1
|
Devi T, Mebs S, Barman DJ, Opis-Basilio A, Haumann M, Ray K. Reinvestigation of the mechanism of dioxygen activation at a Mn II(cyclam) center. J Inorg Biochem 2025; 264:112809. [PMID: 39705751 DOI: 10.1016/j.jinorgbio.2024.112809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/19/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
This study deals with the unprecedented reactivity of a [(cyclam)MnII(OTf)2] (3-cis; OTf = CF3SO3-) with O2, which, depending on the presence or absence of a hydrogen atom donor like 1-hydroxy-2,2,6,6-tetramethyl-piperidine (TEMPO-H), selectively generates di-μ-oxo Mn(III)Mn(IV) (1) or MnIV2 (2) complexes, respectively. Both dimers have been characterized by different techniques including single-crystal X-ray diffraction, X-ray absorption spectroscopy, and electron paramagnetic resonance. Oxygenation reactions carried out with labeled 18O2 and Resonance Raman spectroscopy unambiguously show that the oxygen atoms present in the MnIVMnIII dimer originate from O2. Experimental evidences are provided for a novel method of dioxygen activation involving three Mn ions or two Mn ions and TEMPO-H to generate the bis(μ-oxo)dimanganese(IV) or bis(μ-oxo) dimanganese(III, IV) cores, respectively.
Collapse
Affiliation(s)
- Tarali Devi
- Indian Institute of Technology Hyderabad, Telangana 502284, India; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Stefan Mebs
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Dibya Jyoti Barman
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Amanda Opis-Basilio
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
2
|
Singh P, Lomax MJA, Opalade AA, Nguyen BB, Srnec M, Jackson TA. Basicity of Mn III-Hydroxo Complexes Controls the Thermodynamics of Proton-Coupled Electron Transfer Reactions. Inorg Chem 2024; 63:21941-21953. [PMID: 39498631 DOI: 10.1021/acs.inorgchem.4c03254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Several manganese-dependent enzymes utilize MnIII-hydroxo units in concerted proton-electron transfer (CPET) reactions. We recently demonstrated that hydrogen bonding to the hydroxo ligand in the synthetic [MnIII(OH)(PaPy2N)]+ complex increased rates of CPET reactions compared to the [MnIII(OH)(PaPy2Q)]+ complex that lacks a hydrogen bond. In this work, we determine the effect of hydrogen bonding on the basicity of the hydroxo ligand and evaluate the corresponding effect on CPET reactions. Both [MnIII(OH)(PaPy2Q)]+ and [MnIII(OH)(PaPy2N)]+ react with strong acids to yield MnIII-aqua complexes [MnIII(OH2)(PaPy2Q)]2+ and [MnIII(OH2)(PaPy2N)]2+, for which we determined pKa values of 7.6 and 13.1, respectively. Reactions of the MnIII-aqua complexes with one-electron reductants yielded estimates of reduction potentials, which were combined with pKa values to give O-H bond dissociation free energies (BDFEs) of 77 and 85 kcal mol-1 for the MnII-aqua complexes [MnII(OH2)(PaPy2Q)]+ and [MnII(OH2)(PaPy2N)]+. Using these BDFEs, we performed an analysis of the thermodynamic driving force for phenol oxidation by these complexes and observed the unexpected result that slower rates are associated with more asynchronous CPET. In addition, reactions of acidic phenols with the MnIII-hydroxo complexes show rates that deviate from the thermodynamic trends, consistent with a change in mechanism from CPET to proton transfer.
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Markell J A Lomax
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Adedamola A Opalade
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Brandon B Nguyen
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8 18223, Czech Republic
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
3
|
Deolka S, Govindarajan R, Khaskin E, Vasylevskyi S, Bahri J, Fayzullin RR, Roy MC, Khusnutdinova JR. Oxygen transfer reactivity mediated by nickel perfluoroalkyl complexes using molecular oxygen as a terminal oxidant. Chem Sci 2023; 14:7026-7035. [PMID: 37389265 PMCID: PMC10306096 DOI: 10.1039/d3sc01861j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/03/2023] [Indexed: 07/01/2023] Open
Abstract
Nickel perfluoroethyl and perfluoropropyl complexes supported by naphthyridine-type ligands show drastically different aerobic reactivity from their trifluoromethyl analogs resulting in facile oxygen transfer to perfluoroalkyl groups or oxygenation of external organic substrates (phosphines, sulfides, alkenes and alcohols) using O2 or air as a terminal oxidant. Such mild aerobic oxygenation occurs through the formation of spectroscopically detected transient high-valent NiIII and structurally characterized mixed-valent NiII-NiIV intermediates and radical intermediates, resembling O2 activation reported for some Pd dialkyl complexes. This reactivity is in contrast with the aerobic oxidation of naphthyridine-based Ni(CF3)2 complexes resulting in the formation of a stable NiIII product, which is attributed to the effect of greater steric congestion imposed by longer perfluoroalkyl chains.
Collapse
Affiliation(s)
- Shubham Deolka
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - R Govindarajan
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Eugene Khaskin
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Serhii Vasylevskyi
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Janet Bahri
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences 8 Arbuzov Street Kazan 420088 Russian Federation
| | - Michael C Roy
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Julia R Khusnutdinova
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| |
Collapse
|
4
|
Battistella B, Iffland-Mühlhaus L, Schütze M, Cula B, Kuhlmann U, Dau H, Hildebrandt P, Lohmiller T, Mebs S, Apfel UP, Ray K. Evidence of Sulfur Non-Innocence in [Co II (dithiacyclam)] 2+ -Mediated Catalytic Oxygen Reduction Reactions. Angew Chem Int Ed Engl 2023; 62:e202214074. [PMID: 36378951 PMCID: PMC10108118 DOI: 10.1002/anie.202214074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
In many metalloenzymes, sulfur-containing ligands participate in catalytic processes, mainly via the involvement in electron transfer reactions. In a biomimetic approach, we now demonstrate the implication of S-ligation in cobalt mediated oxygen reduction reactions (ORR). A comparative study between the catalytic ORR capabilities of the four-nitrogen bound [Co(cyclam)]2+ (1; cyclam=1,5,8,11-tetraaza-cyclotetradecane) and the S-containing analog [Co(S2 N2 -cyclam)]2+ (2; S2 N2 -cyclam=1,8-dithia-5,11-diaza-cyclotetradecane) reveals improved catalytic performance once the chalcogen is introduced in the Co coordination sphere. Trapping and characterization of the intermediates formed upon dioxygen activation at the CoII centers in 1 and 2 point to the involvement of sulfur in the O2 reduction process as the key for the improved catalytic ORR capabilities of 2.
Collapse
Affiliation(s)
- Beatrice Battistella
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Linda Iffland-Mühlhaus
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Maximillian Schütze
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Beatrice Cula
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Uwe Kuhlmann
- Institut für Chemie, Fakultät II, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Holger Dau
- Institut für Physik, Freie Universität zu Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Fakultät II, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Thomas Lohmiller
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany.,EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 16, 12489, Berlin, Germany
| | - Stefan Mebs
- Institut für Physik, Freie Universität zu Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Ulf-Peter Apfel
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany.,Department for Electrosynthesis, Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047, Oberhausen, Germany
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
5
|
Liao G, Mei F, Chen Z, Yin G. Lewis acid improved dioxygen activation by a non-heme iron(II) complex towards tryptophan 2,3-dioxygenase activity for olefin oxygenation. Dalton Trans 2022; 51:18024-18032. [PMID: 36373374 DOI: 10.1039/d2dt02769k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dioxygen activation and catalysis around ambient temperature is a long-standing challenge in chemistry. Inspired by the significant roles of the hydrogen bond network in dioxygen activation and catalysis by redox enzymes, this work presents a Lewis acid improved dioxygen activation by an FeII(BPMEN)(OTf)2 complex towards tryptophan 2,3-dioxygenase (TDO) activity for 3-methylindole and common olefinic CC bond oxygenation and cleavage (enzymatic Brønsted acid vs. chemical Lewis acid). It was found that the presence of a Lewis acid such as Sc3+ could substantially improve olefinic CC bond oxygenation and cleavage activity through FeII(BPMEN)(OTf)2 catalyzed dioxygen activation. Notably, a more negative ρ value in the Hammett plot of para-substituted styrene oxygenations was observed in the presence of a stronger Lewis acid, disclosing the enhanced electrophilic oxygenation capability of the putative iron(III) superoxo species through its electrostatic interaction with a stronger Lewis acid. Thereof, this work has demonstrated a new strategy in catalyst design for dioxygen activation and catalysis for olefin oxygenation, a significant process in the chemical industry.
