1
|
Ferreira MR, Morgado L, Salgueiro CA. Periplasmic electron transfer network in Geobacter sulfurreducens revealed by biomolecular interaction studies. Protein Sci 2024; 33:e5082. [PMID: 38935664 PMCID: PMC11210610 DOI: 10.1002/pro.5082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Multiheme cytochromes located in different compartments are crucial for extracellular electron transfer in the bacterium Geobacter sulfurreducens to drive important environmental processes and biotechnological applications. Recent studies have unveiled that for particular sets of electron terminal acceptors, discrete respiratory pathways selectively recruit specific cytochromes from both the inner and outer membranes. However, such specificity was not observed for the abundant periplasmic cytochromes, namely the triheme cytochrome family PpcA-E. In this work, the distinctive NMR spectroscopic signatures of these proteins in different redox states were explored to monitor pairwise interactions and electron transfer reactions between each pair of cytochromes. The results showed that the five proteins interact transiently and can exchange electrons between each other revealing intra-promiscuity within the members of this family. This discovery is discussed in the light of the establishment of an effective electron transfer network by this pool of cytochromes. This network is advantageous to the bacteria as it enables the maintenance of the functional working potential redox range within the cells.
Collapse
Affiliation(s)
- Marisa R. Ferreira
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
| | - Leonor Morgado
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
| | - Carlos A. Salgueiro
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
| |
Collapse
|
2
|
Zhong F, Reik ME, Ragusa MJ, Pletneva EV. The structure of the diheme cytochrome c 4 from Neisseria gonorrhoeae reveals multiple contributors to tuning reduction potentials. J Inorg Biochem 2024; 253:112496. [PMID: 38330683 PMCID: PMC11034767 DOI: 10.1016/j.jinorgbio.2024.112496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Cytochrome c4 (c4) is a diheme protein implicated as an electron donor to cbb3 oxidases in multiple pathogenic bacteria. Despite its prevalence, understanding of how specific structural features of c4 optimize its function is lacking. The human pathogen Neisseria gonorrhoeae (Ng) thrives in low oxygen environments owing to the activity of its cbb3 oxidase. Herein, we report characterization of Ng c4. Spectroelectrochemistry experiments of the wild-type (WT) protein have shown that the two Met/His-ligated hemes differ in potentials by ∼100 mV, and studies of the two His/His-ligated variants provided unambiguous assignment of heme A from the N-terminal domain of the protein as the high-potential heme. The crystal structure of the WT protein at 2.45 Å resolution has revealed that the two hemes differ in their solvent accessibility. In particular, interactions made by residues His57 and Ser59 in Loop1 near the axial ligand Met63 contribute to the tight enclosure of heme A, working together with the surface charge, to raise the reduction potential of the heme iron in this domain. The structure reveals a prominent positively-charged patch, which encompasses surfaces of both domains. In contrast to prior findings with c4 from Pseudomonas stutzeri, the interdomain interface of Ng c4 contributes minimally to the values of the heme iron potentials in the two domains. Analyses of the heme solvent accessibility, interface properties, and surface charges offer insights into the interplay of these structural elements in tuning redox properties of c4 and other multiheme proteins.
Collapse
Affiliation(s)
- Fangfang Zhong
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Morgan E Reik
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Michael J Ragusa
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | | |
Collapse
|
3
|
Burris-Hiday SD, Scott EE. Allosteric modulation of cytochrome P450 enzymes by the NADPH cytochrome P450 reductase FMN-containing domain. J Biol Chem 2023; 299:105112. [PMID: 37517692 PMCID: PMC10481364 DOI: 10.1016/j.jbc.2023.105112] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
NADPH-cytochrome P450 reductase delivers electrons required by heme oxygenase, squalene monooxygenase, fatty acid desaturase, and 48 human cytochrome P450 enzymes. While conformational changes supporting reductase intramolecular electron transfer are well defined, intermolecular interactions with these targets are poorly understood, in part because of their transient association. Herein the reductase FMN domain responsible for interacting with targets was fused to the N-terminus of three drug-metabolizing and two steroidogenic cytochrome P450 enzymes to increase the probability of interaction. These artificial fusion enzymes were profiled for their ability to bind their respective substrates and inhibitors and to perform catalysis supported by cumene hydroperoxide. Comparisons with the isolated P450 enzymes revealed that even the oxidized FMN domain causes substantial and diverse effects on P450 function. The FMN domain could increase, decrease, or not affect total ligand binding and/or dissociation constants depending on both P450 enzyme and ligand. As examples, FMN domain fusion has no effect on inhibitor ketoconazole binding to CYP17A1 but substantially altered CYP21A2 binding of the same compound. FMN domain fusion to CYP21A2 resulted in differential effects dependent on whether the ligand was 17α-hydroxyprogesterone versus ketoconazole. Similar enzyme-specific effects were observed on steady-state kinetics. These observations are most consistent with FMN domain interacting with the proximal P450 surface to allosterically impact P450 ligand binding and metabolism separate from electron delivery. The variety of effects on different P450 enzymes and on the same P450 with different ligands suggests intricate and differential allosteric communication between the P450 active site and its proximal reductase-binding surface.
