1
|
Kluibenschedl F, Koutentakis GM, Alhyder R, Lemeshko M. Domain-Wall Ferroelectric Polarons in a Two-Dimensional Rotor Lattice Model. PHYSICAL REVIEW LETTERS 2025; 134:096302. [PMID: 40131090 DOI: 10.1103/physrevlett.134.096302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/04/2025] [Indexed: 03/26/2025]
Abstract
We demonstrate the formation of ferroelectric domain-wall polarons in a minimal two-dimensional lattice model of electrons interacting with rotating dipoles. Along the domain wall, the rotors polarize in opposite directions, causing the electron to localize along a particular lattice direction. The rotor-electron coupling is identified as the origin of a structural instability in the crystal that leads to the domain-wall formation via a symmetry-breaking process. Our results provide the first theoretical description of ferroelectric polarons, as discussed in the context of soft semiconductors.
Collapse
Affiliation(s)
- Florian Kluibenschedl
- Institute of Science and Technology Austria, (ISTA), am Campus 1, 3400 Klosterneuburg, Austria
| | - Georgios M Koutentakis
- Institute of Science and Technology Austria, (ISTA), am Campus 1, 3400 Klosterneuburg, Austria
| | - Ragheed Alhyder
- Institute of Science and Technology Austria, (ISTA), am Campus 1, 3400 Klosterneuburg, Austria
| | - Mikhail Lemeshko
- Institute of Science and Technology Austria, (ISTA), am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
2
|
Zojer E. Electrostatically Designing Materials and Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406178. [PMID: 39194368 DOI: 10.1002/adma.202406178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Indexed: 08/29/2024]
Abstract
Collective electrostatic effects arise from the superposition of electrostatic potentials of periodically arranged (di)polar entities and are known to crucially impact the electronic structures of hybrid interfaces. Here, it is discussed, how they can be used outside the beaten paths of materials design for realizing systems with advanced and sometimes unprecedented properties. The versatility of the approach is demonstrated by applying electrostatic design not only to metal-organic interfaces and adsorbed (complex) monolayers, but also to inter-layer interfaces in van der Waals heterostructures, to polar metal-organic frameworks (MOFs), and to the cylindrical pores of covalent organic frameworks (COFs). The presented design ideas are straightforward to simulate and especially for metal-organic interfaces also their experimental implementation has been amply demonstrated. For van der Waals heterostructures, the needed building blocks are available, while the required assembly approaches are just being developed. Conversely, for MOFs the necessary growth techniques exist, but more work on advanced linker molecules is required. Finally, COF structures exist that contain pores decorated with polar groups, but the electrostatic impact of these groups has been largely ignored so far. All this suggest that the dawn of the age of electrostatic design is currently experienced with potential breakthroughs lying ahead.
Collapse
Affiliation(s)
- Egbert Zojer
- Institute of Solid State Physics, NAWI Graz, Petersgasse 16, Graz, A-8010, Austria
| |
Collapse
|
3
|
Leffler M, Mirich A, Fee J, March S, Suib SL. Part I: determination of a structure/property transformation mechanism responsible for changes in the point of zero change of anatase titania with decreasing particle size. RSC Adv 2024; 14:30543-30565. [PMID: 39411722 PMCID: PMC11477903 DOI: 10.1039/d4ra01139b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Below a diameter of approximately 28 nm, the surface crystal structure of anatase titania is known to change. These changes include surface bond lengths and crystal lattice parameter expansion/contractions. Concurrent with these structure changes, the materials point of zero charge (PZC) has been observed to shift toward lower pH values. Therefore, the objective of this work was to determine if a correlation exists between these known structural changes and the shift in the materials PZC values with decreasing particle size. To achieve this a method was developed to identify and minimize the effect of all known variables, save particle size, affecting the materials pHPZC. This led to the discovery of two regions for point of zero charge. Above the average spherical primary particle diameter ≅ 29 nm for anatase titania, denoted as Region I, PZC values remain constant. In Region I the materials surface crystal structure and properties were also found to remain constant. Below the average spherical primary particle diameter ≅29 nm is the second zone, defined as Region II, where pHPZC values decrease almost linearly. An examination of possible surface structure factors and properties responsible for the shift in these PZC values (Region II) identified three underlying causes. These being changes in the materials band gap (i.e. surface bond lengths), lattice parameters and bond ionic content.
Collapse
Affiliation(s)
| | - Anne Mirich
- Department of Chemistry, University of Connecticut USA
| | - Jared Fee
- Department of Chemistry, University of Connecticut USA
| | - Seth March
- Department of Chemistry, University of Connecticut USA
| | - Steven L Suib
- Department of Chemistry, University of Connecticut USA
| |
Collapse
|
4
|
Du W, Chen X, Wang T, Lin Q, Nijhuis CA. Tuning Overbias Plasmon Energy and Intensity in Molecular Plasmonic Tunneling Junctions by Atomic Polarizability. J Am Chem Soc 2024; 146:21642-21650. [PMID: 38940772 PMCID: PMC11311224 DOI: 10.1021/jacs.4c05544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Plasmon excitation in molecular tunnel junctions is interesting because the plasmonic properties of the device can be, in principle, controlled by varying the chemical structure of the molecules. The plasmon energy of the excited plasmons usually follows the quantum cutoff law, but frequently overbias plasmon energy has been observed, which can be explained by quantum shot noise, multielectron processes, or hot carrier models. So far, clear correlations between molecular structure and the plasmon energy have not been reported. Here, we introduce halogenated molecules (HS(CH2)12X, with X = H, F, Cl, Br, or I) with polarizable terminal atoms as the tunnel barriers and demonstrate molecular control over both the excited plasmon intensity and energy for a given applied voltage. As the polarizability of the terminal atom increases, the tunnel barrier height decreases, resulting in an increase in the tunneling current and the plasmon intensity without changing the tunneling barrier width. We also show that the plasmon energy is controlled by the electrostatic potential drop at the molecule-electrode interface, which depends on the polarizability of the terminal atom and the metal electrode material (Ag, Au, or Pt). Our results give new insights in the relation between molecular structure, electronic structure of the molecular junction, and the plasmonic properties which are important for the development of molecular scale plasmonic-electronic devices.
Collapse
Affiliation(s)
- Wei Du
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
| | - Xiaoping Chen
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
- Fujian
Provincial Key Laboratory of Modern Analytical Science and Separation
Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Tao Wang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
| | - Qianqi Lin
- Hybrid
Materials for Optoelectronics Group, Department of Molecules and Materials,
MESA+ Institute for Nanotechnology, Molecules Center and Center for
Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, 7500AE Enschede, The Netherlands
| | - Christian A. Nijhuis
- Hybrid
Materials for Optoelectronics Group, Department of Molecules and Materials,
MESA+ Institute for Nanotechnology, Molecules Center and Center for
Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, 7500AE Enschede, The Netherlands
| |
Collapse
|
5
|
Zhang C, Liu Y, Tai Y, Terfort A, Zharnikov M. Location-Selective Work Function Engineering by Self-Assembled Monolayers. J Phys Chem Lett 2024; 15:4581-4586. [PMID: 38639537 DOI: 10.1021/acs.jpclett.4c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Control over specific interfaces in devices represents a key challenge for modern organic electronics and photovoltaics. Such control is frequently gained by the use of self-assembled monolayers (SAMs), which, by selection of a proper anchoring group, are generally discriminative with respect to different materials but are not selective between different areas of the same material. In particular, selective tailoring of the work function may be useful for different functional devices in a circuit. Here we demonstrate an approach for solving this problem, opening a way to function-selective electrostatic engineering of chemically identical areas, such as source and drain electrodes in a specific type of organic transistor and, more importantly, the electrodes in different types of organic devices, such as p- and n-channel transistors, located on the same circuitry board. The approach is based on the ultraviolet-light-promoted exchange reaction of SAMs on gold, a standard electrode material in organic electronics.
Collapse
Affiliation(s)
- Chaoran Zhang
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Yangbiao Liu
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Yian Tai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Andreas Terfort
- Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Michael Zharnikov
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| |
Collapse
|
6
|
Dalmieda J, Shi W, Li L, Venkataraman L. Solvent-Mediated Modulation of the Au-S Bond in Dithiol Molecular Junctions. NANO LETTERS 2024; 24:703-707. [PMID: 38175934 DOI: 10.1021/acs.nanolett.3c04058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Gold-dithiol molecular junctions have been studied both experimentally and theoretically. However, the nature of the gold-thiolate bond as it relates to the solvent has seldom been investigated. It is known that solvents can impact the electronic structure of single-molecule junctions, but the correlation between the solvent and dithiol-linked single-molecule junction conductance is not well understood. We study molecular junctions formed with thiol-terminated phenylenes from both 1-chloronaphthalene and 1-bromonaphthalene solutions. We find that the most probable conductance and the distribution of conductances are both affected by the solvent. First-principles calculations show that junction conductance depends on the binding configurations (adatom, atop, and bridge) of the thiolate on the Au surface, as has been shown previously. More importantly, we find that brominated solvents can restrict the binding of thiols to specific Au sites. This mechanism offers new insight into the effects of the solvent environment on covalent bonding in molecular junctions.