Collapse
Affiliation(s)
- Guangjian Liao
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Fuming Mei
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
6
|
Lueckheide MJ, Ertem MZ, Michon MA, Chmielniak P, Robinson JR. Peroxide-Selective Reduction of O 2 at Redox-Inactive Rare-Earth(III) Triflates Generates an Ambiphilic Peroxide. J Am Chem Soc 2022; 144:17295-17306. [PMID: 36083877 DOI: 10.1021/jacs.2c08140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal peroxides are key species involved in a range of critical biological and synthetic processes. Rare-earth (group III and the lanthanides; Sc, Y, La-Lu) peroxides have been implicated as reactive intermediates in catalysis; however, reactivity studies of isolated, structurally characterized rare-earth peroxides have been limited. Herein, we report the peroxide-selective (93-99% O22-) reduction of dioxygen (O2) at redox-inactive rare-earth triflates in methanol using a mild metallocene reductant, decamethylferrocene (Fc*). The first molecular praseodymium peroxide ([PrIII2(O22-)(18C6)2(EG)2][OTf]4; 18C6 = 18-crown-6, EG = ethylene glycol, -OTf = -O3SCF3; 2-Pr) was isolated and characterized by single-crystal X-ray diffraction, Raman spectroscopy, and NMR spectroscopy. 2-Pr displays high thermal stability (120 °C, 50 mTorr), is protonated by mild organic acids [pKa1(MeOH) = 5.09 ± 0.23], and engages in electrophilic (e.g., oxygen atom transfer) and nucleophilic (e.g., phosphate-ester cleavage) reactivity. Our mechanistic studies reveal that the rate of oxygen reduction is dictated by metal-ion accessibility, rather than Lewis acidity, and suggest new opportunities for differentiated reactivity of redox-inactive metal ions by leveraging weak metal-ligand binding events preceding electron transfer.
Collapse
Affiliation(s)
- Matthew J Lueckheide
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Mehmed Z Ertem
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael A Michon
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Pawel Chmielniak
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
7
|
Paramagnetic resonance investigation of mono- and di-manganese-containing systems in biochemistry. Methods Enzymol 2022; 666:315-372. [DOI: 10.1016/bs.mie.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Cook EN, Machan CW. Bioinspired mononuclear Mn complexes for O 2 activation and biologically relevant reactions. Dalton Trans 2021; 50:16871-16886. [PMID: 34730590 DOI: 10.1039/d1dt03178c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A general interest in harnessing the oxidizing power of dioxygen (O2) continues to motivate research efforts on bioinspired and biomimetic complexes to better understand how metalloenzymes mediate these reactions. The ubiquity of Fe- and Cu-based enzymes attracts significant attention and has resulted in many noteworthy developments for abiotic systems interested in direct O2 reduction and small molecule activation. However, despite the existence of Mn-based metalloenzymes with important O2-dependent activity, there has been comparatively less focus on the development of these analogues relative to Fe- and Cu-systems. In this Perspective, we summarize important contributions to the development of bioinspired mononuclear Mn complexes for O2 activation and studies on their reactivity, emphasizing important design parameters in the primary and secondary coordination spheres and outlining mechanistic trends.
Collapse
Affiliation(s)
- Emma N Cook
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| | - Charles W Machan
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| |
Collapse
|
9
|
Opalade AA, Hessefort L, Day VW, Jackson TA. Controlling the Reactivity of a Metal-Hydroxo Adduct with a Hydrogen Bond. J Am Chem Soc 2021; 143:15159-15175. [PMID: 34494835 DOI: 10.1021/jacs.1c06199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The enzymes manganese lipoxygenase (MnLOX) and manganese superoxide dismutase (MnSOD) utilize mononuclear Mn centers to effect their catalytic reactions. In the oxidized MnIII state, the active site of each enzyme contains a hydroxo ligand, and X-ray crystal structures imply a hydrogen bond between this hydroxo ligand and a cis carboxylate ligand. While hydrogen bonding is a common feature of enzyme active sites, the importance of this particular hydroxo-carboxylate interaction is relatively unexplored. In this present study, we examined a pair of MnIII-hydroxo complexes that differ by a single functional group. One of these complexes, [MnIII(OH)(PaPy2N)]+, contains a naphthyridinyl moiety capable of forming an intramolecular hydrogen bond with the hydroxo ligand. The second complex, [MnIII(OH)(PaPy2Q)]+, contains a quinolinyl moiety that does not permit any intramolecular hydrogen bonding. Spectroscopic characterization of these complexes supports a common structure, but with perturbations to [MnIII(OH)(PaPy2N)]+, consistent with a hydrogen bond. Kinetic studies using a variety of substrates with activated O-H bonds, revealed that [MnIII(OH)(PaPy2N)]+ is far more reactive than [MnIII(OH)(PaPy2Q)]+, with rate enhancements of 15-100-fold. A detailed analysis of the thermodynamic contributions to these reactions using DFT computations reveals that the former complex is significantly more basic. This increased basicity counteracts the more negative reduction potential of this complex, leading to a stronger O-H BDFE in the [MnII(OH2)(PaPy2N)]+ product. Thus, the differences in reactivity between [MnIII(OH)(PaPy2Q)]+ and [MnIII(OH)(PaPy2N)]+ can be understood on the basis of thermodynamic considerations, which are strongly influenced by the ability of the latter complex to form an intramolecular hydrogen bond.
Collapse
Affiliation(s)
- Adedamola A Opalade
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Logan Hessefort
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Victor W Day
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
10
|
Yang C, Liu D, Wang T, Sun F, Qiu S, Wu G. Manganese-promoted cleavage of acetylacetonate resembling the β-diketone cleaving dioxygenase (Dke1) reactivity. Chem Commun (Camb) 2021; 57:9462-9465. [PMID: 34528953 DOI: 10.1039/d1cc02774c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We here report a manganese-based oxidative cleavage of inactivated acetylacetonate, the mechanistic pathway of which resembles Dke1-catalyzed reactions of β-diketone and α-keto acid. This oxidative transformation proceeds through an acetylacetonate-pyruvate-oxalate pathway, which can be terminated at the stage of pyruvate through ligand/solvent variation. XRD, time-dependent GC-MS, and isotope-labeling studies suggested that our system represents the same cleaving specificity and dioxygenase-like reactivity of Dke1.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Dingqi Liu
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Tongshuai Wang
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Gang Wu
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
11
|
Toledo S, Yan Poon PC, Gleaves M, Rees J, Rogers DM, Kaminsky W, Kovacs JA. Increasing reactivity by incorporating π-acceptor ligands into coordinatively unsaturated thiolate-ligated iron(II) complexes. Inorganica Chim Acta 2021; 524. [PMID: 34305163 DOI: 10.1016/j.ica.2021.120422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Reported herein is the structural, spectroscopic, redox, and reactivity properties of a series of iron complexes containing both a π-donating thiolate, and π-accepting N-heterocycles in the coordination sphere, in which we systematically vary the substituents on the N-heterocycle, the size of the N-heterocycle, and the linker between the imine nitrogen and tertiary amine nitrogen. In contrast to our primary amine/thiolate-ligated Fe(II) complex, [FeII(SMe2N4(tren))]+ (1), the Fe(II) complexes reported herein are intensely colored, allowing us to visually monitor reactivity. Ferrous complexes with R = H substituents in the 6-position of the pyridines, [FeII(SMe2N4(6-H-DPPN)]+ (6) and [FeII(SMe2N4(6-H-DPEN))(MeOH)]+ (8-MeOH) are shown to readily bind neutral ligands, and all of the Fe(II) complexes are shown to bind anionic ligands regardless of steric congestion. This reactivity is in contrast to 1 and is attributed to an increased metal ion Lewis acidity assessed via aniodic redox potentials, Ep,a, caused by the π-acid ligands. Thermodynamic parameters (ΔH, ΔS) for neutral ligand binding were obtained from T-dependent equilibrium constants. All but the most sterically congested complex, [FeII(SMe2N4(6-Me-DPPN)]+ (5), react with O2. In contrast to our Mn(II)-analogues, dioxygen intermediates are not observed. Rates of formation of the final mono oxo-bridged products were assessed via kinetics and shown to be inversely dependent on redox potentials, Ep,a, consistent with a mechanism involving electron transfer.