Collapse
Affiliation(s)
- Sarah D Burris-Hiday
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Departments of Pharmacology and Biological Chemistry and the Programs in Chemical Biology and Biophysics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
4
|
Sato W, Ishimori K. Regulation of electron transfer in the terminal step of the respiratory chain. Biochem Soc Trans 2023; 51:1611-1619. [PMID: 37409479 DOI: 10.1042/bst20221449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
In mitochondria, electrons are transferred along a series of enzymes and electron carriers that are referred to as the respiratory chain, leading to the synthesis of cellular ATP. The series of the interprotein electron transfer (ET) reactions is terminated by the reduction in molecular oxygen at Complex IV, cytochrome c oxidase (CcO) that is coupled with the proton pumping from the matrix to the inner membrane space. Unlike the ET reactions from Complex I to Complex III, the ET reaction to CcO, mediated by cytochrome c (Cyt c), is quite specific in that it is irreversible with suppressed electron leakage, which characterizes the ET reactions in the respiratory chain and is thought to play a key role in the regulation of mitochondrial respiration. In this review, we summarize the recent findings regarding the molecular mechanism of the ET reaction from Cyt c to CcO in terms of specific interaction between two proteins, a molecular breakwater, and the effects of the conformational fluctuation on the ET reaction, conformational gating. Both of these are essential factors, not only in the ET reaction from Cyt c to CcO, but also in the interprotein ET reactions in general. We also discuss the significance of a supercomplex in the terminal ET reaction, which provides information on the regulatory factors of the ET reactions that are specific to the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Wataru Sato
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
5
|
Li Z, Wang J, Willner B, Willner I. Topologically Triggered Dynamic DNA Frameworks. Isr J Chem 2023. [DOI: 10.1002/ijch.202300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zhenzhen Li
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Jianbang Wang
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Bilha Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Itamar Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
6
|
Kishimoto H, Azai C, Yamamoto T, Mutoh R, Nakaniwa T, Tanaka H, Miyanoiri Y, Kurisu G, Oh-oka H. Soluble domains of cytochrome c-556 and Rieske iron-sulfur protein from Chlorobaculum tepidum: Crystal structures and interaction analysis. Curr Res Struct Biol 2023; 5:100101. [PMID: 37180033 PMCID: PMC10172866 DOI: 10.1016/j.crstbi.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
In photosynthetic green sulfur bacteria, the electron transfer reaction from menaquinol:cytochrome c oxidoreductase to the P840 reaction center (RC) complex occurs directly without any involvement of soluble electron carrier protein(s). X-ray crystallography has determined the three-dimensional structures of the soluble domains of the CT0073 gene product and Rieske iron-sulfur protein (ISP). The former is a mono-heme cytochrome c with an α-absorption peak at 556 nm. The overall fold of the soluble domain of cytochrome c-556 (designated as cyt c-556sol) consists of four α-helices and is very similar to that of water-soluble cyt c-554 that independently functions as an electron donor to the P840 RC complex. However, the latter's remarkably long and flexible loop between the α3 and α4 helices seems to make it impossible to be a substitute for the former. The structure of the soluble domain of the Rieske ISP (Rieskesol protein) shows a typical β-sheets-dominated fold with a small cluster-binding and a large subdomain. The architecture of the Rieskesol protein is bilobal and belongs to those of b6f-type Rieske ISPs. Nuclear magnetic resonance (NMR) measurements revealed weak non-polar but specific interaction sites on Rieskesol protein when mixed with cyt c-556sol. Therefore, menaquinol:cytochrome c oxidoreductase in green sulfur bacteria features a Rieske/cytb complex tightly associated with membrane-anchored cyt c-556.