Collapse
Affiliation(s)
- Johnson Dalmieda
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Wanzhuo Shi
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Liang Li
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Latha Venkataraman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
- Department of Applied Physics, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
7
|
Bossard-Giannesini L, Cardenas L, Cruguel H, Demessence A, Loffreda D, Pluchery O. How far the chemistry of self-assembled monolayers on gold surfaces affects their work function? NANOSCALE 2023; 15:17113-17123. [PMID: 37850381 DOI: 10.1039/d3nr03172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Self-assembled monolayers composed of various long-chain aliphatic molecules and different tail functional groups have been synthesized on the Au(111) surface and characterized by Kelvin probe force microscopy and ultraviolet photoelectron spectroscopy. Carboxy, amino, thio and methyl terminal groups have been considered in the design of self-assembled monolayers with different aliphatic chain lengths (from C6 to C16). Work function measurements by Kelvin probe force microscopy have been carried out under a controlled and room atmosphere. Remarkably, a reduction of the relative humidity from 40% to 3% has induced a work function shift of up to 0.3 eV. As expected, the changes of the chain length of the aliphatic moiety and of the tail group have a significant impact on the tuning of the measured work function (3.90 eV for dodecanethiol versus 4.57 eV for mercaptohexadecylamine). Surprisingly, the change of the net dipole moment of the tail group (sign and amplitude) does not dominate the work function variations. In contrast, the change of the chain length and the possibility of the tail group to form a complex hydrogen bond network between molecules lead to significant modulations of the work function. In order to interpret these original findings, density functional theory models of equivalent self-assembled monolayers adsorbed on the Au(111) surface have been developed at an unprecedented level of description with large supercells including simultaneously 27 co-adsorbed molecules and weak van der Waals interactions between them. Such large systems have allowed the theoretical modeling of complex hydrogen bond networks between molecules when possible (carboxy tail group). The comparison between computed and measured work functions shows a striking agreement, thus allowing the disentanglement of the previously mentioned competing effects. This consistency between experiment and theory will help in designing the electronic properties of self-assembled monolayers in the context of molecular electronics and organic transistors.
Collapse
Affiliation(s)
- Léo Bossard-Giannesini
- Institut des NanoSciences de Paris, UMR7588 CNRS Sorbonne Université, 4 place Jussieu, 75005 Paris, France.
| | - Luis Cardenas
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Hervé Cruguel
- Institut des NanoSciences de Paris, UMR7588 CNRS Sorbonne Université, 4 place Jussieu, 75005 Paris, France.
| | - Aude Demessence
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| | - David Loffreda
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d'Italie, 69364 Lyon Cedex, France.
| | - Olivier Pluchery
- Institut des NanoSciences de Paris, UMR7588 CNRS Sorbonne Université, 4 place Jussieu, 75005 Paris, France.
| |
Collapse
|
8
|
Murase M, Nakamura D. Hansen Solubility Parameters for Directly Dealing with Surface and Interfacial Phenomena. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10475-10484. [PMID: 37463335 DOI: 10.1021/acs.langmuir.3c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
To integrate surface and interfacial properties and phenomena into the Hansen solubility parameter (HSP) framework, we propose an equation for estimating both surface tension/energy for liquids and solids as well as interfacial tension/energy. The contact angles of probe liquids on various polymers estimated using the proposed equation based on bulk HSPs (derived from bulk properties such as solubility or swelling, and not on surface properties) are compared with those measured using the sessile drop method. It is found that their correlations are sufficient for predicting wettability in practical use. All the respective tension and energy correlations are reasonably good, confirming the predictive power of the proposed equation for all values of liquid surface tension, solid surface energy, and interfacial tension. The unification of surface and interfacial properties and phenomena with HSPs (derived from bulk properties) enables us to estimate the surface properties from bulk properties and vice versa. The huge database of HSPs is now applicable to not only bulk phenomena but also surface and interfacial phenomena. Furthermore, complex processes or systems composed of multiple constituents and phases can be understood and designed using the modified HSP framework.
Collapse
Affiliation(s)
- Masakazu Murase
- Toyota Central R&D Laboratories, Inc., Nagakute, Aichi 480-1192, Japan
| | - Daisuke Nakamura
- Toyota Central R&D Laboratories, Inc., Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
9
|
Bai G, Li H, Qin S, Gao D. Quantitative Structure-Activity Relationship Studies on Alkane Chemistry Tuning Ice Nucleation. J Phys Chem Lett 2022; 13:11564-11570. [PMID: 36475710 DOI: 10.1021/acs.jpclett.2c03183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Understanding how surface chemistry influences ice nucleation is essential for both forecasting icing phenomena and designing surfaces with desired ice-control abilities. Although alkylating is one of the most common and simplest ways for surface chemical modification, the effect of alkane chemistry on ice nucleation remains ambiguous as a result of the usually accompanying interferences of substrate morphology or heat transfer. Here, we decouple the effect of alkane chemistry on ice nucleation by investigating the ice nucleation behaviors on alkane self-assembled monolayers (SAMs) with atomic-level roughness and (sub)nanoscale thickness. Our results indicate that the introduction of alkane chemistry leads to decreased ice nucleation activities, i.e., increased anti-icing abilities, and the longer alkyl chain endows the SAM surface with the more inert ability to promote ice nucleation. The alkyl-chain-length-dependent ice nucleation activities are found to be correlated with the surface polarity. This work sheds light on a long-standing question of how alkane chemistry influences ice nucleation and offers a useful strategy for tuning ice nucleation.
Collapse
Affiliation(s)
- Guoying Bai
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300401, People's Republic of China
| | - Hang Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300401, People's Republic of China
| | - Sijia Qin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300401, People's Republic of China
| | - Dong Gao
- Institute of Biophysics, Hebei University of Technology, Tianjin300401, People's Republic of China
| |
Collapse
|
10
|
Zojer E, Terfort A, Zharnikov M. Concept of Embedded Dipoles as a Versatile Tool for Surface Engineering. Acc Chem Res 2022; 55:1857-1867. [PMID: 35658405 PMCID: PMC9260959 DOI: 10.1021/acs.accounts.2c00173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ConspectusControlling the physical and chemical properties of surfaces and interfaces is of fundamental relevance in various areas of physical chemistry and a key issue of modern nanotechnology. A highly promising strategy for achieving that control is the use of self-assembled monolayers (SAMs), which are ordered arrays of rodlike molecules bound to the substrate by a suitable anchoring group and carrying a functional tail group at the other end of the molecular backbone. Besides various other applications, SAMs are frequently used in organic electronics for the electrostatic engineering of interfaces by controlling the interfacial level alignment. This is usually achieved by introducing a dipolar tail group at the SAM-semiconductor interface. Such an approach, however, also changes the chemical character of that interface, for example, affecting the growth of subsequent layers. A strategy for avoiding this complication is to embed polar groups into the backbones of the SAM-forming molecules. This allows disentangling electronic interface engineering and the nucleation of further layers, such that both can be optimized independently. This novel concept was successfully demonstrated for both aliphatic and aromatic SAMs on different application-relevant substrates, such as gold, silver, and indium tin oxide. Embedding, for example, ester and pyrimidine groups in different orientations into the backbones of the SAM-forming molecules results in significant work-function changes. These can then be fine-tuned over a wide energy range by growing mixed monolayers consisting of molecules with oppositely oriented polar groups. In such systems, the variation of the work function is accompanied by pronounced shifts of the peaks in X-ray photoelectron spectra, which demonstrates that electrostatically triggered core-level shifts can be as important as the well-established chemical shifts. This illustrates the potential of X-ray photoelectron spectroscopy (XPS) as a tool for probing the local electrostatic energy within monolayers and, in systems like the ones studied here, makes XPS a powerful tool for studying the composition and morphology of binary SAMs. All these experimental observations can be rationalized through simulations, which show that the assemblies of embedded dipolar groups introduce a potential discontinuity within the monolayer, shifting the energy levels above and below the dipoles relative to each other. In molecular and monolayer electronics, embedded-dipole SAMs can be used to control transition voltages and current rectification. In devices based on organic and 2D semiconductors, such as MoS2, they can reduce contact resistances by several orders of magnitude without adversely affecting film growth even on flexible substrates. By varying the orientation of the embedded dipolar moieties, it is also possible to build p- and n-type organic transistors using the same electrode materials (Au). The extensions of the embedded-dipole concept from hybrid interfaces to systems such as metal-organic frameworks is currently underway, which further underlines the high potential of this approach.
Collapse
Affiliation(s)
- Egbert Zojer
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Andreas Terfort
- Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany
| | - Michael Zharnikov
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| |
Collapse
|
11
|
Dipolar Noise in Fluorinated Molecular Wires. NANOMATERIALS 2022; 12:nano12081371. [PMID: 35458080 PMCID: PMC9031467 DOI: 10.3390/nano12081371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023]
Abstract
We demonstrate a strategy to directly map and quantify the effects of dipole formation on electrical transports and noises in the self-assembled monolayers (SAMs) of molecular wires. In this method, the SAM patterns of fluorinated molecules with dipole moments were prepared on conducting substrates, and a conducting probe in contact-mode atomic force microscopy was utilized to map currents and noises through the probe on the molecular patterns. The maps were analyzed to extract the characteristic parameters of dipolar noises in SAMs, and the results were compared with those of hydrogenated molecular patterns without dipole moments. At rather low bias conditions, the fluorinated molecular junctions exhibited a tunneling conduction and a resistance value comparable to that of the hydrogenated molecules with a six-times-longer length, which was attributed to stronger dipoles formation in fluorinated molecules. Interestingly, conductance (G) in different regions of fluorinated molecular patterns exhibited a strong correlation with a noise power spectral density of SI/I2 like SI/I2 ∝ G-2, which can be explained by enhanced barrier fluctuations produced by the dipoles of fluorinated molecules. Furthermore, we observed that the noise power spectral density of fluorinated molecules showed an anomalous frequency (f) dependence like SI/I2 ∝ 1/f1.7, possibly due to the slowing down of the tunneling of carriers from increased barrier fluctuations. In rather high bias conditions, conductions in both hydrogenated and fluorinated molecules showed a transition from tunneling to thermionic charge transports. Our results provide important insights into the effects of dipoles on mesoscopic transport and resistance-fluctuation in molecules and could have a significant impact on the fundamental understanding and applications in this area.
