1
|
Luo X, Germer J, Burghardt T, Grau M, Lin Y, Höhn M, Lächelt U, Wagner E. Dual pH-responsive CRISPR/Cas9 ribonucleoprotein xenopeptide complexes for genome editing. Eur J Pharm Sci 2025; 205:106983. [PMID: 39647515 DOI: 10.1016/j.ejps.2024.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR associated (Cas) protein has been proved as a powerful tool for the treatment of genetic diseases. The Cas9 protein, when combined with single-guide RNA (sgRNA), forms a Cas9/sgRNA ribonucleoprotein (RNP) capable of targeting and editing the genome. However, the limited availability of effective carriers has restricted the broader application of CRISPR/Cas9 RNP. In this study, we evaluated dual pH-responsive amphiphilic xenopeptides (XPs) for delivering CRISPR/Cas9 RNP. These artificial lipo-XPs contain apolar cationizable lipoamino fatty acid (LAF) and polar cationizable oligoaminoethylene acid units such as succinoyl-tetraethylenepentamine (Stp) in various ratios and U-shaped topologies. The carriers were screened for functional Cas9/sgRNA RNP delivery in four different reporter cell lines, including a Duchenne muscular dystrophy (DMD) exon skipping reporter cell model. Significantly enhanced cellular uptake into HeLa cells, effective endosomal disruption in HeLa gal8-mRuby3 cells, and potent genome editing by several Cas9/sgRNA RNP complexes was observed in four different cell lines in the 5 nM sgRNA range. Comparing Cas9/sgRNA RNP complexes with Cas9 mRNA/sgRNA polyplexes in the DMD reporter cell model demonstrated similar splice site editing and high exon skipping of the two different molecular Cas9 modalities. Based on these studies, analogues of two potent U1 LAF2-Stp and LAF4-Stp2 structures were deployed, tuning the amphiphilicity of the polar Stp group by replacement with the six oligoamino acids dmGtp, chGtp, dGtp, Htp, Stt, or GEIPA. The most potent LAF2-Stp analogues (containing dGtp, chGtp or GEIPA) demonstrated further enhanced gene editing efficiency with EC50 values of 1 nM in the DMD exon skipping reporter cell line. Notably, the EC50 of LAF2-dGtp reached 0.51 nM even upon serum incubation. Another carrier (LAF4-GEIPA2) complexing Cas9/sgRNA RNP and donor DNA, facilitated up to 43 % of homology-directed repair (HDR) in HeLa eGFPd2 cells visualized by the switch from green fluorescent protein (eGFP) to blue fluorescent protein (BFP). This study presents a delivery system tunable for Cas9 RNP complexes or Cas9 RNP/donor DNA polyplexes, offering an effective and easily applicable strategy for gene editing.
Collapse
Affiliation(s)
- Xianjin Luo
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Janin Germer
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Tobias Burghardt
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Melina Grau
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Yi Lin
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Ulrich Lächelt
- Center for Nanoscience (CeNS), LMU Munich, 80799 Munich, Germany; Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; Center for Nanoscience (CeNS), LMU Munich, 80799 Munich, Germany; CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany.
| |
Collapse
|
2
|
Wang S, Wang J, Li B, Zhang J. Photoactivable CRISPR for Biosensing and Cancer Therapy. Chembiochem 2024; 25:e202400685. [PMID: 39317648 DOI: 10.1002/cbic.202400685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Photoactivable CRISPR technology represents a transformative approach in the field of genome editing, offering unprecedented control over gene editing with high spatial and temporal precision. By harnessing the power of light to modulate the activity of CRISPR components, this innovative strategy enables precise regulation of Cas proteins, guide RNAs, and ribonucleoprotein complexes. Recent advancements in optical control methodologies, including the development of photoactivable nanocarriers, have significantly expanded the potential applications of CRISPR in biomedical fields. This Concept highlights the latest developments in designing photoactivable CRISPR systems and their promising applications in biosensing and cancer therapy. Additionally, the remaining challenges and future trends are also discussed. It is expected that the photoactivable CRISPR would facilitate translating more precise gene therapies into clinical use.