Collapse
Affiliation(s)
- Hiraku Kishimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Chihiro Azai
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Tomoya Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Risa Mutoh
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tetsuko Nakaniwa
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yohei Miyanoiri
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
- Corresponding author.
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
- Corresponding author.
| | - Hirozo Oh-oka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- Corresponding author. Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
7
|
Choi S, Chan CH, Bond DR. Lack of Specificity in Geobacter Periplasmic Electron Transfer. J Bacteriol 2022; 204:e0032222. [PMID: 36383007 PMCID: PMC9765071 DOI: 10.1128/jb.00322-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
Reduction of extracellular acceptors requires electron transfer across the periplasm. In Geobacter sulfurreducens, three separate cytoplasmic membrane cytochromes are utilized depending on redox potential, and at least five cytochrome conduits span the outer membrane. Because G. sulfurreducens produces 5 structurally similar triheme periplasmic cytochromes (PpcABCDE) that differ in expression level, midpoint potential, and heme biochemistry, many hypotheses propose distinct periplasmic carriers could be used for specific redox potentials, terminal acceptors, or growth conditions. Using a panel of marker-free single, quadruple, and quintuple mutants, little support for these models could be found. Three quadruple mutants containing only one paralog (PpcA, PpcB, and PpcD) reduced Fe(III) citrate and Fe(III) oxide at the same rate and extent, even though PpcB and PpcD were at much lower periplasmic levels than PpcA. Mutants containing only PpcC and PpcE showed defects, but these cytochromes were nearly undetectable in the periplasm. When expressed sufficiently, PpcC and PpcE supported wild-type Fe(III) reduction. PpcA and PpcE from G. metallireducens similarly restored metal respiration in G. sulfurreducens. PgcA, an unrelated extracellular triheme c-type cytochrome, also participated in periplasmic electron transfer. While triheme cytochromes were important for metal reduction, sextuple ΔppcABCDE ΔpgcA mutants grew near wild-type rates with normal cyclic voltammetry profiles when using anodes as electron acceptors. These results reveal broad promiscuity in the periplasmic electron transfer network of metal-reducing Geobacter and suggest that an as-yet-undiscovered periplasmic mechanism supports electron transfer to electrodes. IMPORTANCE Many inner and outer membrane cytochromes used by Geobacter for electron transfer to extracellular acceptors have specific functions. How these are connected by periplasmic carriers remains poorly understood. G. sulfurreducens contains multiple triheme periplasmic cytochromes with unique biochemical properties and expression profiles. It is hypothesized that each could be involved in a different respiratory pathway, depending on redox potential or energy needs. Here, we show that Geobacter periplasmic cytochromes instead show evidence of being highly promiscuous. Any of 6 triheme cytochromes supported similar growth with soluble or insoluble metals, but none were required when cells utilized electrodes. These findings fail to support many models of Geobacter electron transfer, and question why these organisms produce such an array of periplasmic cytochromes.
Collapse
Affiliation(s)
- Sol Choi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chi Ho Chan
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| | - Daniel R. Bond
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
8
|
Li Z, Wang J, Zhou Z, O’Hagan MP, Willner I. Gated Transient Dissipative Dimerization of DNA Tetrahedra Nanostructures for Programmed DNAzymes Catalysis. ACS NANO 2022; 16:3625-3636. [PMID: 35184545 PMCID: PMC8945371 DOI: 10.1021/acsnano.1c06117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Transient dissipative dimerization and transient gated dimerization of DNA tetrahedra nanostructures are introduced as functional modules to emulate transient and gated protein-protein interactions and emergent protein-protein guided transient catalytic functions, operating in nature. Four tetrahedra are engineered to yield functional modules that, in the presence of pre-engineered auxiliary nucleic acids and the nicking enzyme Nt.BbvCI, lead to the fueled transient dimerization of two pairs of tetrahedra. The dynamic transient formation and depletion of DNA tetrahedra are followed by transient FRET signals generated by fluorophore-labeled tetrahedra. The integration of two inhibitors within the mixture of the four tetrahedra and two auxiliary modules, fueling the transient dimerization, results in selective inhibitor-guided gated transient dimerization of two different DNA tetrahedra dimers. Kinetic models for the dynamic transient dimerization and gated transient dimerization of the DNA tetrahedra are formulated and computationally simulated. The derived rate-constants allow the prediction and subsequent experimental validation of the performance of the systems under different auxiliary conditions. In addition, by appropriate modification of the four tetrahedra structures, the triggered gated emergence of selective transient catalytic functions driven by the two pairs of DNA tetrahedra dimers is demonstrated.