Collapse
|
12
|
Maarisetty D, Baral SS. Effect of Defects on Optical, Electronic, and Interface Properties of NiO/SnO 2 Heterostructures: Dual-Functional Solar Photocatalytic H 2 Production and RhB Degradation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60002-60017. [PMID: 34894647 DOI: 10.1021/acsami.1c19544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photocatalytic H2 evolution and organic pollutant oxidation have witnessed a radical surge in recent times. However, this integration demands spatial charge separation and unique interface properties for a trade-off between oxidation and reduction reactions. In the current work, defect engineering of NiO/SnO2 nanoparticles aided in altering the optoelectronics and interface properties and enhanced photocatalytic activity. After annealing the catalysts in a N2 atmosphere, the hydroxyl groups were replaced by water molecules through surface modification. The photoexcited holes accumulated on SnO2 break the water molecules and facilitate the reduction of protons on NiO; this is known as spatial separation. Meanwhile, direct hole oxidation, an oxygen reduction reaction, ensures the degradation activity in this 2-fold system. By defect engineering, the limitations of SnO2 such as higher H2O adsorption, wide bandgap (reduced from 3.02 to 1.88 eV), and electronic properties were addressed. The H2 production in the current work has attained a value of 3732 μmol/(g h), which is 2.9 times that of the previous best reported under sunlight. Recyclability tests confirmed the stability of vacancies by promoting the reoxidation of defect states during photocatalytic activity. Additionally, efforts were made to study the effect of defect density on the photocurrent, the electrical resistance, and the mechanism of photocatalytic reactions. Electrochemical characterizations, UPS, XPS, UV-DRS, and PL were employed to understand the influence of defects on the bandgap, charge recombination, charge transport, charge carrier lifetime, and the interface properties that are responsible for photocatalytic activity. In this regard, it was understood that maintaining the optimal defect concentration is important for higher photocatalytic efficiencies, as the defect optimality preserves key photocatalytic properties. Apart from characterizations, the photocatalytic results suggest that excess defect density triggers the undesired thermodynamically favored back reactions, which greatly hampered the H2 yield of the process.
Collapse
Affiliation(s)
- Dileep Maarisetty
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, Goa 403726, India
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharastra, India
| | - Saroj Sundar Baral
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, Goa 403726, India
| |
Collapse
|
13
|
Yoon SG, Park BJ, Jin H, Lee WH, Han J, Cho YH, Yook H, Han JW, Kim YS. Probing an Interfacial Ionic Pairing-Induced Molecular Dipole Effect in Ionovoltaic System. SMALL METHODS 2021; 5:e2100323. [PMID: 34927990 DOI: 10.1002/smtd.202100323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Indexed: 06/14/2023]
Abstract
A surficial molecular dipole effect depending on ion-molecular interactions has been crucial issues regarding to an interfacial potential, which can modulate solid electronic and electrochemical systems. Their properties near the interfacial region can be dictated by specific interactions between surface and adsorbates, but understandings of the corresponding details remain at interesting issues. Here, intuitive observations of an ionic pair formation-induced interfacial potential shifts are presented with an ionovoltaic system, and corresponding output signal variations are analyzed in terms of the surficial dipole changes on self-assembled monolayer. With aiding of photoelectron spectroscopies and density function theory simulation, the ionic pair formation-induced potential shifts are revealed to strongly rely on a paired molecular structure and a binding affinity of the paired ionic moieties. Chemical contributions to the binding event are interrogated in terms of polarizability in each ionic group and consistent with chaotropic/kosmotropic character of the ionic groups. Based on these findings, the ionovoltaic output changes are theoretically correlated with an adsorption isotherm reflecting the molecular dipole effect, thereby demonstrating as an efficient interfacial molecular probing method under electrolyte interfacing conditions.
Collapse
Affiliation(s)
- Sun Geun Yoon
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Byoung Joon Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Huding Jin
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Won Hyung Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Junghyup Han
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yong Hyun Cho
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyunwoo Yook
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Youn Sang Kim
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
- School of Chemical & Biological Engineering and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon, 16229, Republic of Korea
| |
Collapse
|
14
|
An estimation on the mechanical stabilities of SAMs by low energy Ar + cluster ion collision. Sci Rep 2021; 11:12772. [PMID: 34140569 PMCID: PMC8211834 DOI: 10.1038/s41598-021-92077-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/04/2021] [Indexed: 12/04/2022] Open
Abstract
The stability of the molecular self-assembled monolayers (SAMs) is of vital importance to the performance of the molecular electronics and their integration to the future electronics devices. Here we study the effect of electron irradiation-induced cross-linking on the stability of self-assembled monolayer of aromatic 5,5′-bis(mercaptomethyl)-2,2′-bipyridine [BPD; HS-CH2-(C5H3N)2-CH2-SH] on Au (111) single crystal surface. As a refence, we also study the properties of SAMs of electron saturated 1-dodecanethiol [C12; CH3-(CH2)11-SH] molecules. The stability of the considered SAMs before and after electron-irradiation is studied using low energy Ar+ cluster depth profiling monitored by recording the X-ray photoelectron spectroscopy (XPS) core level spectra and the UV-photoelectron spectroscopy (UPS) in the valance band range. The results indicate a stronger mechanical stability of BPD SAMs than the C12 SAMs. The stability of BPD SAMs enhances further after electron irradiation due to intermolecular cross-linking, whereas the electron irradiation results in deterioration of C12 molecules due to the saturated nature of the molecules. The depth profiling time of the cross-linked BPD SAM is more than 4 and 8 times longer than the profiling time obtained for pristine and BPD and C12 SAMs, respectively. The UPS results are supported by density functional theory calculations, which show qualitative agreement with the experiment and enable us to interpret the features in the XPS spectra during the etching process for structural characterization. The obtained results offer helpful options to estimate the structural stability of SAMs which is a key factor for the fabrication of molecular devices.
Collapse
|
15
|
Chen X, Kretz B, Adoah F, Nickle C, Chi X, Yu X, Del Barco E, Thompson D, Egger DA, Nijhuis CA. A single atom change turns insulating saturated wires into molecular conductors. Nat Commun 2021; 12:3432. [PMID: 34103489 PMCID: PMC8187423 DOI: 10.1038/s41467-021-23528-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
We present an efficient strategy to modulate tunnelling in molecular junctions by changing the tunnelling decay coefficient, β, by terminal-atom substitution which avoids altering the molecular backbone. By varying X = H, F, Cl, Br, I in junctions with S(CH2)(10-18)X, current densities (J) increase >4 orders of magnitude, creating molecular conductors via reduction of β from 0.75 to 0.25 Å−1. Impedance measurements show tripled dielectric constants (εr) with X = I, reduced HOMO-LUMO gaps and tunnelling-barrier heights, and 5-times reduced contact resistance. These effects alone cannot explain the large change in β. Density-functional theory shows highly localized, X-dependent potential drops at the S(CH2)nX//electrode interface that modifies the tunnelling barrier shape. Commonly-used tunnelling models neglect localized potential drops and changes in εr. Here, we demonstrate experimentally that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta \propto 1/\sqrt{{\varepsilon }_{r}}$$\end{document}β∝1/εr, suggesting highly-polarizable terminal-atoms act as charge traps and highlighting the need for new charge transport models that account for dielectric effects in molecular tunnelling junctions. In molecular junctions, where a molecule is placed between two electrodes, the current passed decays exponentially as a function of length. Here, Chen et al. show that this exponentially attenuation can be controlled by changing a single atom at the end of the molecular wire.
Collapse
Affiliation(s)
- Xiaoping Chen
- Department of Chemistry, National University of Singapore, Singapore, Singapore.,Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
| | - Bernhard Kretz
- Department of Physics, Technical University of Munich, Garching, Germany
| | - Francis Adoah
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Cameron Nickle
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Xiao Chi
- Singapore Synchrotron Light Source, National University of Singapore, Singapore, Singapore
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, Singapore, Singapore
| | - Enrique Del Barco
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | - David A Egger
- Department of Physics, Technical University of Munich, Garching, Germany.
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore, Singapore, Singapore. .,Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore. .,Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands.
| |
Collapse
|
16
|
Kaja K, Mariolle D, Chevalier N, Naja A, Jouiad M. Sub-10 nm spatial resolution for electrical properties measurements using bimodal excitation in electric force microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:023703. [PMID: 33648128 DOI: 10.1063/5.0038335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
We demonstrate that under ambient and humidity-controlled conditions, operation of bimodal excitation single-scan electric force microscopy with no electrical feedback loop increases the spatial resolution of surface electrical property measurements down to the 5 nm limit. This technical improvement is featured on epitaxial graphene layers on SiC, which is used as a model sample. The experimental conditions developed to achieve such resolution are discussed and linked to the stable imaging achieved using the proposed method. The application of the herein reported method is achieved without the need to apply DC bias voltages, which benefits specimens that are highly sensitive to polarization. Besides, it allows the simultaneous parallel acquisition of surface electrical properties (such as contact potential difference) at the same scanning rate as in amplitude modulation atomic force microscopy (AFM) topography measurements. This makes it attractive for applications in high scanning speed AFM experiments in various fields for material screening and metrology of semiconductor systems.