Collapse
Affiliation(s)
- Siyuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiaqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Baijiang Li
- Institution Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Institution Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing, 210023, China
| |
Collapse
|
3
|
Saidjalolov S, Chen XX, Moreno J, Cognet M, Wong-Dilworth L, Bottanelli F, Sakai N, Matile S. Asparagusic Golgi Trackers. JACS AU 2024; 4:3759-3765. [PMID: 39483219 PMCID: PMC11522900 DOI: 10.1021/jacsau.4c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 11/03/2024]
Abstract
Thiol-mediated uptake (TMU) is thought to occur through dynamic covalent cascade exchange networks. Here we show that the cascade accounting for TMU of asparagusic acid derivatives (AspA) ends in the Golgi apparatus (G) and shifts from disulfide to thioester exchange with palmitoyl transferases as the final exchange partner. As a result, AspA combined with pH-sensitive fluoresceins, red-shifted silicon-rhodamines, or mechanosensitive flipper probes selectively labels the Golgi apparatus in fluorescence microscopy images in living and fixed cells. AspA Golgi trackers work without cellular engineering and excel with speed, simplicity, generality, and compatibility with G/ER and cis/trans discrimination, morphological changes, anterograde vesicular trafficking, and superresolution imaging by stimulated emission depletion microscopy. Golgi flippers in particular can image membrane order and tension in the Golgi and, if desired, at the plasma membrane during TMU.
Collapse
Affiliation(s)
| | - Xiao-Xiao Chen
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Julia Moreno
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Michael Cognet
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Luis Wong-Dilworth
- Institute
for Chemistry and Biochemistry, Freie Universität
Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Francesca Bottanelli
- Institute
for Chemistry and Biochemistry, Freie Universität
Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Naomi Sakai
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Stefan Matile
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
4
|
Rajanathadurai J, Perumal E, Sindya J. Advances in targeting cancer epigenetics using CRISPR-dCas9 technology: A comprehensive review and future prospects. Funct Integr Genomics 2024; 24:164. [PMID: 39292321 DOI: 10.1007/s10142-024-01455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Cancer, a complex and multifaceted group of diseases, continues to challenge the boundaries of medical science and healthcare. Its relentless impact on global health, both in terms of prevalence and mortality, underscores the urgent need for a comprehensive understanding of its underlying mechanisms and innovative therapeutic approaches. In recent years, significant progress has been achieved in identifying the genetic and epigenetic mechanisms that cause cancer development and treatment resistance. Researchers are currently investigating the possibility of epigenetic editing such as CRISPR-dCas9 (Clustered Regularly Interspaced Short Palindromic Repeats/deactivated CRISPR-associated protein 9) technologies, for targeting and modifying cancer related epigenetic alterations. A revolutionary form of precision cancer treatment called CRISPR-dCas9 is derived from the bacterial CRISPR-Cas (CRISPR-associated nuclease) system. CRISPR-dCas9 can be combined with epigenetic effectors (EE) to alter malignant epigenetic characteristics associated with cancer. The purpose of this review article is to provide a thorough analysis of recent advancements in utilizing CRISPR-dCas9 technology to target and modify epigenetic changes associated with cancer. This review aims to summarize the latest research developments, evaluate the effectiveness and limitations of CRISPR-dCas9 applications in cancer therapy, identify key challenges such as delivery methods and explore future directions for improving and expanding these technologies. Here, we address the various obstacles that may arise in clinical applications while showcasing the latest advancements and potential future uses of CRISPR-Cas9 in cancer therapy.
Collapse
Affiliation(s)
- Jeevitha Rajanathadurai
- Cancer Genomics Lab, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| | - Elumalai Perumal
- Cancer Genomics Lab, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India.