Collapse
|
9
|
van Son M, Schilder JT, Di Savino A, Blok A, Ubbink M, Huber M. The Transient Complex of Cytochrome c and Cytochrome c Peroxidase: Insights into the Encounter Complex from Multifrequency EPR and NMR Spectroscopy. Chemphyschem 2020; 21:1060-1069. [PMID: 32301564 PMCID: PMC7317791 DOI: 10.1002/cphc.201901160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/03/2020] [Indexed: 12/31/2022]
Abstract
We present a novel approach to study transient protein-protein complexes with standard, 9 GHz, and high-field, 95 GHz, electron paramagnetic resonance (EPR) and paramagnetic NMR at ambient temperatures and in solution. We apply it to the complex of yeast mitochondrial iso-1-cytochrome c (Cc) with cytochrome c peroxidase (CcP) with the spin label [1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)-methanethiosulfonate] attached at position 81 of Cc (SL-Cc). A dissociation constant KD of 20±4×10-6 M (EPR and NMR) and an equal amount of stereo-specific and encounter complex (NMR) are found. The EPR spectrum of the fully bound complex reveals that the encounter complex has a significant population (60 %) that shares important features, such as the Cc-interaction surface, with the stereo-specific complex.
Collapse
Affiliation(s)
- Martin van Son
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes LaboratoryLeiden UniversityNiels Bohrweg 22333 CALeiden (TheNetherlands
| | - Jesika T. Schilder
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Antonella Di Savino
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Anneloes Blok
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Marcellus Ubbink
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Martina Huber
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes LaboratoryLeiden UniversityNiels Bohrweg 22333 CALeiden (TheNetherlands
| |
Collapse
|
10
|
Kale S, Strickland M, Peterkofsky A, Liu J, Tjandra N. Model of a Kinetically Driven Crosstalk between Paralogous Protein Encounter Complexes. Biophys J 2019; 117:1655-1665. [PMID: 31623885 DOI: 10.1016/j.bpj.2019.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/21/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022] Open
Abstract
Proteins interact with one another across a broad spectrum of affinities. Our understanding of the low end of this spectrum, as characterized by millimolar dissociation constants, relies on a handful of cases in which weak encounters have experimentally been identified. These weak interactions away from the specific target binding site can lead toward a higher-affinity complex. Recently, we detected weak encounters between two paralogous phosphotransferase pathways of Escherichia coli, which regulate various metabolic processes and stress responses. In addition to encounters that are known to occur between cognate proteins, i.e., those that can exchange phosphate groups with each other, surprisingly, encounters involving noncognates were also observed. It is not clear whether these "futile" encounters have a cooperative or competitive role. Using agent-based simulations, we find that the encounter complexes can be cooperative or competitive so as to increase or lower the effective binding affinity of the specific complex under different circumstances. This finding invites further questions into how organisms might exploit such low affinities to connect their signaling components.
Collapse
Affiliation(s)
- Seyit Kale
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland; National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland.
| | - Madeleine Strickland
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Alan Peterkofsky
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jian Liu
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, John Hopkins University, Baltimore, Maryland
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland.
| |
Collapse
|
11
|
Freeman SL, Martel A, Devos JM, Basran J, Raven EL, Roberts GCK. Solution structure of the cytochrome P450 reductase-cytochrome c complex determined by neutron scattering. J Biol Chem 2018; 293:5210-5219. [PMID: 29475945 PMCID: PMC5892573 DOI: 10.1074/jbc.ra118.001941] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/20/2018] [Indexed: 01/22/2023] Open
Abstract
Electron transfer in all living organisms critically relies on formation of complexes between the proteins involved. The function of these complexes requires specificity of the interaction to allow for selective electron transfer but also a fast turnover of the complex, and they are therefore often transient in nature, making them challenging to study. Here, using small-angle neutron scattering with contrast matching with deuterated protein, we report the solution structure of the electron transfer complex between cytochrome P450 reductase (CPR) and its electron transfer partner cytochrome c This is the first reported solution structure of a complex between CPR and an electron transfer partner. The structure shows that the interprotein interface includes residues from both the FMN- and FAD-binding domains of CPR. In addition, the FMN is close to the heme of cytochrome c but distant from the FAD, indicating that domain movement is required between the electron transfer steps in the catalytic cycle of CPR. In summary, our results reveal key details of the CPR catalytic mechanism, including interactions of two domains of the reductase with cytochrome c and motions of these domains relative to one another. These findings shed light on interprotein electron transfer in this system and illustrate a powerful approach for studying solution structures of protein-protein complexes.