Collapse
Affiliation(s)
- Khaled Kaja
- Laboratoire National de Métrologie et d'Essais, 29 Rue Roger Hennequin, 78190 Trappes, France
| | - Denis Mariolle
- Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France
| | | | - Adnan Naja
- Laboratory of Physics and Modelling, EDST, Lebanese University, 1300 Tripoli, Lebanon
| | - Mustapha Jouiad
- Laboratory of Physics of Condensed Matter, LPMC, Université de Picardie Jules Verne, 80093 Amiens, France
| |
Collapse
|
17
|
Taucher T, Hofmann OT, Zojer E. Final-State Simulations of Core-Level Binding Energies at Metal-Organic Hybrid Interfaces: Artifacts Caused by Spurious Collective Electrostatic Effects. ACS OMEGA 2020; 5:25868-25881. [PMID: 33073112 PMCID: PMC7557941 DOI: 10.1021/acsomega.0c03209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/14/2020] [Indexed: 05/08/2023]
Abstract
Core-level energies are frequently calculated to explain the X-ray photoelectron spectra of metal-organic hybrid interfaces. The current paper describes how such simulations can be flawed when modeling interfaces between physisorbed organic molecules and metals. The problem occurs when applying periodic boundary conditions to correctly describe extended interfaces and simultaneously considering core hole excitations in the framework of a final-state approach to account for screening effects. Since the core hole is generated in every unit cell, an artificial dipole layer is formed. In this work, we study methane on an Al(100) surface as a deliberately chosen model system for hybrid interfaces to evaluate the impact of this computational artifact. We show that changing the supercell size leads to artificial shifts in the calculated core-level energies that can be well beyond 1 eV for small cells. The same applies to atoms at comparably large distances from the substrate, encountered, for example, in extended, upright-standing adsorbate molecules. We also argue that the calculated work function change due to a core-level excitation can serve as an indication for the occurrence of such an artifact and discuss possible remedies for the problem.
Collapse
|
18
|
Chen X, Salim T, Zhang Z, Yu X, Volkova I, Nijhuis CA. Large Increase in the Dielectric Constant and Partial Loss of Coherence Increases Tunneling Rates across Molecular Wires. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45111-45121. [PMID: 32897683 DOI: 10.1021/acsami.0c11106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although the dielectric behavior of monolayers is important in a large range of applications, its role in charge transport studies involving molecular junctions is largely ignored. This paper describes a large increase in the relative static dielectric constant (εr) by simply increasing the thickness of well-organized monolayers of oligoglycine and oligo(ethylene glycol) from 7 up to 14. The resulting large capacitance of 3.5-5.1 μF/cm2 is thickness-independent, which is highly attractive for field-effect transistor applications. This increase of εr results in a linear increase of the thermal activation energy by a factor of 6, which suggests that the mechanism of charge transport gradually changes from coherent to (partially) incoherent tunneling. The comparisons of oligoglycine (which readily forms hydrogen bonds with neighboring molecules) and methyl terminated oligo(ethylene glycol) (which lacks hydrogen bond donors) monolayers, kinetic isotope effects, and relative humidity-dependent measurements all indicate the importance of strong hydrogen bonds involving ionic species and strongly bonded water in the unusual dielectric behavior and the incoherent tunneling mechanism. This partial loss of coherence of the charge carriers can explain the unusually small tunneling decay coefficients across long molecular wires, and the length-dependent increase of εr of monolayers opens up interesting new applications.
Collapse
Affiliation(s)
- Xiaoping Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Teddy Salim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ziyu Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603, Singapore
| | - Ira Volkova
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
19
|
The Potential of X-ray Photoelectron Spectroscopy for Determining Interface Dipoles of Self-Assembled Monolayers. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the current manuscript we assess to what extent X-ray photoelectron spectroscopy (XPS) is a suitable tool for probing the dipoles formed at interfaces between self-assembled monolayers and metal substrates. To that aim, we perform dispersion-corrected, slab-type band-structure calculations on a number of biphenyl-based systems bonded to an Au(111) surface via different docking groups. In addition to changing the docking chemistry (and the associated interface dipoles), the impacts of polar tail group substituents and varying dipole densities are also investigated. We find that for densely packed monolayers the shifts of the peak positions of the simulated XP spectra are a direct measure for the interface dipoles. In the absence of polar tail group substituents they also directly correlate with adsorption-induced work function changes. At reduced dipole densities this correlation deteriorates, as work function measurements probe the difference between the Fermi level of the substrate and the electrostatic energy far above the interface, while core level shifts are determined by the local electrostatic energy in the region of the atom from which the photoelectron is excited.
Collapse
|
20
|
Ben Amara F, Dionne ER, Kassir S, Pellerin C, Badia A. Molecular Origin of the Odd-Even Effect of Macroscopic Properties of n-Alkanethiolate Self-Assembled Monolayers: Bulk or Interface? J Am Chem Soc 2020; 142:13051-13061. [PMID: 32597648 DOI: 10.1021/jacs.0c04288] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Elucidating the influence of the monolayer interface versus bulk on the macroscopic properties (e.g., surface hydrophobicity, charge transport, and electron transfer) of organic self-assembled monolayers (SAMs) chemically anchored to metal surfaces is a challenge. This article reports the characterization of prototypical SAMs of n-alkanethiolates on gold (CH3(CH2)nSAu, n = 6-19) at the macroscopic scale by electrochemical impedance spectroscopy and contact angle goniometry, and at the molecular level, by infrared reflection absorption spectroscopy. The SAM capacitance, dielectric constant, and surface hydrophobicity exhibit dependencies on both the length (n) and parity (nodd or neven) of the polymethylene chain. The peak positions of the CH2 stretching modes indicate a progressive increase in the chain conformational order with increasing n between n = 6 and 16. SAMs of nodd have a greater degree of structural gauche defects than SAMs of neven. The peak intensities and positions of the CH3 stretching modes are chain length independent but show an odd-even alternation of the spatial orientation of the terminal CH3. The correlations between the different data trends establish that the chain length dependencies of the dielectric constant and surface hydrophobicity originate from changes in the polymethylene chain conformation (bulk), while the odd-even variation arises primarily from a difference in the chemical composition of the interface related to the terminal group orientation. These findings provide new physical insights into the structure-property relation of SAMs for the design of ultrathin film dielectrics as well as the understanding of stereostructural effects on the electrical characteristics of tunnel junctions.
Collapse
Affiliation(s)
- Fadwa Ben Amara
- Département de chimie, FRQNT Quebec Centre for Advanced Materials, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Eric R Dionne
- Département de chimie, FRQNT Quebec Centre for Advanced Materials, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Sahar Kassir
- Département de chimie, FRQNT Quebec Centre for Advanced Materials, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Christian Pellerin
- Département de chimie, FRQNT Quebec Centre for Advanced Materials, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Antonella Badia
- Département de chimie, FRQNT Quebec Centre for Advanced Materials, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
21
|
Miranda-Rojas S, Mendizabal F. Exploration of the Interaction Strength at the Interface of Anionic Chalcogen Anchors and Gold (111)-Based Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:nano10061237. [PMID: 32630576 PMCID: PMC7353086 DOI: 10.3390/nano10061237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/16/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, the use of sulfur-based ligands to modify gold-based materials has become a common trend. Here, we present a theoretical exploration of the modulation of the chalcogenides-gold interaction strength, using sulfur, selenium, and tellurium as anchor atoms. To characterize the chalcogenide-gold interaction, we designed a nanocluster of 42 gold atoms (Au42) to model a gold surface (111) and a series of 60 functionalized phenyl-chalcogenolate ligands to determine the ability of electron-donor and -withdrawing groups to modulate the interaction. The analysis of the interaction was performed by using energy decomposition analysis (EDA), non-covalent interactions index (NCI), and natural population analysis (NPA) to describe the charge transfer processes and to determine data correlation analyses. The results revealed that the magnitudes of the interaction energies increase following the order S < Se < Te, where this interaction strength can be augmented by electron-donor groups, under the donor-acceptor character the chalcogen-gold interaction. We also found that the functionalization in meta position leads to better control of the interaction strength than the ortho substitution due to the steric and inductive effects involved when functionalized in this position.
Collapse
Affiliation(s)
- Sebastián Miranda-Rojas
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, Santiago PO 8370146, Chile
| | - Fernando Mendizabal
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago PO 7800003, Chile
| |
Collapse
|
22
|
Understanding Surface Modulation to Improve the Photo/Electrocatalysts for Water Oxidation/Reduction. Molecules 2020; 25:molecules25081965. [PMID: 32340202 PMCID: PMC7221846 DOI: 10.3390/molecules25081965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Water oxidation and reduction reactions play vital roles in highly efficient hydrogen production conducted by an electrolyzer, in which the enhanced efficiency of the system is apparently accompanied by the development of active electrocatalysts. Solar energy, a sustainable and clean energy source, can supply the kinetic energy to increase the rates of catalytic reactions. In this regard, understanding of the underlying fundamental mechanisms of the photo/electrochemical process is critical for future development. Combining light-absorbing materials with catalysts has become essential to maximizing the efficiency of hydrogen production. To fabricate an efficient absorber-catalysts system, it is imperative to fully understand the vital role of surface/interface modulation for enhanced charge transfer/separation and catalytic activity for a specific reaction. The electronic and chemical structures at the interface are directly correlated to charge carrier movements and subsequent chemical adsorption and reaction of the reactants. Therefore, rational surface modulation can indeed enhance the catalytic efficiency by preventing charge recombination and prompting transfer, increasing the reactant concentration, and ultimately boosting the catalytic reaction. Herein, the authors review recent progress on the surface modification of nanomaterials as photo/electrochemical catalysts for water reduction and oxidation, considering two successive photogenerated charge transfer/separation and catalytic chemical reactions. It is expected that this review paper will be helpful for the future development of photo/electrocatalysts.
