin J. Brønsted Acid-Promoted Intermolecular Dearomative Photocycloaddition of Bicyclic Azaarenes with Olefins under Aerobic Conditions. Org Lett 2023; 25:3089-3093. [PMID: 37096800 DOI: 10.1021/acs.orglett.3c00917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Herein, we present a simplified reaction protocol for the dearomatization of bicyclic azaarenes via photochemical cycloaddition with alkenes using an Ir(III) photosensitizer, trifluoroacetic acid (TFA), dichloroethane, and a blue light-emitting diode. An efficient protonation of azaarenes with TFA enhances the reactivity of triplet azaarene toward olefins, enabling the photocycloaddition under aerobic conditions. The protocol applies to a broad range of substrates. Control experiments indicate a strong correlation between the degree of protonation of azaarene and the product yield.
Collapse
Affiliation(s)
- Manotosh Bhakat
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Bitasik Khatua
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Promita Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|