Collapse
Affiliation(s)
- Samuel L Freeman
- From the Departments of Chemistry and.,Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom and
| | - Anne Martel
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Juliette M Devos
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Jaswir Basran
- From the Departments of Chemistry and.,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom and.,Molecular and Cell Biology and
| | - Emma L Raven
- From the Departments of Chemistry and .,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom and
| | - Gordon C K Roberts
- Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom and .,Molecular and Cell Biology and
| |
Collapse
|
12
|
Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem Rev 2017; 117:13382-13460. [DOI: 10.1021/acs.chemrev.7b00257] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Luciana Hannibal
- Department
of Pediatrics, Universitätsklinikum Freiburg, Mathildenstrasse 1, Freiburg 79106, Germany
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María A. Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Santiago Oviedo-Rouco
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Veronica Demicheli
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Veronica Tórtora
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Florencia Tomasina
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
13
|
Hollingsworth SA, Nguyen BD, Chreifi G, Arce AP, Poulos TL. Insights into the Dynamics and Dissociation Mechanism of a Protein Redox Complex Using Molecular Dynamics. J Chem Inf Model 2017; 57:2344-2350. [PMID: 28841378 DOI: 10.1021/acs.jcim.7b00421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Leishmania major peroxidase (LmP) is structurally and functionally similar to the well-studied yeast Cytochrome c peroxidase (CCP). A recent Brownian dynamics study showed that L. major Cytochrome c (LmCytc) associates with LmP by forming an initial complex with the N-terminal helix A of LmP, followed by a movement toward the electron transfer (ET) site observed in the LmP-LmCytc crystal structure. Critical to forming the active electron transfer complex is an intermolecular Arg-Asp ion pair at the center of the interface. If the dissociation reaction is effectively the reverse of the association reaction, then rupture of the Asp-Arg ion pair should be followed by movement of LmCytc back toward LmP helix A. To test this possibility, we have performed multiple molecular dynamics (MD) simulations of the LmP-LmCytc complex. In five separate simulations, LmCytc is observed to indeed move toward helix A, and in two of the simulations, the Asp-Arg ion pair breaks, which frees LmCytc to fully associate with the LmP helix A secondary binding site. These results support the "bind and crawl" or "velcro" mechanism of association, wherein LmCytc forms a nonspecific electrostatic complex with LmP helix A, followed by a "crawl" toward the ET-active site, where the Asp-Arg ion pair holds the LmCytc in position for rapid ET. These simulations also point to Tyr134LmP as being important in the association/dissociation reactions. Experimentally mutating Tyr134 to Phe was found to decrease Km by 3.6-fold, which is consistent with its predicted role in complex formation by MD simulations.
Collapse
Affiliation(s)
- Scott A Hollingsworth
- Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697, United States
| | - Brian D Nguyen
- Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697, United States
| | - Georges Chreifi
- Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697, United States
| | - Anton P Arce
- Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697, United States
| | - Thomas L Poulos
- Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697, United States
| |
Collapse
|
14
|
Linking functions: an additional role for an intrinsically disordered linker domain in the transcriptional coactivator CBP. Sci Rep 2017; 7:4676. [PMID: 28680062 PMCID: PMC5498717 DOI: 10.1038/s41598-017-04611-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/17/2017] [Indexed: 12/25/2022] Open
Abstract
The multi-domain transcriptional coactivators CBP/p300 integrate a multitude of signaling inputs, interacting with more than 400 proteins via one or more of their globular domains. While CBP/p300 function is typically considered in terms of these structured domains, about half of the protein consists of intrinsically disordered regions (IDRs) of varying length. However, these IDRs have only been thought of as linkers that allow flexible spatial arrangement of the structured domains, but recent studies have shown that similar IDRs mediate specific and critical interactions in other proteins. To examine the roles of IDRs in CBP, we performed yeast-two-hybrid screenings of placenta and lung cancer cDNA libraries, which demonstrated that the long IDR linking the KIX domain and bromodomain of CBP (termed ID3) can potentially bind to several proteins. The RNA-binding Zinc-finger protein 106 (ZFP106) detected in both libraries was identified as a novel substrate for CBP-mediated acetylation. Nuclear magnetic resonance (NMR) spectroscopy combined with cross-linking experiments and competition-binding assays showed that the fully disordered isolated ID3 transiently interacts with an IDR of ZFP106 in a fashion that disorder of both regions is maintained. These findings demonstrate that beside the linking function, ID3 can also interact with acetylation substrates of CBP.