Collapse
|
23
|
Maarisetty D, Mahanta S, Sahoo AK, Mohapatra P, Baral SS. Steering the Charge Kinetics in Dual-Functional Photocatalysis by Surface Dipole Moments and Band Edge Modulation: A Defect Study in TiO 2-ZnS-rGO Composites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11679-11692. [PMID: 32067446 DOI: 10.1021/acsami.9b22418] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing an efficient photocatalyst for concurrent hydrogen production and environmental remediation by using solar energy is a challenge. Defect engineering, although it offers a strategical promise to enhance the photocatalytic performance, has limitations that come from the ambiguity surrounding its role. In the current work, a comprehensive study on defects in promoting the charge transfer, band edge modulation, and surface reaction was carried out. The excess electrons springing from defects act like donor states and cause band bending at the junction interface. Characterization techniques such as X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, electron spin resonance, and photoluminescence were employed to investigate defect functionality, and its ultimate effect on photocatalytic performance was studied by simultaneous H2 production and methylene blue degradation. The role of graphene in optoelectronics and defect formation in the composite catalysts was explored. In addition, efforts have been made to unveil the reaction pathway for hydrogen evolution reaction and oxygen evolution reaction where excess defect density greatly hampered the quantum yield of the process. Results suggest that maintaining optimal defect concentration aborts the undesired thermodynamically favored back reactions. The conduction band and valence band values of the catalysts indicate that the photocatalytic mechanism was dominated by the electron pathway. Graphene acted as an effective electron sink when its concentration was around 2.5-3%. The superior activity of TiO2-ZnS-rGO was attributed to the narrow bandgap, rapid separation of photo-excited charge carriers, and favorable conduction band position for photocatalytic reactions. This work may assist in exploring the fundamental role of defects in driving the photocatalytic reactions and improve the selectivity in heterogeneous photocatalysis.
Collapse
Affiliation(s)
- Dileep Maarisetty
- Department of Chemical Engineering, BITS Pilani KK Birla Goa Campus, South Goa 403726, Goa, India
| | - Sasmita Mahanta
- Department of Chemistry C.V.Raman College of Engineering, Bhubaneswar 752054, India
| | - Akshaya Kumar Sahoo
- Department of Chemistry, Model Degree College, Nuapada, Khariar 766107, Odisha, India
| | - Priyabrat Mohapatra
- Department of Chemistry C.V.Raman College of Engineering, Bhubaneswar 752054, India
| | - Saroj Sundar Baral
- Department of Chemical Engineering, BITS Pilani KK Birla Goa Campus, South Goa 403726, Goa, India
| |
Collapse
|
24
|
Schweicher G, Garbay G, Jouclas R, Vibert F, Devaux F, Geerts YH. Molecular Semiconductors for Logic Operations: Dead-End or Bright Future? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905909. [PMID: 31965662 DOI: 10.1002/adma.201905909] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/18/2019] [Indexed: 05/26/2023]
Abstract
The field of organic electronics has been prolific in the last couple of years, leading to the design and synthesis of several molecular semiconductors presenting a mobility in excess of 10 cm2 V-1 s-1 . However, it is also started to recently falter, as a result of doubtful mobility extractions and reduced industrial interest. This critical review addresses the community of chemists and materials scientists to share with it a critical analysis of the best performing molecular semiconductors and of the inherent charge transport physics that takes place in them. The goal is to inspire chemists and materials scientists and to give them hope that the field of molecular semiconductors for logic operations is not engaged into a dead end. To the contrary, it offers plenty of research opportunities in materials chemistry.
Collapse
Affiliation(s)
- Guillaume Schweicher
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Guillaume Garbay
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Rémy Jouclas
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - François Vibert
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Félix Devaux
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Yves H Geerts
- Laboratoire de chimie des polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB) Boulevard du Triomphe, Brussels, 1050, Belgium
| |
Collapse
|
25
|
Hedlund JK, Walker AV. Modulating the Electronic Properties of Au-MoS 2 Interfaces Using Functionalized Self-Assembled Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:682-688. [PMID: 31910021 DOI: 10.1021/acs.langmuir.9b01964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molybdenum disulfide (MoS2) is a transition-metal dichalcogenide with many applications including in electronic devices and sensors. A critical issue in the development of these devices is the high resistance between the metal contact and the molybdenum disulfide layer. In this study, we employ Raman spectroscopy and X-ray photoelectron spectroscopy to investigate the modification of Au-MoS2 contact properties using functionalized alkanethiolate self-assembled monolayers (SAMs). We demonstrate that both 2H and 1T MoS2 strongly interact with the underlying Au substrate. The electronic properties of the interface are mediated by the dipole moment of the alkanethiolate SAM, which have a -CH3, -CO2C6F5, -OH, or -COOH terminal group. Finally, we demonstrate the site-selective deposition of 2H and 1T MoS2 on micropatterned SAMs to form conducting-semiconducting patterned MoS2 films.
Collapse
Affiliation(s)
- Jenny K Hedlund
- Department of Chemistry and Biochemistry , University of Texas at Dallas , 800 W. Campbell Rd, BSB13 , Richardson , Texas 75080 , United States
| | - Amy V Walker
- Department of Chemistry and Biochemistry , University of Texas at Dallas , 800 W. Campbell Rd, BSB13 , Richardson , Texas 75080 , United States
- Department of Materials Science and Engineering , University of Texas at Dallas , 800 W. Campbell Road, RL 10 , Richardson , Texas 75080 , United States
| |
Collapse
|
26
|
Asyuda A, Wan X, Zharnikov M. Binary aromatic self-assembled monolayers: electrostatic properties and charge tunneling rates across the molecular framework. Phys Chem Chem Phys 2020; 22:10957-10967. [DOI: 10.1039/d0cp01740j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mixing of non- and fluorine-substituted mercaptobiphenyls in binary monolayers not only leads to work function variation but also electrostatic effects in photoemission and tunable charge tunneling rates across the films.
Collapse
Affiliation(s)
- Andika Asyuda
- Angewandte Physikalische Chemie
- Universität Heidelberg
- Im Neuenheimer Feld 253
- D-69120 Heidelberg
- Germany
| | - Xianglong Wan
- Angewandte Physikalische Chemie
- Universität Heidelberg
- Im Neuenheimer Feld 253
- D-69120 Heidelberg
- Germany
| | - Michael Zharnikov
- Angewandte Physikalische Chemie
- Universität Heidelberg
- Im Neuenheimer Feld 253
- D-69120 Heidelberg
- Germany
| |
Collapse
|
27
|
Sizov AS, Agina EV, Ponomarenko SA. Self-assembled interface monolayers for organic and hybrid electronics. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Sauter E, Nascimbeni G, Trefz D, Ludwigs S, Zojer E, von Wrochem F, Zharnikov M. A dithiocarbamate anchoring group as a flexible platform for interface engineering. Phys Chem Chem Phys 2019; 21:22511-22525. [PMID: 31588446 DOI: 10.1039/c9cp03306h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular organization and electronic properties of dithiocarbamate (DTC) anchored self-assembled monolayers (SAMs) linked to Au(111) substrates are studied by a combination of X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and state-of-the-art density functional theory calculations. For that, several piperidine/piperazine precursors with different architecture and substitution patterns are selected. The presented data show that the DTC anchor provides a useful building block for monomolecular self-assembly on coinage metals with both sulfur atoms bonded to the substrate in a way similar to what is usually observed for the more commonly applied thiolate docking group. The combination of the DTC group with the quite flexible piperidine/piperazine cyclic linkers results in a dense molecular packing with an upright orientation of the terminal moieties. The latter comprise phenyl rings bearing various substituents, which enables tuning the interfacial dipole over a wide range. Simulations on two prototypical DTC-docked SAMs help to better understand the experimental observations and provide insight into the local origin of the SAM-induced shifts in the electrostatic energy. In particular, a comparison of measured and simulated XP spectra reveals the significant contribution of the DTC group to the interfacial dipole.
Collapse
Affiliation(s)
- Eric Sauter
- Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
| | - Giulia Nascimbeni
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.
| | - Daniel Trefz
- Chair for Structure and Properties of Polymeric Materials, Institute of Polymer Chemistry (IPOC), University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Sabine Ludwigs
- Chair for Structure and Properties of Polymeric Materials, Institute of Polymer Chemistry (IPOC), University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Egbert Zojer
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.
| | - Florian von Wrochem
- Institute of Materials Science, University of Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | - Michael Zharnikov
- Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
| |
Collapse
|
29
|
Chen X, Annadata HV, Kretz B, Zharnikov M, Chi X, Yu X, Egger DA, Nijhuis CA. Interplay of Collective Electrostatic Effects and Level Alignment Dictates the Tunneling Rates across Halogenated Aromatic Monolayer Junctions. J Phys Chem Lett 2019; 10:4142-4147. [PMID: 31260324 DOI: 10.1021/acs.jpclett.9b00387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Predictions about the electrical conductance across molecular junctions based on self-assembled monolayers (SAMs) are often made from the SAM precursor properties. Collective electrostatic effects, however, in a densely packed SAM can override these predictions. We studied, experimentally and theoretically, molecular tunneling junctions based on thiolate SAMs with an aromatic biphenyl backbone and variable, highly polarizable halogen termini X (S-(C6H5)2X; X = H, F, Cl, Br, or I). We found that the halogen-terminated systems show tunneling rates and dielectric behavior that are independent of X despite the large change in the electronegativity of the terminal atom. Using density functional theory, we show that collective electrostatic effects result in modulations of the electrostatic potential that are strongly confined spatially along the direction of charge transport, thereby rendering the role of the halogen atoms insignificant for SAMs with conjugated backbones.