| | - Jospin Sindya
- Cancer Genomics Lab, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| |
Collapse
|
5
|
Hosseini SY, Mallick R, Mäkinen P, Ylä-Herttuala S. Insights into Prime Editing Technology: A Deep Dive into Fundamentals, Potentials, and Challenges. Hum Gene Ther 2024; 35:649-668. [PMID: 38832869 DOI: 10.1089/hum.2024.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
As the most versatile and precise gene editing technology, prime editing (PE) can establish a durable cure for most human genetic disorders. Several generations of PE have been developed based on an editor machine or prime editing guide RNA (pegRNA) to achieve any kind of genetic correction. However, due to the early stage of development, PE complex elements need to be optimized for more efficient editing. Smart optimization of editor proteins as well as pegRNA has been contemplated by many researchers, but the universal PE machine's current shortcomings remain to be solved. The modification of PE elements, fine-tuning of the host genes, manipulation of epigenetics, and blockage of immune responses could be used to reach more efficient PE. Moreover, the host factors involved in the PE process, such as repair and innate immune system genes, have not been determined, and PE cell context dependency is still poorly understood. Regarding the large size of the PE elements, delivery is a significant challenge and the development of a universal viral or nonviral platform is still far from complete. PE versions with shortened variants of reverse transcriptase are still too large to fit in common viral vectors. Overall, PE faces challenges in optimization for efficiency, high context dependency during the cell cycling, and delivery due to the large size of elements. In addition, immune responses, unpredictability of outcomes, and off-target effects further limit its application, making it essential to address these issues for broader use in nonpersonalized gene editing. Besides, due to the limited number of suitable animal models and computational modeling, the prediction of the PE process remains challenging. In this review, the fundamentals of PE, including generations, potential, optimization, delivery, in vivo barriers, and the future landscape of the technology are discussed.
Collapse
Affiliation(s)
- Seyed Younes Hosseini
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Bacteriology and Virology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
6
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
7
|
Tao J, Yuan X, Zheng M, Jiang Y, Chen Y, Zhang F, Zhou N, Zhu J, Deng Y. Bibliometric and visualized analysis of cancer nanomedicine from 2013 to 2023. Drug Deliv Transl Res 2024; 14:1708-1724. [PMID: 38161193 DOI: 10.1007/s13346-023-01485-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 01/03/2024]
Abstract
Cancer nanomedicine has been an emerging field for drug development against malignant tumors during the past three decades. A bibliometric analysis was performed to characterize the current international trends and present visual representations of the evolution and emerging trends in the research and development of nanocarriers for cancer treatment. This study employed bibliometric analysis and visualization techniques to analyze the literature on antitumor nanocarriers published between 2013 and 2023. A total of 98,980 articles on antitumor nanocarriers were retrieved from the Web of Science Core Collection (WoSCC) database and analyzed using the Citespace software for specific characteristics such as publication year, countries/regions, organizations, keywords, and references. Network visualization was constructed by VOSviewer and Citespace. From 2013 to 2023, the annual global publications increased 7.39 times, from 1851 to 13,683. People's Republic of China (2588 publications) was the most productive country. Chinese Academy of Sciences (298 publications) was the most productive organization. The top 5 high-frequency keywords were "nanoparticles," "drug delivery," "nanomedicine," "cancer," and "nanocarriers." The keywords with the strongest citation bursts recently were "cancer immunotherapy," "microenvironment," "antitumor immunity," etc., which indicated the emerging frontiers of antitumor nanomedicine. The co-occurrence cluster analysis of the keywords formed 6 clusters, and most of the top 10 publications by citation counts focused on cluster #1 (nanocarriers) and cluster #2 (cancer immunotherapy). We further provided insightful discussions into the identified subtopics to help researchers gain more details of current trends and hotspots in this field. The present study processes a macro-level literature analysis of antitumor nanocarriers and provides new perspectives and research directions for future development in cancer nanomedicine.