Collapse
Affiliation(s)
- Santiago Toledo
- The Department of Chemistry, University of Washington, Box 351700 Seattle, WA 98195-1700, United States
| | - Penny Chaau Yan Poon
- The Department of Chemistry, University of Washington, Box 351700 Seattle, WA 98195-1700, United States
| | - Morgan Gleaves
- The Department of Chemistry, University of Washington, Box 351700 Seattle, WA 98195-1700, United States
| | - Julian Rees
- The Department of Chemistry, University of Washington, Box 351700 Seattle, WA 98195-1700, United States
| | - Dylan M Rogers
- The Department of Chemistry, University of Washington, Box 351700 Seattle, WA 98195-1700, United States
| | - Werner Kaminsky
- The Department of Chemistry, University of Washington, Box 351700 Seattle, WA 98195-1700, United States
| | - Julie A Kovacs
- The Department of Chemistry, University of Washington, Box 351700 Seattle, WA 98195-1700, United States
| |
Collapse
|
12
|
Huang Z, Guan R, Shanmugam M, Bennett EL, Robertson CM, Brookfield A, McInnes EJL, Xiao J. Oxidative Cleavage of Alkenes by O 2 with a Non-Heme Manganese Catalyst. J Am Chem Soc 2021; 143:10005-10013. [PMID: 34160220 PMCID: PMC8297864 DOI: 10.1021/jacs.1c05757] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
The oxidative cleavage
of C=C double bonds with molecular
oxygen to produce carbonyl compounds is an important transformation
in chemical and pharmaceutical synthesis. In nature, enzymes containing
the first-row transition metals, particularly heme and non-heme iron-dependent
enzymes, readily activate O2 and oxidatively cleave C=C
bonds with exquisite precision under ambient conditions. The reaction
remains challenging for synthetic chemists, however. There are only
a small number of known synthetic metal catalysts that allow for the
oxidative cleavage of alkenes at an atmospheric pressure of O2, with very few known to catalyze the cleavage of nonactivated
alkenes. In this work, we describe a light-driven, Mn-catalyzed protocol
for the selective oxidation of alkenes to carbonyls under 1 atm of
O2. For the first time, aromatic as well as various nonactivated
aliphatic alkenes could be oxidized to afford ketones and aldehydes
under clean, mild conditions with a first row, biorelevant metal catalyst.
Moreover, the protocol shows a very good functional group tolerance.
Mechanistic investigation suggests that Mn–oxo species, including
an asymmetric, mixed-valent bis(μ-oxo)-Mn(III,IV) complex, are
involved in the oxidation, and the solvent methanol participates in
O2 activation that leads to the formation of the oxo species.
Collapse
Affiliation(s)
- Zhiliang Huang
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Renpeng Guan
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Muralidharan Shanmugam
- Department of Chemistry and Photon Science Institute, The University of Manchester, Manchester M13 9PL, U.K
| | - Elliot L Bennett
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Craig M Robertson
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Adam Brookfield
- Department of Chemistry and Photon Science Institute, The University of Manchester, Manchester M13 9PL, U.K
| | - Eric J L McInnes
- Department of Chemistry and Photon Science Institute, The University of Manchester, Manchester M13 9PL, U.K
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| |
Collapse
|
13
|
Downing AN, Coggins MK, Poon PCY, Kovacs JA. Influence of Thiolate versus Alkoxide Ligands on the Stability of Crystallographically Characterized Mn(III)-Alkylperoxo Complexes. J Am Chem Soc 2021; 143:6104-6113. [PMID: 33851827 DOI: 10.1021/jacs.0c13001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The work described herein demonstrates the exquisite control that the inner coordination sphere of metalloenzymes and transition-metal complexes can have on reactivity. We report one of few crystallographically characterized Mn-peroxo complexes and show that the tight correlations between metrical and spectroscopic parameters, established previously by our group for thiolate-ligated RS-Mn(III)-OOR complexes, can be extended to include an alkoxide-ligated RO-Mn(III)-OOR complex. We show that the alkoxide-ligated RO-Mn(III)-OOR complex is an order of magnitude more stable (t1/2298 K = 6730 s, kobs298 K = 1.03 × 10-4 s-1) than its thiolate-ligated RS-Mn(III)-OOR derivative (t1/2293 K = 249 s, k1293 K = 2.78 × 10-3 s-1). Electronic structure calculations provide insight regarding these differences in stability. The highest occupied orbital of the thiolate-ligated derivative possesses significant sulfur character and π-backdonation from the thiolate competes with π-backdonation from the peroxo π*(O-O). DFT-calculated Mulliken charges show that the Mn ion Lewis acidity of alkoxide-ligated RO-Mn(III)-OOR (+0.451) is greater than that of thiolate-ligated RS-Mn(III)-OOR (+0.306), thereby facilitating π-backdonation from the antibonding peroxo π*(O-O) orbital and increasing its stability. This helps to explain why the photosynthetic oxygen-evolving Mn complex, which catalyzes O-O bond formation as opposed to cleavage, incorporates O- and/or N-ligands as opposed to cysS-ligands.
Collapse
Affiliation(s)
- Alexandra N Downing
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Michael K Coggins
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Penny Chaau Yan Poon
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Julie A Kovacs
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
14
|
Zhao N, Filatov AS, Xie J, Hill EA, Rogachev AY, Anderson JS. Generation and Reactivity of a Ni III2(μ-1,2-peroxo) Complex. J Am Chem Soc 2020; 142:21634-21639. [PMID: 33320644 DOI: 10.1021/jacs.0c10958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
High-valent transition metal-oxo, -peroxo, and -superoxo complexes are crucial intermediates in both biological and synthetic oxidation of organic substrates, water oxidation, and oxygen reduction. While high-valent oxygenated complexes of Mn, Fe, Co, and Cu are increasingly well-known, high-valent oxygenated Ni complexes are comparatively rarer. Herein we report the isolation of such an unusual high-valent species in a thermally unstable NiIII2(μ-1,2-peroxo) complex, which has been characterized using single-crystal X-ray diffraction and X-ray absorption, NMR, and UV-vis spectroscopies. Reactivity studies show that this complex is stable toward dissociation of oxygen but reacts with simple nucleophiles and electrophiles.