Collapse
Affiliation(s)
- Xiaoping Chen
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore
| | - Harshini V Annadata
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore
| | - Bernhard Kretz
- Institute of Theoretical Physics , University of Regensburg , Universitätsstraße 31, 93040 Regensburg , Germany
- Department of Physics , Technical University of Munich , 85748 Garching , Germany
| | - Michael Zharnikov
- Angewandte Physikalische Chemie , Universität Heidelberg , Im Neuenheimer Feld 253 , 69120 Heidelberg , Germany
| | - Xiao Chi
- Singapore Synchrotron Light Source , National University of Singapore , 5 Research Link , Singapore 117603 , Singapore
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source , National University of Singapore , 5 Research Link , Singapore 117603 , Singapore
| | - David A Egger
- Institute of Theoretical Physics , University of Regensburg , Universitätsstraße 31, 93040 Regensburg , Germany
- Department of Physics , Technical University of Munich , 85748 Garching , Germany
| | - Christian A Nijhuis
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre , National University of Singapore , 6 Science Drive 2 , Singapore 117546 , Singapore
| |
Collapse
|
30
|
Baghbanzadeh M, Belding L, Yuan L, Park J, Al-Sayah MH, Bowers CM, Whitesides GM. Dipole-Induced Rectification Across AgTS/SAM//Ga2O3/EGaIn Junctions. J Am Chem Soc 2019; 141:8969-8980. [DOI: 10.1021/jacs.9b02891] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mostafa Baghbanzadeh
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Lee Belding
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Li Yuan
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Junwoo Park
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Mohammad H. Al-Sayah
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Carleen M. Bowers
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Kavli Institute for Bionano Science and Technology, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
31
|
Schuster S, Füser M, Asyuda A, Cyganik P, Terfort A, Zharnikov M. Photoisomerization of azobenzene-substituted alkanethiolates on Au(111) substrates in the context of work function variation: the effect of structure and packing density. Phys Chem Chem Phys 2019; 21:9098-9105. [PMID: 31017144 DOI: 10.1039/c9cp00255c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photoisomerization of a series of custom-designed, azobenzene-substituted alkanethiolate (AT) self-assembled monolayers (SAMs) on Au(111) substrates was studied in the context of work function variation, using Kelvin probe measurements as a transduction technique. These SAMs featured variable packing density (by ∼14%; due to the odd-even effects) and, as an option, were additionally decorated with the electron donating/withdrawing -CH3 and -CF3 tail group, respectively, which induce additional dipole moments. The efficiency of photoisomerization and the respective extent of work function variation (ΔΦ) were found to be quite low and independent of the packing density in the SAMs, within the given odd-even packing density variation. They could only be increased, up to ca. 40 meV for ΔΦ, by mixing the azobenzene-substituted ATs with shorter "matrix" molecules, which were introduced for a partial release of the sterical constraints. The ΔΦ values for the SAMs decorated with the -CH3 and -CF3 tail groups were found to be lower than those for the monolayers without such a decoration, which correlated well with the theoretical estimates for the change of the dipole moment of the relevant molecules upon the photoisomerization.
Collapse
Affiliation(s)
- Swen Schuster
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Wong RA, Yokota Y, Wakisaka M, Inukai J, Kim Y. Discerning the Redox-Dependent Electronic and Interfacial Structures in Electroactive Self-Assembled Monolayers. J Am Chem Soc 2018; 140:13672-13679. [PMID: 30277764 DOI: 10.1021/jacs.8b05885] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We explore the redox-dependent electronic and structural changes of ferrocene-terminated self-assembled monolayers (Fc SAMs) immersed in aqueous solution. By exploiting X-ray and ultraviolet photoelectron spectroscopy combined with an electrochemical cell (EC-XPS/UPS), we can electrochemically control the Fc SAMs and spectroscopically probe the induced changes with the ferrocene/ferrocenium (Fc/Fc+) redox center (Fe oxidation state), formation of 1:1 Fc+-ClO4- ion pairs, molecular orientation, and monolayer thickness. We further find the insignificant involvement of interfacial water in the Fc SAMs irrespective of redox state. Electrolyte dependencies could be identified with 0.1 M NaClO4 and HClO4 when probing partially oxidized Fc/Fc+ SAMs. Corroborating the occurrence of electrochemically induced oxidation, EC-UPS shows that oxidation to Fc+ is accompanied by a shift of the highest occupied molecular orbital toward higher binding energy. The oxidation to Fc+ is also met with an increase in work function ascribed to the induced negative interfacial dipole caused by the presence of Fc+-ClO4- ion pairs along with a contribution from the reorientation of the Fc+ SAMs. The reversibility of our observations is confirmed upon conversion from Fc+ back to the neutral Fc. The approach shown here is beneficial for a broad range of redox-responsive systems to aid in the elucidation of structure-function relationships.
Collapse
Affiliation(s)
- Raymond A Wong
- Surface and Interface Science Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Yasuyuki Yokota
- Surface and Interface Science Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Mitsuru Wakisaka
- Graduate School of Engineering , Toyama Prefectural University , 5180 Kurokawa , Imizu , Toyama 939-0398 , Japan
| | - Junji Inukai
- Clean Energy Research Center , University of Yamanashi , 4 Takeda , Kofu , Yamanashi 400-8510 , Japan
| | - Yousoo Kim
- Surface and Interface Science Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| |
Collapse
|
33
|
Baghbanzadeh M, Pieters PF, Yuan L, Collison D, Whitesides GM. The Rate of Charge Tunneling in EGaIn Junctions Is Not Sensitive to Halogen Substituents at the Self-Assembled Monolayer//Ga 2O 3 Interface. ACS NANO 2018; 12:10221-10230. [PMID: 30226988 DOI: 10.1021/acsnano.8b05217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper describes experiments that are designed to test the influence of terminal groups incorporating carbon-halogen bonds on the current density (by hole tunneling) across self-assembled monolayer (SAM)-based junctions of the form MTS/S(CH2)9NHCOCH nX3- n//Ga2O3/EGaIn (where M = Ag and Au and X = CH3, F, Cl, Br, I). Within the limits of statistical significance, these rates of tunneling are insensitive to the nature of the terminal group at the interface between the SAM and the Ga2O3. The results are relevant to the origin of an apparent inconsistency in the literature concerning the influence of halogen atoms at the SAM//electrode interface on the tunneling current density.
Collapse
Affiliation(s)
- Mostafa Baghbanzadeh
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Priscilla F Pieters
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Li Yuan
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Darrell Collison
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - George M Whitesides
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
- Kavli Institute for Bionano Science and Technology , Harvard University 29 Oxford Street , Cambridge , Massachusetts 02138 , United States
- Wyss Institute of Biologically Inspired Engineering , 60 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
34
|
Espinoza EM, Larsen-Clinton JM, Krzeszewski M, Darabedian N, Gryko DT, Vullev VI. Bioinspired approach toward molecular electrets: synthetic proteome for materials. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractMolecular-level control of charge transfer (CT) is essential for both, organic electronics and solar-energy conversion, as well as for a wide range of biological processes. This article provides an overview of the utility of local electric fields originating from molecular dipoles for directing CT processes. Systems with ordered dipoles, i.e. molecular electrets, are the centerpiece of the discussion. The conceptual evolution from biomimicry to biomimesis, and then to biological inspiration, paves the roads leading from testing the understanding of how natural living systems function to implementing these lessons into optimal paradigms for specific applications. This progression of the evolving structure-function relationships allows for the development of bioinspired electrets composed of non-native aromatic amino acids. A set of such non-native residues that are electron-rich can be viewed as a synthetic proteome for hole-transfer electrets. Detailed considerations of the electronic structure of an individual residue prove of key importance for designating the points for optimal injection of holes (i.e. extraction of electrons) in electret oligomers. This multifaceted bioinspired approach for the design of CT molecular systems provides unexplored paradigms for electronic and energy science and engineering.
Collapse
Affiliation(s)
- Eli M. Espinoza
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | | | - Maciej Krzeszewski
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Narek Darabedian
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Daniel T. Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224 Warsaw, Poland
| | - Valentine I. Vullev
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
35
|
Hofmann OT, Glowatzki H, Bürker C, Rangger GM, Bröker B, Niederhausen J, Hosokai T, Salzmann I, Blum RP, Rieger R, Vollmer A, Rajput P, Gerlach A, Müllen K, Schreiber F, Zojer E, Koch N, Duhm S. Orientation-Dependent Work-Function Modification Using Substituted Pyrene-Based Acceptors. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:24657-24668. [PMID: 29152034 PMCID: PMC5682610 DOI: 10.1021/acs.jpcc.7b08451] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/10/2017] [Indexed: 05/17/2023]
Abstract
The adsorption of molecular acceptors is a viable method for tuning the work function of metal electrodes. This, in turn, enables adjusting charge injection barriers between the electrode and organic semiconductors. Here, we demonstrate the potential of pyrene-tetraone (PyT) and its derivatives dibromopyrene-tetraone (Br-PyT) and dinitropyrene-tetraone (NO2-PyT) for modifying the electronic properties of Au(111) and Ag(111) surfaces. The systems are investigated by complementary theoretical and experimental approaches, including photoelectron spectroscopy, the X-ray standing wave technique, and density functional theory simulations. For some of the investigated interfaces the trends expected for Fermi-level pinning are observed, i.e., an increase of the metal work function along with increasing molecular electron affinity and the same work function for Au and Ag with monolayer acceptor coverage. Substantial deviations are, however, found for Br-PyT/Ag(111) and NO2-PyT/Ag(111), where in the latter case an adsorption-induced work function increase of as much as 1.6 eV is observed. This behavior is explained as arising from a face-on to edge-on reorientation of molecules in the monolayer. Our calculations show that for an edge-on orientation much larger work-function changes can be expected despite the prevalence of Fermi-level pinning. This is primarily ascribed to a change of the electron affinity of the adsorbate layer that results from a change of the molecular orientation. This work provides a comprehensive understanding of how changing the molecular electron affinity as well as the adsorbate structure impacts the electronic properties of electrodes.