Collapse
|
15
|
Barman P, Faponle AS, Vardhaman AK, Angelone D, Löhr AM, Browne WR, Comba P, Sastri CV, de Visser SP. Influence of Ligand Architecture in Tuning Reaction Bifurcation Pathways for Chlorite Oxidation by Non-Heme Iron Complexes. Inorg Chem 2016; 55:10170-10181. [PMID: 27704794 DOI: 10.1021/acs.inorgchem.6b01384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction bifurcation processes are often encountered in the oxidation of substrates by enzymes and generally lead to a mixture of products. One particular bifurcation process that is common in biology relates to electron transfer versus oxygen atom transfer by high-valent iron(IV)-oxo complexes, which nature uses for the oxidation of metabolites and drugs. In biomimicry and bioremediation, an important reaction relates to the detoxification of ClOx- in water, which can lead to a mixture of products through bifurcated reactions. Herein we report the first three water-soluble non-heme iron(II) complexes that can generate chlorine dioxide from chlorite at ambient temperature and physiological pH. These complexes are highly active oxygenation oxidants and convert ClO2- into either ClO2 or ClO3¯ via high-valent iron(IV)-oxo intermediates. We characterize the short-lived iron(IV)-oxo species and establish rate constants for the bifurcation mechanism leading to ClO2 and ClO3- products. We show that the ligand architecture of the metal center plays a dominant role by lowering the reduction potential of the metal center. Our experiments are supported by computational modeling, and a predictive valence bond model highlights the various factors relating to the substrate and oxidant that determine the bifurcation pathway and explains the origins of the product distributions. Our combined kinetic, spectroscopic, and computational studies reveal the key components necessary for the future development of efficient chlorite oxidation catalysts.
Collapse
Affiliation(s)
- Prasenjit Barman
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781 039, Assam, India
| | - Abayomi S Faponle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Anil Kumar Vardhaman
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781 039, Assam, India
| | - Davide Angelone
- Stratingh Institute for Chemistry, Faculty of Mathematics and Natural Sciences, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Anna-Maria Löhr
- Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Wesley R Browne
- Stratingh Institute for Chemistry, Faculty of Mathematics and Natural Sciences, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter Comba
- Anorganisch-Chemisches Institut and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781 039, Assam, India
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
16
|
Trana EN, Nocek JM, Woude JV, Span I, Smith SM, Rosenzweig AC, Hoffman BM. Charge-Disproportionation Symmetry Breaking Creates a Heterodimeric Myoglobin Complex with Enhanced Affinity and Rapid Intracomplex Electron Transfer. J Am Chem Soc 2016; 138:12615-28. [PMID: 27646786 DOI: 10.1021/jacs.6b07672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report rapid photoinitiated intracomplex electron transfer (ET) within a "charge-disproportionated" myoglobin (Mb) dimer with greatly enhanced affinity. Two mutually supportive Brownian Dynamics (BD) interface redesign strategies, one a new "heme-filtering" approach, were employed to "break the symmetry" of a Mb homodimer by pairing Mb constructs with complementary highly positive and highly negative net surface charges, introduced through D/E → K and K → E mutations, respectively. BD simulations using a previously developed positive mutant, Mb(+6) = Mb(D44K/D60K/E85K), led to construction of the complementary negative mutant Mb(-6) = Mb(K45E, K63E, K95E). Simulations predict the pair will form a well-defined complex comprising a tight ensemble of conformations with nearly parallel hemes, at a metal-metal distance ∼18-19 Å. Upon expression and X-ray characterization of the partners, BD predictions were verified through ET photocycle measurements enabled by Zn-deuteroporphyrin substitution, forming the [ZnMb(-6), Fe(3+)Mb(+6)] complex. Triplet ET quenching shows charge disproportionation increases the binding constant by no less than ∼5 orders of magnitude relative to wild-type Mb values. All progress curves for charge separation (CS) and charge recombination (CR) are reproduced by a generalized kinetic model for the interprotein ET photocycle. The intracomplex ET rate constants for both CS and CR are increased by over 5 orders of magnitude, and their viscosity independence is indicative of true interprotein ET, rather than dynamic gating as seen in previous studies. The complex displays an unprecedented timecourse for CR of the CS intermediate I. After a laser flash, I forms through photoinduced CS, accumulates to a maximum concentration, then dies away through CR. However, before completely disappearing, I reappears without another flash and reaches a second maximum before disappearing completely.