Collapse
Affiliation(s)
- Norman Zhao
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jiaze Xie
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ethan A Hill
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrey Yu Rogachev
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
15
|
Deng Z, Wu P, Cai Y, Sui Y, Chen Z, Zhang H, Wang B, Xia H. Dioxygen Activation by Internally Aromatic Metallacycle: Crystallographic Structure and Mechanistic Investigations. iScience 2020; 23:101379. [PMID: 32739835 PMCID: PMC7399181 DOI: 10.1016/j.isci.2020.101379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/14/2020] [Accepted: 07/14/2020] [Indexed: 11/19/2022] Open
Abstract
Mononuclear metal-peroxo species are invoked as the key intermediates in metalloenzymatic or synthetic catalysis. However, either transience or sluggishness reactivity of synthetic analogs of metal-peroxo species impedes our understanding of oxygen activation mechanism. Herein, we designed and characterized a dioxygen-derived mononuclear osmium-peroxo complex, in which the peroxo ligand is stabilized by internally aromatic metallacycle. We demonstrate that the osmium-peroxo species shows catalytic activity toward promoterless alcohol dehydrogenations. Furthermore, computational studies provide a new mechanism for the osmium-peroxo-mediated alcohol oxidation, starting with the concerted double-hydrogen transfer and followed by the generation of osmium-oxo species. Interestingly, the internally aromatic metallacycle also plays a vital role in catalysis, which mediates the hydrogen transfer from osmium center to the distal oxygen atom of Os–OOH moiety, thus facilitating the Os–OOH→Os=O conversion. We expect that these insights will advance the development of aromatic metallacycle toward aerobic oxidation catalysis. A dioxygen-derived mononuclear osmium-peroxo complex was characterized The peroxo ligand is stabilized by internally aromatic metallacycle O2 activation involves the reversible aromatization-dearomatization A concerted double-hydrogen transfer mechanism for alcohol dehydrogenation
Collapse
Affiliation(s)
- Zhihong Deng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Peng Wu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yapeng Cai
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanheng Sui
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhixin Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hong Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Binju Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Haiping Xia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
16
|
Shin B, Park Y, Jeong D, Cho J. Nucleophilic reactivity of a mononuclear cobalt(iii)-bis(tert-butylperoxo) complex. Chem Commun (Camb) 2020; 56:9449-9452. [PMID: 32687135 DOI: 10.1039/d0cc03385e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A mononuclear cobalt(III)-bis(tert-butylperoxo) adduct (CoIII-(OOtBu)2) bearing a tetraazamacrocyclic ligand was synthesized and characterized using various physicochemical methods, such as X-ray, UV-vis, ESI-MS, EPR, and NMR analyses. The crystal structure of the CoIII-(OOtBu)2 complex clearly showed that two OOtBu ligands bound to the equatorial position of the cobalt(iii) center. Kinetic studies and product analyses indicate that the CoIII-(OOtBu)2 intermediate exhibits nucleophilic oxidative reactivity toward external organic substrates.
Collapse
Affiliation(s)
- Bongki Shin
- Department of Emerging Materials Science, DGIST, Daegu 42988, Korea.
| | - Younwoo Park
- Department of Emerging Materials Science, DGIST, Daegu 42988, Korea.
| | - Donghyun Jeong
- Department of Emerging Materials Science, DGIST, Daegu 42988, Korea.
| | - Jaeheung Cho
- Department of Emerging Materials Science, DGIST, Daegu 42988, Korea.
| |
Collapse
|
17
|
Mondal S, Sahu K, Patra B, Jena S, Biswal HS, Kar S. A new synthesis of porphyrins via a putative trans-manganese(iv)-dihydroxide intermediate. Dalton Trans 2020; 49:1424-1432. [PMID: 31915769 DOI: 10.1039/c9dt03573g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new method for the synthesis of meso-substituted porphyrins was developed. In this two-step methodology, the first step involves the condensation of pyrroles/dipyrromethanes with aldehydes in a water-methanol mixture under acidic conditions. The second step involves manganese induced cyclization followed by oxidation via PhIO/O2. This methodology has been useful for the synthesis of a wide range of trans-A2B2 porphyrins and also symmetric porphyrins in moderate to good yields. A detailed investigation of the manganese induced cyclization reaction has allowed us to characterize a Mn-porphyrinogen complex. A series of analytical and spectroscopic techniques and DFT calculations have led us to the conclusion that the putative intermediate species are trans-manganese(iv)-dihydroxide complexes. EPR and magnetic susceptibility measurements helped us to assign the oxidation state of the manganese complexes in their native state. The assumption of trans-manganese(iv)-dihydroxide as the true intermediate for this porphyrin synthesis has been authenticated via in situ UV-Vis experiments. This new methodology is certainly different from other previously reported methodologies in many aspects and most importantly these reactions can be easily performed on a gram scale for the synthesis of porphyrins.
Collapse
Affiliation(s)
- Sruti Mondal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India.
| | | | | | | | | | | |
Collapse
|
18
|
Yan Poon PC, Dedushko MA, Sun X, Yang G, Toledo S, Hayes EC, Johansen A, Piquette MC, Rees JA, Stoll S, Rybak-Akimova E, Kovacs JA. How Metal Ion Lewis Acidity and Steric Properties Influence the Barrier to Dioxygen Binding, Peroxo O-O Bond Cleavage, and Reactivity. J Am Chem Soc 2019; 141:15046-15057. [PMID: 31480847 DOI: 10.1021/jacs.9b04729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein we quantitatively investigate how metal ion Lewis acidity and steric properties influence the kinetics and thermodynamics of dioxygen binding versus release from structurally analogous Mn-O2 complexes, as well as the barrier to Mn peroxo O-O bond cleavage, and the reactivity of Mn oxo intermediates. Previously we demonstrated that the steric and electronic properties of MnIII-OOR complexes containing N-heterocyclic (NAr) ligand scaffolds can have a dramatic influence on alkylperoxo O-O bond lengths and the barrier to alkylperoxo O-O bond cleavage. Herein, we examine the dioxygen reactivity of a new MnII complex containing a more electron-rich, less sterically demanding NAr ligand scaffold, and compare it with previously reported MnII complexes. Dioxygen binding is shown to be reversible with complexes containing the more electron-rich metal ions. The kinetic barrier to O2 binding and peroxo O-O bond cleavage is shown to correlate with redox potentials, as well as the steric properties of the supporting NAr ligands. The reaction landscape for the dioxygen chemistry of the more electron-rich complexes is shown to be relatively flat. A total of four intermediates, including a superoxo and peroxo species, are observed with the most electron-rich complex. Two new intermediates are shown to form following the peroxo, which are capable of cleaving strong X-H bonds. In the absence of a sacrificial H atom donor, solvent, or ligand, serves as a source of H atoms. With TEMPOH as sacrificial H atom donor, a deuterium isotope effect is observed (kH/kD = 3.5), implicating a hydrogen atom transfer (HAT) mechanism. With 1,4-cyclohexadiene, 0.5 equiv of benzene is produced prior to the formation of an EPR detected MnIIIMnIV bimetallic species, and 0.5 equiv after its formation.
Collapse
Affiliation(s)
- Penny Chaau Yan Poon
- Department of Chemistry , University of Washington , Campus Box 351700 , Seattle , Washington 98195-1700 , United States
| | - Maksym A Dedushko
- Department of Chemistry , University of Washington , Campus Box 351700 , Seattle , Washington 98195-1700 , United States
| | - Xianru Sun
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| | - Guang Yang
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| | - Santiago Toledo
- The Department of Chemistry , St. Edward's University , 3001 South Congress , Austin , Texas 78704-6489 , United States
| | - Ellen C Hayes
- Department of Chemistry , University of Washington , Campus Box 351700 , Seattle , Washington 98195-1700 , United States
| | - Audra Johansen
- Department of Chemistry , University of Washington , Campus Box 351700 , Seattle , Washington 98195-1700 , United States
| | - Marc C Piquette
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| | - Julian A Rees
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Stefan Stoll
- Department of Chemistry , University of Washington , Campus Box 351700 , Seattle , Washington 98195-1700 , United States
| | - Elena Rybak-Akimova
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| | - Julie A Kovacs
- Department of Chemistry , University of Washington , Campus Box 351700 , Seattle , Washington 98195-1700 , United States
| |
Collapse
|
19
|
Dedushko MA, Schweitzer D, Blakely MN, Swartz RD, Kaminsky W, Kovacs JA. Geometric and electronic structure of a crystallographically characterized thiolate-ligated binuclear peroxo-bridged cobalt(III) complex. J Biol Inorg Chem 2019; 24:919-926. [PMID: 31342141 PMCID: PMC6948190 DOI: 10.1007/s00775-019-01686-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
In order to shed light on metal-dependent mechanisms for O-O bond cleavage, and its microscopic reverse, we compare herein the electronic and geometric structures of O2-derived binuclear Co(III)- and Mn(III)-peroxo compounds. Binuclear metal peroxo complexes are proposed to form as intermediates during Mn-promoted photosynthetic H2O oxidation, and a Co-containing artificial leaf inspired by nature's photosynthetic H2O oxidation catalyst. Crystallographic characterization of an extremely activated peroxo is made possible by working with substitution-inert, low-spin Co(III). Density functional theory (DFT) calculations show that the frontier orbitals of the Co(III)-peroxo compound differ noticeably from the analogous Mn(III)-peroxo compound. The highest occupied molecular orbital (HOMO) associated with the Co(III)-peroxo is more localized on the peroxo in an antibonding π*(O-O) orbital, whereas the HOMO of the structurally analogous Mn(III)-peroxo is delocalized over both the metal d-orbitals and peroxo π*(O-O) orbital. With low-spin d6 Co(III), filled t2g orbitals prevent π-back-donation from the doubly occupied antibonding π*(O-O) orbital onto the metal ion. This is not the case with high-spin d4 Mn(III), since these orbitals are half-filled. This weakens the peroxo O-O bond of the former relative to the latter.