Collapse
Affiliation(s)
- O. T. Hofmann
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
- E-mail:
| | - H. Glowatzki
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - C. Bürker
- Institut
für Angewandte Physik, Universität
Tübingen, Auf
der Morgenstelle 10, Tübingen 72076, Germany
| | - G. M. Rangger
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - B. Bröker
- Institut
für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12389 Berlin, Germany
| | - J. Niederhausen
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - T. Hosokai
- National
Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - I. Salzmann
- Institut
für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12389 Berlin, Germany
- The
Institute of Solid State Physics, The University
of Tokyo, Kashiwanoha
5-1-5, Kashiwa, Chiba 277-8581, Japan
| | - R.-P. Blum
- Institut
für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12389 Berlin, Germany
| | - R. Rieger
- Max Planck
Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - A. Vollmer
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - P. Rajput
- Atomic
& Molecular Physics Division, Bhabha
Atomic Research Centre, Trombay, Mumbai 400085, India
| | - A. Gerlach
- Institut
für Angewandte Physik, Universität
Tübingen, Auf
der Morgenstelle 10, Tübingen 72076, Germany
| | - K. Müllen
- Max Planck
Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Physical Chemistry, Johannes Gutenberg
University Mainz, Duesbergweg
10-14, Mainz, Germany
| | - F. Schreiber
- Institut
für Angewandte Physik, Universität
Tübingen, Auf
der Morgenstelle 10, Tübingen 72076, Germany
| | - E. Zojer
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - N. Koch
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
- Institut
für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12389 Berlin, Germany
- Jiangsu
Key Laboratory for Carbon-Based Functional Materials & Devices
and Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - S. Duhm
- Jiangsu
Key Laboratory for Carbon-Based Functional Materials & Devices
and Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
- E-mail:
| |
Collapse
|
36
|
Malytskyi V, Gadenne V, Ksari Y, Patrone L, Raimundo JM. Synthesis and characterization of thiophene-based push-pull chromophores for tuning the electrical and optical properties of surfaces with controlled SAM formation. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Choong SW, Russell SR, Bang JJ, Patterson JK, Claridge SA. Sitting Phase Monolayers of Polymerizable Phospholipids Create Dimensional, Molecular-Scale Wetting Control for Scalable Solution-Based Patterning of Layered Materials. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19326-19334. [PMID: 28535061 DOI: 10.1021/acsami.7b03279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The use of dimensionally ordered ligands on layered materials to direct local electronic structure and interactions with the environment promises to streamline integration into nanostructured electronic, optoelectronic, sensing, and nanofluidic interfaces. Substantial progress has been made in using ligands to control substrate electronic structure. Conversely, using the exposed face of the ligand layer to structure wetting and binding interactions, particularly with scalable solution- or spray-processed materials, remains a significant challenge. However, nature routinely utilizes wetting control at scales from nanometer to micrometer to build interfaces of striking geometric precision and functional complexity, suggesting the possibility of leveraging similar control in synthetic materials. Here, we assemble striped "sitting" phases of polymerizable phospholipids on highly oriented pyrolytic graphite, producing a surface consisting of 1 nm wide hydrophilic stripes alternating with 5 nm wide hydrophobic stripes. Protruding, strongly wetting headgroup chemistries in these monolayers enable formation of rodlike wetted patterns with widths as little as ∼6 nm and lengths up to 100 nm from high-surface-tension liquids (aqueous solutions of glycerol) commonly utilized to assess interfacial wetting properties at larger length scales. In contrast, commonly used lying-down phases of diynoic acids with in-plane headgroups do not promote droplet sticking or directional spreading. These results point to a broadly applicable strategy for achieving high-resolution solution-based patterning on layered materials, utilizing nanometer-wide patterns of protruding, charged functional groups in a noncovalent monolayer to define pattern edges.
Collapse
Affiliation(s)
- Shi Wah Choong
- Department of Chemistry, and ‡Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Shane R Russell
- Department of Chemistry, and ‡Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Jae Jin Bang
- Department of Chemistry, and ‡Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Justin K Patterson
- Department of Chemistry, and ‡Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, and ‡Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
38
|
Vilan A, Cahen D. Chemical Modification of Semiconductor Surfaces for Molecular Electronics. Chem Rev 2017; 117:4624-4666. [PMID: 28230354 DOI: 10.1021/acs.chemrev.6b00746] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inserting molecular monolayers within metal/semiconductor interfaces provides one of the most powerful expressions of how minute chemical modifications can affect electronic devices. This topic also has direct importance for technology as it can help improve the efficiency of a variety of electronic devices such as solar cells, LEDs, sensors, and possible future bioelectronic ones. The review covers the main aspects of using chemistry to control the various aspects of interface electrostatics, such as passivation of interface states and alignment of energy levels by intrinsic molecular polarization, as well as charge rearrangement with the adjacent metal and semiconducting contacts. One of the greatest merits of molecular monolayers is their capability to form excellent thin dielectrics, yielding rich and unique current-voltage characteristics for transport across metal/molecular monolayer/semiconductor interfaces. We explain the interplay between the monolayer as tunneling barrier on the one hand, and the electrostatic barrier within the semiconductor, due to its space-charge region, on the other hand, as well as how different monolayer chemistries control each of these barriers. Practical tools to experimentally identify these two barriers and distinguish between them are given, followed by a short look to the future. This review is accompanied by another one, concerning the formation of large-area molecular junctions and charge transport that is dominated solely by molecules.
Collapse
Affiliation(s)
- Ayelet Vilan
- Department of Materials & Interfaces, Weizmann Institute of Science , Rehovot, Israel 76100
| | - David Cahen
- Department of Materials & Interfaces, Weizmann Institute of Science , Rehovot, Israel 76100
| |
Collapse
|
39
|
Ito S, Kasuya M, Kurihara K, Nakagawa M. Nanometer-Resolved Fluidity of an Oleophilic Monomer between Silica Surfaces Modified with Fluorinated Monolayers for Nanoimprinting. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6591-6598. [PMID: 28117973 DOI: 10.1021/acsami.6b15139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ultraviolet (UV) nanoimprinting has the potential to fabricate sub-15 nm resin patterns, but the interfacial fluidity of organic monomers near monomer liquid/mold solid interfaces related to filling nanoscale mold recesses with UV-curable resins still remains unclear. In this study, we demonstrated that surface forces and resonance shear measurements were helpful to select a surface modifier appropriate for silica mold surfaces for UV nanoimprinting with the low-viscosity monomer 1,10-decanediol diacrylate. Surface forces between silica surfaces mediated with the diacrylate monomer and fluidities of the monomer were investigated with nanometer resolution. Chemical vapor surface modification of silica surfaces with chlorodimethyl(3,3,3-trifluoropropyl)silane (FAS3-Cl) and tridecafluoro-1,1,2,2-tetrahydrooctyltrimethoxysilane (FAS13) gave fluorinated silica surfaces with root-mean-square roughness of less than 0.24 nm suitable for the measurements. When the distance D between two silica surfaces was decreased stepwise in the range of 0-30 nm, monomer viscosity between cleaned silica surfaces increased markedly at D < 6 nm. Surface modification with FAS3-Cl suppressed this increase of interfacial monomer viscosity. In contrast, FAS13-modified silica surfaces caused a jump-in phenomenon at approximately D = 7-9 nm, suddenly decreasing to D = 1 nm as the monomer fluid layer was squeezed out. We concluded that FAS3-Cl was appropriate as a fluorinated surface modifier for silica molds used in UV nanoimprinting with an oleophilic low-viscosity monomer, because the chemisorbed monolayer maintained low monomer viscosity near the surface/monomer interface, in addition to its low surface free energy and short CF3CH2CH2- group.
Collapse
Affiliation(s)
- Shunya Ito
- Institute of Multidisciplinary Research for Advanced Materials and ‡Advanced Institute for Materials Research (WPI-AIMR), Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Motohiro Kasuya
- Institute of Multidisciplinary Research for Advanced Materials and ‡Advanced Institute for Materials Research (WPI-AIMR), Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kazue Kurihara
- Institute of Multidisciplinary Research for Advanced Materials and ‡Advanced Institute for Materials Research (WPI-AIMR), Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Masaru Nakagawa
- Institute of Multidisciplinary Research for Advanced Materials and ‡Advanced Institute for Materials Research (WPI-AIMR), Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
40
|
Vilan A, Aswal D, Cahen D. Large-Area, Ensemble Molecular Electronics: Motivation and Challenges. Chem Rev 2017; 117:4248-4286. [DOI: 10.1021/acs.chemrev.6b00595] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ayelet Vilan
- Department
of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | | | - David Cahen
- Department
of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
41
|
Qin G, Zhu Z, Li S, McDermott AM, Cai C. Development of ciprofloxacin-loaded contact lenses using fluorous chemistry. Biomaterials 2017; 124:55-64. [PMID: 28188995 DOI: 10.1016/j.biomaterials.2017.01.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/17/2017] [Accepted: 01/29/2017] [Indexed: 02/06/2023]
Abstract
In this work, we developed a simple method to load drugs into commercially available contact lenses utilizing fluorous chemistry. We demonstrated this method using model compounds including fluorous-tagged fluorescein and antibiotic ciprofloxacin. We showed that fluorous interactions facilitated the loading of model molecules into fluorocarbon-containing contact lenses, and that the release profiles exhibited sustained release. Contact lenses loaded with fluorous-tagged ciprofloxacin exhibited antimicrobial activity against Pseudomonas aeruginosa in vitro, while no cytotoxicity towards human corneal epithelial cells was observed. To mimic the tear turnover, we designed a porcine eye infection model under flow conditions. Significantly, the modified lenses also exhibited antimicrobial efficacy against Pseudomonas aeruginosa in the ex vivo infection model. Overall, utilizing fluorous chemistry, we can construct a drug delivery system that exhibits high drug loading capacity, sustained drug release, and robust biological activity.