Collapse
Affiliation(s)
- Ethan N Trana
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Judith M Nocek
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Jon Vander Woude
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Ingrid Span
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois 60208, United States
| | - Stephen M Smith
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States.,Department of Molecular Biosciences, Northwestern University , Evanston, Illinois 60208, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States.,Department of Molecular Biosciences, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Ceccon A, Marius Clore G, Tugarinov V. Towards interpretation of intermolecular paramagnetic relaxation enhancement outside the fast exchange limit. JOURNAL OF BIOMOLECULAR NMR 2016; 66:1-7. [PMID: 27558624 DOI: 10.1007/s10858-016-0053-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
In an exchanging system between major and minor species, the transverse paramagnetic relaxation enhancement rate observed on the resonances of the major species (Γ 2 (app) ) is dependent upon the exchange regime between the species. Quantitative analysis of PRE data in such systems typically assumes that the overall exchange rate k ex between the species is fast on the PRE time scale (k ex ≫ Γ2). Recently, we have characterized the kinetics of binding of the model protein ubiquitin to large (LUV) and small (SUV) unilamellar lipid-based nanoparticles or liposomes (Ceccon A, Tugarinov V, Bax A, Clore GM (2016). J Am Chem Soc 138:5789-5792). Building upon these results and taking advantage of a strong paramagnetic agent with an isotropic g-tensor, Gd(3+), we were able to measure intermolecular methyl carbon and proton PREs between paramagnetically-tagged liposomes and ubiquitin. In the limit of fast exchange (k ex ≫ Γ2) the ratio of the apparent proton to carbon methyl PREs, ((1)Hm-Γ 2 (app) )/((13)Cm-Γ 2 (app) ), is equal to the square of the ratio of the gyromagnetic ratios of the two nuclei, (γΗ/γC)(2). However, outside the fast exchange regime, under intermediate exchange conditions (e.g. when Γ2 is comparable in magnitude to k ex) the ((1)Hm-Γ 2 (app) )/((13)Cm-Γ 2 (app) ) ratio provides a reliable measure of the 'true' methyl PREs.
Collapse
Affiliation(s)
- Alberto Ceccon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| | - Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
18
|
Slocik JM, Kuang Z, Knecht MR, Naik RR. Optical Modulation of Azobenzene-Modified Peptide for Gold Surface Binding. Chemphyschem 2016; 17:3252-3259. [PMID: 27526644 DOI: 10.1002/cphc.201600670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 11/08/2022]
Abstract
The ability to precisely and remotely modulate reversible binding interactions between biomolecules and abiotic surfaces is appealing for many applications. To achieve this level of control, an azobenzene-based optical switch is added to nanoparticle-binding peptides in order to switch peptide conformation and attenuate binding affinity to gold surfaces via binding and dissociation of peptides.
Collapse
Affiliation(s)
- Joseph M Slocik
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, OH, 45433, USA
| | - Zhifeng Kuang
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, OH, 45433, USA
| | - Marc R Knecht
- Department of Chemistry, Miami University, Miami, FL, 33146, USA
| | - Rajesh R Naik
- 711th Human Performance Wing, Air Force Research Laboratory, Dayton, OH, 45433, USA.