Collapse
Affiliation(s)
- Maksym A Dedushko
- The Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Dirk Schweitzer
- The Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Maike N Blakely
- The Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Rodney D Swartz
- The Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Werner Kaminsky
- The Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Julie A Kovacs
- The Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
20
|
Chen Z, Li J, Zeng XC. Unraveling Oxygen Evolution in Li-Rich Oxides: A Unified Modeling of the Intermediate Peroxo/Superoxo-like Dimers. J Am Chem Soc 2019; 141:10751-10759. [DOI: 10.1021/jacs.9b03710] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhenlian Chen
- Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Jun Li
- Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
21
|
Pietrzak T, Justyniak I, Kubisiak M, Bojarski E, Lewiński J. An In‐Depth Look at the Reactivity of Non‐Redox‐Metal Alkylperoxides. Angew Chem Int Ed Engl 2019; 58:8526-8530. [DOI: 10.1002/anie.201904380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Tomasz Pietrzak
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Iwona Justyniak
- Institute of Physical ChemistryPolish Academy of Science Kasprzaka 44/52 01-224 Warsaw Poland
| | - Marcin Kubisiak
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Emil Bojarski
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Janusz Lewiński
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
- Institute of Physical ChemistryPolish Academy of Science Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
22
|
Pietrzak T, Justyniak I, Kubisiak M, Bojarski E, Lewiński J. An In‐Depth Look at the Reactivity of Non‐Redox‐Metal Alkylperoxides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomasz Pietrzak
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Iwona Justyniak
- Institute of Physical ChemistryPolish Academy of Science Kasprzaka 44/52 01-224 Warsaw Poland
| | - Marcin Kubisiak
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Emil Bojarski
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Janusz Lewiński
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
- Institute of Physical ChemistryPolish Academy of Science Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
23
|
Lee CM, Sankaralingam M, Chuo CH, Tseng TH, Chen PPY, Chiang MH, Li XX, Lee YM, Nam W. A Mn(iv)-peroxo complex in the reactions with proton donors. Dalton Trans 2019; 48:5203-5213. [PMID: 30941378 DOI: 10.1039/c9dt00649d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protons play an important role in promoting O-O or M-O bond cleavage of metal-peroxo complexes. Treatment of side-on O2-bound [PPN][MnIV(TMSPS3)(O2)] (1, PPN = bis(triphenylphosphine)iminium and TMSPS3H3 = 2,2',2''-trimercapto-3,3',3''-tris(trimethylsilyl)triphenylphosphine) with perchloric acid (HClO4) in the presence of PR3 (R = phenyl or p-tolyl) results in the formation of neutral five-coordinate MnIII(OPR3)(TMSPS3) complexes (R = phenyl, 2a; p-tolyl, 2b), which are confirmed by X-ray crystallography. Isotope labelling experiments demonstrate that the oxygen atom in the phosphine oxide product derives from the peroxo ligand of 1. Reactions of 1 with weak proton donors, such as phenylthiol, phenol, substituted phenol and methanol, are also investigated to explore the reactivity of the MnIV-peroxo complex, leading to the isolation of a series of five-coordinate [MnIII(L)(TMSPS3)]- complexes (L = phenylthiolate, phenolate or methoxide). Mechanistic aspects of the reactions of the MnIV-peroxo complex with proton donors are discussed as well.
Collapse
Affiliation(s)
- Chien-Ming Lee
- Department of Applied Science, National Taitung University, Jhihben Campus: 369, Sec. 2, University Rd., Taitung 950, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nag SS, Mukherjee G, Barman P, Sastri CV. Influence of induced steric on the switchover reactivity of mononuclear Cu(II)-alkylperoxo complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Fukuzumi S, Lee YM, Nam W. Structure and reactivity of the first-row d-block metal-superoxo complexes. Dalton Trans 2019; 48:9469-9489. [DOI: 10.1039/c9dt01402k] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses the structure and reactivity of metal-superoxo complexes covering all ten first-row d-block metals from Sc to Zn.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Graduate School of Science and Technology
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Research Institute for Basic Sciences
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|
26
|
Devi T, Lee YM, Nam W, Fukuzumi S. Aromatic hydroxylation of anthracene derivatives by a chromium( iii)-superoxo complex via proton-coupled electron transfer. Chem Commun (Camb) 2019; 55:8286-8289. [DOI: 10.1039/c9cc03245b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aromatic hydroxylation of anthracene by a mononuclear nonheme Cr(iii)-superoxo complex proceeds via the rate-determining proton-coupled electron transfer, followed by fast further oxidation to anthraquinone.
Collapse
Affiliation(s)
- Tarali Devi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Faculty of Science and Engineering
| |
Collapse
|
27
|
A novel manganese(III)-peroxo complex bearing a proline-derived pentadentate aminobenzimidazole ligand. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.04.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Saracini C, Fukuzumi S, Lee YM, Nam W. Photoexcited state chemistry of metal-oxygen complexes. Dalton Trans 2018; 47:16019-16026. [PMID: 30324192 DOI: 10.1039/c8dt03604g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances on the excited state chemistry of metal-oxygen synthetic complexes based on earth-abundant metals such as copper, cobalt, and manganese are reviewed to show a much enhanced reactivity of the photoexcited states as compared with their relative ground states. Mononuclear copper(ii)-superoxide and dinuclear copper(ii)-peroxo complexes underwent copper-oxygen bond cleavage, dioxygen release, and copper(i)/dioxygen rebinding upon photoexcitation at low temperature. Photoirradiation of the cobalt-oxygen compound [(TAML)CoIV(O)]2- (6) (TAML = tetraamidomacrocyclic ligand) at 5 °C yielded a cobalt-oxygen excited state with 0.6(1) ns lifetime, showing a high reactivity in the bimolecular electron-transfer oxidations of m-xylene and anisole. An extremely long-lived excited state was generated upon photoexcitation of a manganese(iv)-oxo complex binding two Sc(OTf)3 molecules, which enabled the hydroxylation of benzene.
Collapse
Affiliation(s)
- Claudio Saracini
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | | | | | | |
Collapse
|
29
|
Saracini C, Malik DD, Sankaralingam M, Lee YM, Nam W, Fukuzumi S. Enhanced Electron-Transfer Reactivity of a Long-Lived Photoexcited State of a Cobalt-Oxygen Complex. Inorg Chem 2018; 57:10945-10952. [PMID: 30133298 DOI: 10.1021/acs.inorgchem.8b01571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photodynamics and electron-transfer reactivity of an excited state derived from an earth-abundant mononuclear cobalt-oxygen complex ground state, [(TAML)CoIV(O)]2- (1; H4TAML = 3,4,8,9-tetrahydro-3,3,6,6,9,9-hexamethyl-1 H-1,4,8,11-benzotetraazo-cyclotridecane-2,5,7,10-(6 H, 11 H)tetrone), prepared by electron-transfer oxidation of Li[(TAML)CoIII]·3(H2O) (2) in a 1:1 acetonitrile/acetone solvent mixture at 5 °C, were investigated using a combination of femtosecond and nanosecond laser absorption spectroscopy. Visible light photoexcitation of 1 (λexc = 393 nm) resulted in generation of the excited state S2* (lifetime: 1.4(4) ps), detected 2 ps after laser irradiation by femtosecond laser spectroscopy. The initially formed excited state S2* converted to a lower-lying excited state, S1* (λmax = 580 nm), with rate constant kc = 7(2) × 1011 s-1 (S2* → S1*). S1* exhibited a 0.6(1) ns lifetime and converted to the initial ground state 1 with rate constant kd = 1.7(3) × 109 s-1 (S1* → 1). The same excited state dynamics was observed when 1 was generated by electron-transfer oxidation of 2 using different one-electron oxidants such as Cu(OTf)2 (OTf- = triflate anion), [Fe(bpy)3]3+ (bpy = 2,2'-bipyridine), and tris(4-bromophenyl)ammoniumyl radical cation (TBPA•+). The electron-transfer reactivity of S1* was probed by nanosecond laser photoexcitation of 1 in the presence of a series of electron donors with different one-electron oxidation potentials ( Eox vs SCE): benzene (2.35 V), toluene (2.20 V), m-xylene (2.02 V), and anisole (1.67 V). The excited state S1* engaged in electron-transfer reactions with m-xylene and anisole to generate π-dimer radical cations of m-xylene and anisole, respectively, observed by nanosecond laser transient absorption spectroscopy, whereas no reactivity was observed toward benzene and toluene. Such differential electron-transfer reactivity depending on the Eox values of electron donors allowed the estimation of the one-electron reduction potential of S1* ( Ered*) as 2.1(1) V vs SCE, which is much higher than that of the ground state ( Ered = 0.86 V vs SCE).