Collapse
Affiliation(s)
- Guoting Qin
- College of Optometry, University of Houston, Houston, TX, 77204, USA.
| | - Zhiling Zhu
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Siheng Li
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | | | - Chengzhi Cai
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
42
|
Hacker CA, Bruce RC, Pookpanratana SJ. Interface Engineering for Nanoelectronics. ECS TRANSACTIONS 2017; 80:119-131. [PMID: 29276553 PMCID: PMC5740487 DOI: 10.1149/08001.0119ecst] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Innovation in the electronics industry is tied to interface engineering as devices increasingly incorporate new materials and shrink. Molecular layers offer a versatile means of tuning interfacial electronic, chemical, physical, and magnetic properties enabled by a wide variety of molecules available. This paper will describe three instances where we manipulate molecular interfaces with a specific focus on the nanometer scale characterization and the impact on the resulting performance. The three primary themes include, 1-designer interfaces, 2-electronic junction formation, and 3-advancing metrology for nanoelectronics. We show the ability to engineer interfaces through a variety of techniques and demonstrate the impact on technologies such as molecular memory and spin injection for organic electronics. Underpinning the successful modification of interfaces is the ability to accurately characterize the chemical and electronic properties and we will highlight some measurement advances key to our understanding of the interface engineering for nanoelectronics.
Collapse
Affiliation(s)
- C A Hacker
- Engineering Physics Division, Physical Measurements Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - R C Bruce
- Engineering Physics Division, Physical Measurements Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - S J Pookpanratana
- Engineering Physics Division, Physical Measurements Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
43
|
Cirri A, Silakov A, Jensen L, Lear BJ. Chain Length and Solvent Control over the Electronic Properties of Alkanethiolate-Protected Gold Nanoparticles at the Molecule-to-Metal Transition. J Am Chem Soc 2016; 138:15987-15993. [DOI: 10.1021/jacs.6b09586] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anthony Cirri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alexey Silakov
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Benjamin J. Lear
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
44
|
Gobbo P, Antonello S, Guryanov I, Polo F, Soldà A, Zen F, Maran F. Dipole Moment Effect on the Electrochemical Desorption of Self-Assembled Monolayers of 310-Helicogenic Peptides on Gold. ChemElectroChem 2016. [DOI: 10.1002/celc.201600573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pierangelo Gobbo
- Department of Chemistry; University of Padova; Via Marzolo 1 35131 Padova Italy
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Sabrina Antonello
- Department of Chemistry; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Ivan Guryanov
- Department of Chemistry; University of Padova; Via Marzolo 1 35131 Padova Italy
- Institute of Chemistry; St. Petersburg State University, 26 Universitetskij Pr.; 198504 Saint-Petersburg Russia
| | - Federico Polo
- Department of Chemistry; University of Padova; Via Marzolo 1 35131 Padova Italy
- National Cancer Institute-Centro di Riferimento Oncologico; Via Franco Gallini 2 33081 Aviano Italy
| | - Alice Soldà
- Department of Chemistry; University of Padova; Via Marzolo 1 35131 Padova Italy
- Department of Chemistry; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Federico Zen
- Department of Chemistry; University of Padova; Via Marzolo 1 35131 Padova Italy
- School of Chemistry; Trinity College Dublin, College Green; Dublin 2 Ireland
| | - Flavio Maran
- Department of Chemistry; University of Padova; Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
45
|
Thompson D, Nijhuis CA. Even the Odd Numbers Help: Failure Modes of SAM-Based Tunnel Junctions Probed via Odd-Even Effects Revealed in Synchrotrons and Supercomputers. Acc Chem Res 2016; 49:2061-2069. [PMID: 27598413 DOI: 10.1021/acs.accounts.6b00256] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This Account describes a body of research in atomic level design, synthesis, physicochemical characterization, and macroscopic electrical testing of molecular devices made from ferrocene-functionalized alkanethiol molecules, which are molecular diodes, with the aim to identify, and resolve, the failure modes that cause leakage currents. The mismatch in size between the ferrocene headgroup and alkane rod makes waxlike highly dynamic self-assembled monolayers (SAMs) on coinage metals that show remarkable atomic-scale sensitivity in their electrical properties. Our results make clear that molecular tunnel junction devices provide an excellent testbed to probe the electronic and supramolecular structures of SAMs on inorganic substrates. Contacting these SAMs to a eutectic "EGaIn" alloy top-electrode, we designed highly stable long-lived molecular switches of the form electrode-SAM-electrode with robust rectification ratios of up to 3 orders of magnitude. The graphic that accompanies this conspectus displays a computed SAM packing structure, illustrating the lollipop shape of the molecules that gives dynamic SAM supramolecular structures and also the molecule-electrode van der Waals (vdW) contacts that must be controlled to form good SAM-based devices. In this Account, we first trace the evolution of SAM-based electronic devices and rationalize their operation using energy level diagrams. We describe the measurement of device properties using near edge X-ray absorption fine structure spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy complemented by molecular dynamics and electronic structure calculations together with large numbers of electrical measurements. We discuss how data obtained from these combined experimental/simulation codesign studies demonstrate control over the supramolecular and electronic structure of the devices, tuning odd-even effects to optimize inherent packing tendencies of the molecules in order to minimize leakage currents in the junctions. It is now possible, but still very costly to create atomically smooth electrodes and we discuss progress toward masking electrode imperfections using cooperative molecule-electrode contacts that are only accessible by dynamic SAM structures. Finally, the unique ability of SAM devices to achieve simultaneously high and atom-sensitive electrical switching is summarized and discussed. While putting these structures to work as real world electronic devices remains very challenging, we speculate on the scientific and technological advances that are required to further improve electronic and supramolecular structure, toward the creation of high yields of long-lived molecular devices with (very) large, reproducible rectification ratios.
Collapse
Affiliation(s)
- Damien Thompson
- Department
of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Christian A. Nijhuis
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546
| |
Collapse
|
46
|
Kong GD, Kim M, Cho SJ, Yoon HJ. Gradients of Rectification: Tuning Molecular Electronic Devices by the Controlled Use of Different-Sized Diluents in Heterogeneous Self-Assembled Monolayers. Angew Chem Int Ed Engl 2016; 55:10307-11. [DOI: 10.1002/anie.201604748] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/24/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Gyu Don Kong
- Department of Chemistry; Korea University; Seoul 136-701 Korea
| | - Miso Kim
- Department of Chemistry; Korea University; Seoul 136-701 Korea
| | - Soo Jin Cho
- Department of Chemistry; Korea University; Seoul 136-701 Korea
| | - Hyo Jae Yoon
- Department of Chemistry; Korea University; Seoul 136-701 Korea
| |
Collapse
|
47
|
Kong GD, Kim M, Cho SJ, Yoon HJ. Gradients of Rectification: Tuning Molecular Electronic Devices by the Controlled Use of Different-Sized Diluents in Heterogeneous Self-Assembled Monolayers. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gyu Don Kong
- Department of Chemistry; Korea University; Seoul 136-701 Korea
| | - Miso Kim
- Department of Chemistry; Korea University; Seoul 136-701 Korea
| | - Soo Jin Cho
- Department of Chemistry; Korea University; Seoul 136-701 Korea
| | - Hyo Jae Yoon
- Department of Chemistry; Korea University; Seoul 136-701 Korea
| |
Collapse
|
48
|
Schwartz JJ, Mendoza AM, Wattanatorn N, Zhao Y, Nguyen VT, Spokoyny AM, Mirkin CA, Baše T, Weiss PS. Surface Dipole Control of Liquid Crystal Alignment. J Am Chem Soc 2016; 138:5957-67. [PMID: 27090503 DOI: 10.1021/jacs.6b02026] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Detailed understanding and control of the intermolecular forces that govern molecular assembly are necessary to engineer structure and function at the nanoscale. Liquid crystal (LC) assembly is exceptionally sensitive to surface properties, capable of transducing nanoscale intermolecular interactions into a macroscopic optical readout. Self-assembled monolayers (SAMs) modify surface interactions and are known to influence LC alignment. Here, we exploit the different dipole magnitudes and orientations of carboranethiol and -dithiol positional isomers to deconvolve the influence of SAM-LC dipolar coupling from variations in molecular geometry, tilt, and order. Director orientations and anchoring energies are measured for LC cells employing various carboranethiol and -dithiol isomer alignment layers. The normal component of the molecular dipole in the SAM, toward or away from the underlying substrate, was found to determine the in-plane LC director orientation relative to the anisotropy axis of the surface. By using LC alignment as a probe of interaction strength, we elucidate the role of dipolar coupling of molecular monolayers to their environment in determining molecular orientations. We apply this understanding to advance the engineering of molecular interactions at the nanoscale.
Collapse
Affiliation(s)
- Jeffrey J Schwartz
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States.,Department of Physics & Astronomy, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Alexandra M Mendoza
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States.,Department of Chemistry & Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Natcha Wattanatorn
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States.,Department of Chemistry & Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Yuxi Zhao
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States.,Department of Chemistry & Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Vinh T Nguyen
- Department of Chemistry & Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Alexander M Spokoyny
- Department of Chemistry & Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States.,Department of Chemistry and the International Institute for Nanotechnology, Northwestern University , Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry and the International Institute for Nanotechnology, Northwestern University , Evanston, Illinois 60208, United States
| | - Tomáš Baše
- Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i. , č.p. 1001, 250 68 Husinec-Řež, Czech Republic
| | - Paul S Weiss
- California NanoSystems Institute, University of California, Los Angeles , Los Angeles, California 90095, United States.,Department of Chemistry & Biochemistry, University of California, Los Angeles , Los Angeles, California 90095, United States.,Department of Materials Science & Engineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| |
Collapse
|