Collapse
Affiliation(s)
- Jing Tao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Xiaoming Yuan
- Soochow University Library, Soochow University, Suzhou, 215006, China
| | - Min Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yingqian Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yitian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Fangrui Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Nan Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jianguo Zhu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
8
|
Saidjalolov S, Coelho F, Mercier V, Moreau D, Matile S. Inclusive Pattern Generation Protocols to Decode Thiol-Mediated Uptake. ACS CENTRAL SCIENCE 2024; 10:1033-1043. [PMID: 38799667 PMCID: PMC11117725 DOI: 10.1021/acscentsci.3c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024]
Abstract
Thiol-mediated uptake (TMU) is an intriguing enigma in current chemistry and biology. While the appearance of cell-penetrating activity upon attachment of cascade exchangers (CAXs) has been observed by many and is increasingly being used in practice, the molecular basis of TMU is essentially unknown. The objective of this study was to develop a general protocol to decode the dynamic covalent networks that presumably account for TMU. Uptake inhibition patterns obtained from the removal of exchange partners by either protein knockdown or alternative inhibitors are aligned with original patterns generated by CAX transporters and inhibitors and patterns from alternative functions (here cell motility). These inclusive TMU patterns reveal that the four most significant CAXs known today enter cells along three almost orthogonal pathways. Epidithiodiketopiperazines (ETP) exchange preferably with integrins and protein disulfide isomerases (PDIs), benzopolysulfanes (BPS) with different PDIs, presumably PDIA3, and asparagusic acid (AspA), and antisense oligonucleotide phosphorothioates (OPS) exchange with the transferrin receptor and can be activated by the removal of PDIs with their respective inhibitors. These findings provide a solid basis to understand and use TMU to enable and prevent entry into cells.
Collapse
Affiliation(s)
| | - Filipe Coelho
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Vincent Mercier
- Department
of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Dimitri Moreau
- Department
of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Stefan Matile
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
9
|
Li B, Li Q, Qi Z, Li Z, Yan X, Chen Y, Xu X, Pan Q, Chen Y, Huang F, Ping Y. Supramolecular Genome Editing: Targeted Delivery and Endogenous Activation of CRISPR/Cas9 by Dynamic Host-Guest Recognition. Angew Chem Int Ed Engl 2024; 63:e202316323. [PMID: 38317057 DOI: 10.1002/anie.202316323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
We synthesize supramolecular poly(disulfide) (CPS) containing covalently attached cucurbit[7]uril (CB[7]), which is exploited not only as a carrier to deliver plasmid DNA encoding destabilized Cas9 (dsCas9), but also as a host to include trimethoprim (TMP) by CB[7] moieties through the supramolecular complexation to form TMP@CPS/dsCas9. Once the plasmid is transfected into tumor cells by CPS, the presence of polyamines can competitively trigger the decomplexation of TMP@CPS, thereby displacing and releasing TMP from CB[7] to stabilize dsCas9 that can target and edit the genomic locus of PLK1 to inhibit the growth of tumor cells. Following the systemic administration of TMP@CPS/dsCas9 decorated with hyaluronic acid (HA), tumor-specific editing of PLK1 is detected due to the elevated polyamines in tumor microenvironment, greatly minimizing off-target editing in healthy tissues and non-targeted organs. As the metabolism of polyamines is dysregulated in a wide range of disorders, this study offers a supramolecular approach to precisely control CRISPR/Cas9 functions under particular pathological contexts.
Collapse
Affiliation(s)
- Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, P. R. China
| | - Qing Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Zidan Qi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhiyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiaojie Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiaojie Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, P. R. China
| | - Qi Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuxuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, P. R. China
| |
Collapse
|
10
|
Aquino-Jarquin G. Genome and transcriptome engineering by compact and versatile CRISPR-Cas systems. Drug Discov Today 2023; 28:103793. [PMID: 37797813 DOI: 10.1016/j.drudis.2023.103793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Comparative genomics has enabled the discovery of tiny clustered regularly interspaced short palindromic repeat (CRISPR) bacterial immune system effectors with enormous potential for manipulating eukaryotic genomes. Recently, smaller Cas proteins, including miniature Cas9, Cas12, and Cas13 proteins, have been identified and validated as efficient genome editing and base editing tools in human cells. The compact size of these novel CRISPR effectors is highly desirable for generating CRISPR-based therapeutic approaches, mainly to overcome in vivo delivery constraints, providing a promising opportunity for editing pathogenic mutations of clinical relevance and knocking down RNAs in human cells without inducing chromosomal insertions or genome alterations. Thus, these tiny CRISPR-Cas systems represent new and highly programmable, specific, and efficient platforms, which expand the CRISPR toolkit for potential therapeutic opportunities.
Collapse
Affiliation(s)
- Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section. Research on Genomics, Genetics, and Bioinformatics Laboratory. Hemato-Oncology Building, 4th Floor, Section 2. Children's Hospital of Mexico, Federico Gómez, Mexico City, Mexico.
| |
Collapse
|