Collapse
Affiliation(s)
- Claudio Saracini
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Deesha D Malik
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | | | - Yong-Min Lee
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,Faculty of Science and Engineering, Meijo University, SENTAN, Japan Science and Technology Agency (JST) , Nagoya , Aichi 468-8502 , Japan
| |
Collapse
|
30
|
Jiang F, Siegler MA, Sun X, Jiang L, Fonseca Guerra C, Bouwman E. Redox Interconversion between Cobalt(III) Thiolate and Cobalt(II) Disulfide Compounds. Inorg Chem 2018; 57:8796-8805. [PMID: 30024150 PMCID: PMC6150680 DOI: 10.1021/acs.inorgchem.8b00549] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The redox interconversion
between Co(III) thiolate and Co(II) disulfide
compounds has been investigated experimentally and computationally.
Reactions of cobalt(II) salts with disulfide ligand L1SSL1 (L1SSL1 = di-2-(bis(2-pyridylmethyl)amino)-ethyl
disulfide) result in the formation of either the high-spin cobalt(II)
disulfide compound [CoII2(L1SSL1)Cl4] or a low-spin, octahedral cobalt(III) thiolate
compound, such as [CoIII(L1S)(MeCN)2](BF4)2. Addition of thiocyanate anions to
a solution containing the latter compound yielded crystals of [CoIII(L1S)(NCS)2]. The addition of chloride
ions to a solution of [CoIII(L1S)(MeCN)2](BF4)2 in acetonitrile results in conversion
of the cobalt(III) thiolate compound to the cobalt(II) disulfide compound
[CoII2(L1SSL1)Cl4], as monitored with UV–vis spectroscopy; subsequent addition
of AgBF4 regenerates the Co(III) compound. Computational
studies show that exchange by a chloride anion of the coordinated
acetonitrile molecule or thiocyanate anion in compounds [CoIII(L1S)(MeCN)2]2+ and [CoIII(L1S)(NCS)2] induces a change in the character
of the highest occupied molecular orbitals, showing a decrease of
the contribution of the p orbital on sulfur and an increase of the
d orbital on cobalt. As a comparison, the synthesis of iron compounds
was undertaken. X-ray crystallography revealed that structure of the
dinuclear iron(II) disulfide compound [FeII2(L1SSL1)Cl4] is different from that
of cobalt(II) compound [CoII2(L1SSL1)Cl4]. In contrast to cobalt, reaction of ligand
L1SSL1 with [Fe(MeCN)6](BF4)2 did not yield the expected Fe(III) thiolate compound.
This work is an unprecedented example of redox interconversion between
a high-spin Co(II) disulfide compound and a low-spin Co(III) thiolate
compound triggered by the nature of the anion. Low-spin
CoIII−thiolate compounds and
high-spin CoII and FeII disulfide compound have
been synthesized from reactions of a disulfide ligand with CoII and FeII salts. The redox interconversion between
the cobalt compounds has been investigated. It is shown that addition
of chloride ions to a solution of the CoIII−thiolate
compound results in the formation of the CoII-disulfide
compound, whereas removal of chloride anions from the CoII disulfide compound regenerates the CoIII−thiolate
complex.
Collapse
Affiliation(s)
- Feng Jiang
- Leiden Institute of Chemistry, Gorlaeus Laboratories , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Maxime A Siegler
- Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Xiaobo Sun
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM) , Vrije Universiteit Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Lin Jiang
- Leiden Institute of Chemistry, Gorlaeus Laboratories , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Célia Fonseca Guerra
- Leiden Institute of Chemistry, Gorlaeus Laboratories , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands.,Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM) , Vrije Universiteit Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Elisabeth Bouwman
- Leiden Institute of Chemistry, Gorlaeus Laboratories , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| |
Collapse
|
31
|
Surendhran R, D'Arpino AA, Sciscent BY, Cannella AF, Friedman AE, MacMillan SN, Gupta R, Lacy DC. Deciphering the mechanism of O 2 reduction with electronically tunable non-heme iron enzyme model complexes. Chem Sci 2018; 9:5773-5780. [PMID: 30079187 PMCID: PMC6050603 DOI: 10.1039/c8sc01621f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/04/2018] [Indexed: 01/08/2023] Open
Abstract
A homologous series of electronically tuned 2,2',2''-nitrilotris(N-arylacetamide) pre-ligands (H3LR ) were prepared (R = NO2, CN, CF3, F, Cl, Br, Et, Me, H, OMe, NMe2) and some of their corresponding Fe and Zn species synthesized. The iron complexes react rapidly with O2, the final products of which are diferric mu-oxo bridged species. The crystal structure of the oxidized product obtained from DMA solutions contain a structural motif found in some diiron proteins. The mechanism of iron mediated O2 reduction was explored to the extent that allowed us to construct an empirically consistent rate law. A Hammett plot was constructed that enabled insightful information into the rate-determining step and hence allows for a differentiation between two kinetically equivalent O2 reduction mechanisms.
Collapse
Affiliation(s)
- Roshaan Surendhran
- Department of Chemistry , University at Buffalo , State University of New York , Buffalo , New York 14260 , USA .
| | - Alexander A D'Arpino
- Department of Chemistry , University at Buffalo , State University of New York , Buffalo , New York 14260 , USA .
| | - Bao Y Sciscent
- Department of Chemistry , University at Buffalo , State University of New York , Buffalo , New York 14260 , USA .
| | - Anthony F Cannella
- Department of Chemistry , University at Buffalo , State University of New York , Buffalo , New York 14260 , USA .
| | - Alan E Friedman
- Department of Materials Design & Innovation , University at Buffalo , SUNY , Buffalo , NY 14260 , USA
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , USA
| | - Rupal Gupta
- Department of Chemistry , College of Staten Island , City University of New York , Staten Island , NY 10314 , USA
| | - David C Lacy
- Department of Chemistry , University at Buffalo , State University of New York , Buffalo , New York 14260 , USA .
| |
Collapse
|
32
|
Lim JH, Engelmann X, Corby S, Ganguly R, Ray K, Soo HS. C-H activation and nucleophilic substitution in a photochemically generated high valent iron complex. Chem Sci 2018; 9:3992-4002. [PMID: 29862004 PMCID: PMC5944818 DOI: 10.1039/c7sc05378a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/22/2018] [Indexed: 12/15/2022] Open
Abstract
The (photo) chemical oxidation of a (TAML)FeIII complex using outer-sphere oxidants results in valence tautomerisation and C–H activation governed by exogenous anions.
The photochemical oxidation of a (TAML)FeIII complex 1 using visible light generated Ru(bpy)33+ produces valence tautomers (TAML)FeIV (1+) and (TAML˙+)FeIII (1-TAML˙+), depending on the exogenous anions. The presence of labile Cl– or Br– results in a ligand-based oxidation and stabilisation of a radical-cationic (TAML˙+)FeIII complex, which subsequently leads to unprecedented C–H activation followed by nucleophilic substitution on the TAML aryl ring. In contrast, exogenous cyanide culminates in metal-based oxidation, yielding the first example of a crystallographically characterised S = 1 [(TAML)FeIV(CN)2]2– species. This is a rare report of an anion-dependent valence tautomerisation in photochemically accessed high valent (TAML)Fe systems with potential applications in the oxidation of pollutants, hydrocarbons, and water. Furthermore, the nucleophilic aromatic halogenation reaction mediated by (TAML˙+)FeIII represents a novel domain for high-valent metal reactivity and highlights the possible intramolecular ligand or substrate modification pathways under highly oxidising conditions. Our findings therefore shine light on high-valent metal oxidants based on TAMLs and other potential non-innocent ligands and open new avenues for oxidation catalyst design.