| |
Collapse
|
19
|
Sato W, Hitaoka S, Inoue K, Imai M, Saio T, Uchida T, Shinzawa-Itoh K, Yoshikawa S, Yoshizawa K, Ishimori K. Energetic Mechanism of Cytochrome c-Cytochrome c Oxidase Electron Transfer Complex Formation under Turnover Conditions Revealed by Mutational Effects and Docking Simulation. J Biol Chem 2016; 291:15320-31. [PMID: 27226541 DOI: 10.1074/jbc.m115.708065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 11/06/2022] Open
Abstract
Based on the mutational effects on the steady-state kinetics of the electron transfer reaction and our NMR analysis of the interaction site (Sakamoto, K., Kamiya, M., Imai, M., Shinzawa-Itoh, K., Uchida, T., Kawano, K., Yoshikawa, S., and Ishimori, K. (2011) Proc. Natl. Acad. Sci. U.S.A. 108, 12271-12276), we determined the structure of the electron transfer complex between cytochrome c (Cyt c) and cytochrome c oxidase (CcO) under turnover conditions and energetically characterized the interactions essential for complex formation. The complex structures predicted by the protein docking simulation were computationally selected and validated by the experimental kinetic data for mutant Cyt c in the electron transfer reaction to CcO. The interaction analysis using the selected Cyt c-CcO complex structure revealed the electrostatic and hydrophobic contributions of each amino acid residue to the free energy required for complex formation. Several charged residues showed large unfavorable (desolvation) electrostatic interactions that were almost cancelled out by large favorable (Columbic) electrostatic interactions but resulted in the destabilization of the complex. The residual destabilizing free energy is compensated by the van der Waals interactions mediated by hydrophobic amino acid residues to give the stabilized complex. Thus, hydrophobic interactions are the primary factors that promote complex formation between Cyt c and CcO under turnover conditions, whereas the change in the electrostatic destabilization free energy provides the variance of the binding free energy in the mutants. The distribution of favorable and unfavorable electrostatic interactions in the interaction site determines the orientation of the binding of Cyt c on CcO.
Collapse
Affiliation(s)
- Wataru Sato
- From the Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628
| | - Seiji Hitaoka
- the Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0315
| | - Kaoru Inoue
- the Division of Chemistry, Graduate School of Science, and
| | - Mizue Imai
- From the Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628
| | - Tomohide Saio
- From the Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, and
| | - Takeshi Uchida
- From the Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, and
| | - Kyoko Shinzawa-Itoh
- the Department of Life Science, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Shinya Yoshikawa
- the Department of Life Science, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Kazunari Yoshizawa
- the Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0315
| | - Koichiro Ishimori
- From the Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, and
| |
Collapse
|
20
|
Kollipara S, Tatireddy S, Pathirathne T, Rathnayake LK, Northrup SH. Contribution of Electrostatics to the Kinetics of Electron Transfer from NADH-Cytochrome b5 Reductase to Fe(III)-Cytochrome b5. J Phys Chem B 2016; 120:8193-207. [PMID: 27059440 DOI: 10.1021/acs.jpcb.6b01726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Brownian dynamics (BD) simulations provide here a theoretical atomic-level treatment of the reduction of human ferric cytochrome b5 (cyt b5) by NADH-cytochrome b5 reductaste (cyt b5r) and several of its mutants. BD is used to calculate the second-order rate constant of electron transfer (ET) between the proteins for direct correlation with experiments. Interestingly, the inclusion of electrostatic forces dramatically increases the reaction rate of the native proteins despite the overall negative charge of both proteins. The role played by electrostatic charge distribution in stabilizing the ET complexes and the role of mutations of several amino acid residues in stabilizing or destabilizing the complexes are analyzed. The complex with the shortest ET reaction distance (d = 6.58 Å) from rigid body BD is further subjected to 1 ns of molecular dynamics (MD) in a periodic box of TIP3P water to produce a more stable complex allowed by flexibility and with a shorter average reaction distance d = 6.02 Å. We predict a docking model in which the following ion-ion interactions are dominant (cyt b5r/cyt b5): Lys162-Heme O1D/Lys163-Asp64/Arg91-Heme O1A/Lys125-Asp70.
Collapse
Affiliation(s)
- Sireesha Kollipara
- Department of Chemistry, Tennessee Technological University , Cookeville, Tennessee 38505, United States
| | - Shivakishore Tatireddy
- Department of Chemistry, Tennessee Technological University , Cookeville, Tennessee 38505, United States
| | - Thusitha Pathirathne
- Department of Chemistry, Tennessee Technological University , Cookeville, Tennessee 38505, United States
| | - Lasantha K Rathnayake
- Department of Chemistry, Tennessee Technological University , Cookeville, Tennessee 38505, United States
| | - Scott H Northrup
- Department of Chemistry, Tennessee Technological University , Cookeville, Tennessee 38505, United States
| |
Collapse
|