Collapse
Affiliation(s)
- Jia Hui Lim
- Energy Research Institute@NTU (ERI@N) , Nanyang Technological University , Interdisciplinary Graduate School , Research Techno Plaza , Singapore 63755.,Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 .
| | - Xenia Engelmann
- Humboldt-Universität zu Berlin , Institut für Chemie , Brook-Taylor-Straβe 2 , 12489 Berlin , Germany .
| | - Sacha Corby
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 . .,Imperial College London , Department of Chemistry , South Kensington Campus , London , SW7 2AZ , UK
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 .
| | - Kallol Ray
- Humboldt-Universität zu Berlin , Institut für Chemie , Brook-Taylor-Straβe 2 , 12489 Berlin , Germany .
| | - Han Sen Soo
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 . .,Singapore-Berkeley Research Initiative for Sustainable Energy , 1 Create Way , Singapore 138602.,Solar Fuels Laboratory , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| |
Collapse
|
33
|
Merlini ML, Britovsek GJP, Swart M, Belanzoni P. Understanding the Catalase-Like Activity of a Bioinspired Manganese(II) Complex with a Pentadentate NSNSN Ligand Framework. A Computational Insight into the Mechanism. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Letizia Merlini
- Laboratoire de Chimie et Biochimie Computationnelles, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Av. F.-A. Forel 2, CH-1015 Lausanne, Switzerland
| | - George J. P. Britovsek
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Facultat de Ciències, 17003 Girona, Spain
- Institució Catalana de Recerca i Estudis Avançats ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Paola Belanzoni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Istituto di Scienze e Tecnologie Molecolari del CNR CNR-ISTM, c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
- Consortium for Computational Molecular and Materials Sciences (CMS)2, via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
34
|
Guo M, Lee YM, Gupta R, Seo MS, Ohta T, Wang HH, Liu HY, Dhuri SN, Sarangi R, Fukuzumi S, Nam W. Dioxygen Activation and O-O Bond Formation Reactions by Manganese Corroles. J Am Chem Soc 2017; 139:15858-15867. [PMID: 29056043 PMCID: PMC5711437 DOI: 10.1021/jacs.7b08678] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Activation of dioxygen (O2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O-O bond formation, which is the reverse of the O2-activation reaction, has been the focus of current research. Herein, we report the O2-activation and O-O bond formation reactions by manganese corrole complexes. In the O2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O2 in the presence of base (e.g., OH-) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O2-activation reaction did not occur in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O-O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O-O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O-O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present study reports the first example of using the same manganese complex in both O2-activation and O-O bond formation reactions.
Collapse
Affiliation(s)
- Mian Guo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Ranjana Gupta
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Takehiro Ohta
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Hyogo 679-5148, Japan
| | - Hua-Hua Wang
- Department of Chemistry, South China University of Technology, Guangzhou 510641, China
| | - Hai-Yang Liu
- Department of Chemistry, South China University of Technology, Guangzhou 510641, China
| | - Sunder N. Dhuri
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Department of Chemistry, Goa University, Goa 403 206, India
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
35
|
Lee CM, Wu WY, Chiang MH, Bohle DS, Lee GH. Generation of a Mn(IV)–Peroxo or Mn(III)–Oxo–Mn(III) Species upon Oxygenation of Mono- and Binuclear Thiolate-Ligated Mn(II) Complexes. Inorg Chem 2017; 56:10559-10569. [DOI: 10.1021/acs.inorgchem.7b01513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chien-Ming Lee
- Department of Applied
Science, National Taitung University, Taitung 950, Taiwan
| | - Wun-Yan Wu
- Department of Applied
Science, National Taitung University, Taitung 950, Taiwan
| | | | - D. Scott Bohle
- Department
of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Gene-Hsiang Lee
- Instrumentation
Center, National Taiwan University, Taipei 107, Taiwan
| |
Collapse
|
36
|
Devi T, Lee Y, Jung J, Sankaralingam M, Nam W, Fukuzumi S. A Chromium(III)‐Superoxo Complex as a Three‐Electron Oxidant with a Large Tunneling Effect in Multi‐Electron Oxidation of NADH Analogues. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tarali Devi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Jieun Jung
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | | | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- Faculty of Science and Engineering SENTAN Japan Science and Technology Agency (JST) Meijo University Nagoya, Aichi 468-8502 Japan
| |
Collapse
|
37
|
Devi T, Lee YM, Jung J, Sankaralingam M, Nam W, Fukuzumi S. A Chromium(III)-Superoxo Complex as a Three-Electron Oxidant with a Large Tunneling Effect in Multi-Electron Oxidation of NADH Analogues. Angew Chem Int Ed Engl 2017; 56:3510-3515. [PMID: 28266771 DOI: 10.1002/anie.201611709] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/15/2017] [Indexed: 11/06/2022]
Abstract
Metal-superoxo species are involved in a variety of enzymatic oxidation reactions, and multi-electron oxidation of substrates is frequently observed in those enzymatic reactions. A CrIII -superoxo complex, [CrIII (O2 )(TMC)(Cl)]+ (1; TMC=1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), is described that acts as a novel three-electron oxidant in the oxidation of dihydronicotinamide adenine dinucleotide (NADH) analogues. In the reactions of 1 with NADH analogues, a CrIV -oxo complex, [CrIV (O)(TMC)(Cl)]+ (2), is formed by a heterolytic O-O bond cleavage of a putative CrII -hydroperoxo complex, [CrII (OOH)(TMC)(Cl)], which is generated by hydride transfer from NADH analogues to 1. The comparison of the reactivity of NADH analogues with 1 and p-chloranil (Cl4 Q) indicates that oxidation of NADH analogues by 1 proceeds by proton-coupled electron transfer with a very large tunneling effect (for example, with a kinetic isotope effect of 470 at 233 K), followed by rapid electron transfer.
Collapse
Affiliation(s)
- Tarali Devi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Jieun Jung
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | | | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea.,Faculty of Science and Engineering, SENTAN Japan Science and Technology Agency (JST), Meijo University, Nagoya, Aichi, 468-8502, Japan
| |
Collapse
|
38
|
Zhang J, Yang H, Sun T, Chen Z, Yin G. Nonredox Metal-Ions-Enhanced Dioxygen Activation by Oxidovanadium(IV) Complexes toward Hydrogen Atom Abstraction. Inorg Chem 2017; 56:834-844. [DOI: 10.1021/acs.inorgchem.6b02277] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jisheng Zhang
- School of Chemistry and Chemical Engineering,
Key Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, and Hubei Key Laboratory of Material Chemistry
and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Hang Yang
- School of Chemistry and Chemical Engineering,
Key Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, and Hubei Key Laboratory of Material Chemistry
and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Tingting Sun
- School of Chemistry and Chemical Engineering,
Key Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, and Hubei Key Laboratory of Material Chemistry
and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering,
Key Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, and Hubei Key Laboratory of Material Chemistry
and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering,
Key Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, and Hubei Key Laboratory of Material Chemistry
and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| |
Collapse
|
39
|
Corona T, Padamati SK, Acuña-Parés F, Duboc C, Browne WR, Company A. Trapping of superoxido cobalt and peroxido dicobalt species formed reversibly from CoII and O2. Chem Commun (Camb) 2017; 53:11782-11785. [DOI: 10.1039/c7cc05904c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Superoxido cobalt(iii) and peroxido dicobalt(iii) species are formed in the temperature dependent reversible reaction of a common cobalt(ii) precursor with O2.
Collapse
Affiliation(s)
- Teresa Corona
- Grup de Química Bioinspirada
- Supramolecular i Catàlisi (QBIS-CAT)
- Institut de Química Computacional i Catàlisi (IQCC)
- Departament de Química
- Universitat de Girona
| | - Sandeep K. Padamati
- Molecular Inorganic Chemistry
- Stratingh Institute for Chemistry
- Faculty of Science and Engineering
- University of Groningen
- Nijenborgh 4
| | - Ferran Acuña-Parés
- Institut Català d’Investigació Química (ICIQ)
- Av. Països Catalans 16
- E-43007 Tarragona
- Spain
| | - Carole Duboc
- Univ. Grenoble Alpes
- UMR CNRS 5250
- Département de Chimie Moléculaire
- F-38000 Grenoble
- France
| | - Wesley R. Browne
- Molecular Inorganic Chemistry
- Stratingh Institute for Chemistry
- Faculty of Science and Engineering
- University of Groningen
- Nijenborgh 4
| | - Anna Company
- Grup de Química Bioinspirada
- Supramolecular i Catàlisi (QBIS-CAT)
- Institut de Química Computacional i Catàlisi (IQCC)
- Departament de Química
- Universitat de Girona
| |
Collapse
|
40
|
Villar-Acevedo G, Lugo-Mas P, Blakely MN, Rees JA, Ganas AS, Hanada EM, Kaminsky W, Kovacs JA. Metal-Assisted Oxo Atom Addition to an Fe(III) Thiolate. J Am Chem Soc 2016; 139:119-129. [PMID: 28033001 DOI: 10.1021/jacs.6b03512] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cysteinate oxygenation is intimately tied to the function of both cysteine dioxygenases (CDOs) and nitrile hydratases (NHases), and yet the mechanisms by which sulfurs are oxidized by these enzymes are unknown, in part because intermediates have yet to be observed. Herein, we report a five-coordinate bis-thiolate ligated Fe(III) complex, [FeIII(S2Me2N3(Pr,Pr))]+ (2), that reacts with oxo atom donors (PhIO, IBX-ester, and H2O2) to afford a rare example of a singly oxygenated sulfenate, [FeIII(η2-SMe2O)(SMe2)N3(Pr,Pr)]+ (5), resembling both a proposed intermediate in the CDO catalytic cycle and the essential NHase Fe-S(O)Cys114 proposed to be intimately involved in nitrile hydrolysis. Comparison of the reactivity of 2 with that of a more electron-rich, crystallographically characterized derivative, [FeIIIS2Me2NMeN2amide(Pr,Pr)]- (8), shows that oxo atom donor reactivity correlates with the metal ion's ability to bind exogenous ligands. Density functional theory calculations suggest that the mechanism of S-oxygenation does not proceed via direct attack at the thiolate sulfurs; the average spin-density on the thiolate sulfurs is approximately the same for 2 and 8, and Mulliken charges on the sulfurs of 8 are roughly twice those of 2, implying that 8 should be more susceptible to sulfur oxidation. Carboxamide-ligated 8 is shown to be unreactive towards oxo atom donors, in contrast to imine-ligated 2. Azide (N3-) is shown to inhibit sulfur oxidation with 2, and a green intermediate is observed, which then slowly converts to sulfenate-ligated 5. This suggests that the mechanism of sulfur oxidation involves initial coordination of the oxo atom donor to the metal ion. Whether the green intermediate is an oxo atom donor adduct, Fe-O═I-Ph, or an Fe(V)═O remains to be determined.
Collapse
Affiliation(s)
- Gloria Villar-Acevedo
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Priscilla Lugo-Mas
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Maike N Blakely
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Julian A Rees
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Abbie S Ganas
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Erin M Hanada
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Werner Kaminsky
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Julie A Kovacs
- The Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
41
|
Oxygen activation by mononuclear Mn, Co, and Ni centers in biology and synthetic complexes. J Biol Inorg Chem 2016; 22:407-424. [PMID: 27853875 DOI: 10.1007/s00775-016-1402-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
The active sites of metalloenzymes that catalyze O2-dependent reactions generally contain iron or copper ions. However, several enzymes are capable of activating O2 at manganese or nickel centers instead, and a handful of dioxygenases exhibit activity when substituted with cobalt. This minireview summarizes the catalytic properties of oxygenases and oxidases with mononuclear Mn, Co, or Ni active sites, including oxalate-degrading oxidases, catechol dioxygenases, and quercetin dioxygenase. In addition, recent developments in the O2 reactivity of synthetic Mn, Co, or Ni complexes are described, with an emphasis on the nature of reactive intermediates featuring superoxo-, peroxo-, or oxo-ligands. Collectively, the biochemical and synthetic studies discussed herein reveal the possibilities and limitations of O2 activation at these three "overlooked" metals.
Collapse
|
42
|
Sahu S, Goldberg DP. Activation of Dioxygen by Iron and Manganese Complexes: A Heme and Nonheme Perspective. J Am Chem Soc 2016; 138:11410-28. [PMID: 27576170 DOI: 10.1021/jacs.6b05251] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rational design of well-defined, first-row transition metal complexes that can activate dioxygen has been a challenging goal for the synthetic inorganic chemist. The activation of O2 is important in part because of its central role in the functioning of metalloenzymes, which utilize O2 to perform a number of challenging reactions including the highly selective oxidation of various substrates. There is also great interest in utilizing O2, an abundant and environmentally benign oxidant, in synthetic catalytic oxidation systems. This Perspective brings together recent examples of biomimetic Fe and Mn complexes that can activate O2 in heme or nonheme-type ligand environments. The use of oxidants such as hypervalent iodine (e.g., ArIO), peracids (e.g., m-CPBA), peroxides (e.g., H2O2) or even superoxide is a popular choice for accessing well-characterized metal-superoxo, metal-peroxo, or metal-oxo species, but the instances of biomimetic Fe/Mn complexes that react with dioxygen to yield such observable metal-oxygen species are surprisingly few. This Perspective focuses on mononuclear Fe and Mn complexes that exhibit reactivity with O2 and lead to spectroscopically observable metal-oxygen species, and/or oxidize biologically relevant substrates. Analysis of these examples reveals that solvent, spin state, redox potential, external co-reductants, and ligand architecture can all play important roles in the O2 activation process.
Collapse
Affiliation(s)
- Sumit Sahu
- Department of Chemistry, The Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|
43
|
Barman P, Upadhyay P, Faponle AS, Kumar J, Nag SS, Kumar D, Sastri CV, de Visser SP. Deformylation Reaction by a Nonheme Manganese(III)-Peroxo Complex via Initial Hydrogen-Atom Abstraction. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604412] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Prasenjit Barman
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam 781039 India
| | - Pranav Upadhyay
- Department of Applied Physics; School of Physical Sciences; Babasaheb Bhimrao Ambedkar University; Lucknow 226025 India
| | - Abayomi S. Faponle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Jitendra Kumar
- Department of Applied Physics; School of Physical Sciences; Babasaheb Bhimrao Ambedkar University; Lucknow 226025 India
| | - Sayanta Sekhar Nag
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam 781039 India
| | - Devesh Kumar
- Department of Applied Physics; School of Physical Sciences; Babasaheb Bhimrao Ambedkar University; Lucknow 226025 India
| | - Chivukula V. Sastri
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam 781039 India
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
44
|
Barman P, Upadhyay P, Faponle AS, Kumar J, Nag SS, Kumar D, Sastri CV, de Visser SP. Deformylation Reaction by a Nonheme Manganese(III)-Peroxo Complex via Initial Hydrogen-Atom Abstraction. Angew Chem Int Ed Engl 2016; 55:11091-5. [DOI: 10.1002/anie.201604412] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/03/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Prasenjit Barman
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam 781039 India
| | - Pranav Upadhyay
- Department of Applied Physics; School of Physical Sciences; Babasaheb Bhimrao Ambedkar University; Lucknow 226025 India
| | - Abayomi S. Faponle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Jitendra Kumar
- Department of Applied Physics; School of Physical Sciences; Babasaheb Bhimrao Ambedkar University; Lucknow 226025 India
| | - Sayanta Sekhar Nag
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam 781039 India
| | - Devesh Kumar
- Department of Applied Physics; School of Physical Sciences; Babasaheb Bhimrao Ambedkar University; Lucknow 226025 India
| | - Chivukula V. Sastri
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam 781039 India
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|