1
|
Jammee R, Kolganov A, Groves MC, Pidko EA, Sydora OL, Conley MP. C-H Bond Activation by Sulfated Zirconium Oxide is Mediated by a Sulfur-Centered Lewis Superacid. Angew Chem Int Ed Engl 2025; 64:e202421699. [PMID: 39715725 DOI: 10.1002/anie.202421699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 12/25/2024]
Abstract
Sulfated zirconium oxide (SZO) catalyzes the hydrogenolysis of isotactic polypropylene (iPP, Mw=13.3 kDa, Đ=2.4, =94 %) or high-density polyethylene (HDPE, Mn=2.5 kDa, Đ=3.6) to branched alkane products. We propose that this reactivity is driven by the pyrosulfate sites SZO, which open under mild conditions to transiently form adsorbed SO3 and sulfate groups. This adsorbed SO3 is a very strong Lewis acid that binds 15N-pyridine or triethylphosphineoxide (TEPO) (ΔEads>-39 kcal mol-1), reacts with Ph3CH to form Ph3C+, and mediates H/D exchange in dihydroanthracene-d4. DFT studies show that pyrosulfate sites open with a modest 26.1 kcal mol-1 barrier to form the adsorbed SO3 and sulfate in the presence of a tetramer of propylene. Hydride abstraction from the tertiary C-H in this model is exothermic and subsequent β-scission forms cleaved products. Analysis of the energetics provided here brackets the hydride ion affinity (HIA) of the adsorbed SO3 between 226.2 to 237.9 kcal mol-1, among largest values reported for a formally neutral Lewis acid. This study explains how SZO, a classic heterogeneous catalyst, can form carbocations by a redox neutral hydride abstraction reaction by very strong Lewis sites.
Collapse
Affiliation(s)
- Ratchawi Jammee
- Department of chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Alexander Kolganov
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Marc C Groves
- Department of chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Evgeny A Pidko
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Orson L Sydora
- Research and Technology, Chevron Phillips Chemical Company LP, Kingwood, Texas, USA
| | - Matthew P Conley
- Department of chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
2
|
Alrais L, Dutta I, Hengne A, Chakraborty P, Abou-Hamad E, Xi S, Rahman MM, Zhang J, Chen BWJ, Basset JM, Huang KW. A picolinamide iridium catalyst immobilized on an aluminum-hydride anchor for the selective dehydrogenation of neat formic acid. Dalton Trans 2025. [PMID: 40013346 DOI: 10.1039/d4dt03521f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The dehydrogenation of formic acid can provide an efficient pathway for hydrogen generation in the presence of a suitable catalyst. Homogeneous catalysts have been extensively studied and utilized for highly active and selective processes compared to conventional heterogeneous catalysis, which often shows lower reactivity and selectivity. However, the latter is preferred for practical applications, considering its easy separation and recyclability. By incorporating a homogeneous organometallic complex on an appropriate support, the unique features of both catalysts can be combined and utilized effectively. Herein, we investigate the immobilization of an iridium picolinamide complex (1) supported on 3D fibrous modified silica that demonstrates high accessibility. The support involves a tetracoordinate aluminum hydride site featuring a strong Lewis acidic nature. A study of the interaction and coordination sites around the surface fragment was conducted via various techniques, including elemental analysis, FT-IR, solid-state NMR, XAS, and first-principles calculations, which provided informative data. We explored the use of solid additives in a solvent-free reaction medium and avoided utilizing volatile bases to achieve process feasibility with a high TOF of 40 000 h-1.
Collapse
Affiliation(s)
- Lujain Alrais
- Center for Renewable Energy and Storage Technologies (CREST) and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Indranil Dutta
- Center for Renewable Energy and Storage Technologies (CREST) and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Amol Hengne
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Priyanka Chakraborty
- Center for Renewable Energy and Storage Technologies (CREST) and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Edy Abou-Hamad
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Mohammad Misbahur Rahman
- Center for Renewable Energy and Storage Technologies (CREST) and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Jia Zhang
- Institute of High-Performance Computing (IHPC), Agency for Science, Technology, and Research (A*STAR), Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore.
| | - Benjamin W J Chen
- Institute of High-Performance Computing (IHPC), Agency for Science, Technology, and Research (A*STAR), Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore.
| | - Jean-Marie Basset
- Center for Renewable Energy and Storage Technologies (CREST) and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
- Ecole National Supérieure de Chimie de Paris (ENSCP), 75231 Cedex 05 Paris, France
| | - Kuo-Wei Huang
- Center for Renewable Energy and Storage Technologies (CREST) and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| |
Collapse
|
3
|
Cai Y, Rao L, Wang Y, Chang F, He T, Zhao Y, Yu J, Wen H, Hao J, Wu A, Guan BT, Guo J, Chen P. Fabrication of atomically dispersed barium hydride catalysts for the synthesis of deuterated alkylarenes. Nat Commun 2025; 16:1868. [PMID: 39984486 PMCID: PMC11845449 DOI: 10.1038/s41467-025-57207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
Marvelous natures of alkali and alkaline earth metal hydrides in catalyzing chemical transformations are being discovered. However, the synthesis of (sub)nanostructured metal hydrides, critically important to enhance their catalytic performances, is yet a very challenging task. Herein, we develop a highly reactive heterogeneous catalyst comprising atomically dispersed barium hydrides on MgO support with an ultrahigh barium loading of up to 20 wt% via a convenient preparation method involving liquid-ammonia impregnation followed by hydrogenation. The surface barium hydride species not only exhibits extraordinary reactivity toward H2 activation at room temperature, but also enables the highly efficient hydrogen isotope exchange (HIE) of both sp3 C-H and sp2 C-H bonds in nonactivated alkylarenes using D2 as the deuterium source under mild conditions. The deuteration rate at benzylic site is two orders of magnitude higher than that of bulk BaH2. This study offers an alternative synthetic route for the manufacture of deuterium-labeled compounds using a heterogenous transition metal-free hydride catalyst beyond the widely studied molecular metal complexe catalysts.
Collapse
Affiliation(s)
- Yongli Cai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Li Rao
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China
| | - Yun Wang
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Fei Chang
- Yongjiang Laboratory, Ningbo, China.
| | - Teng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yang Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jiafeng Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hong Wen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jingai Hao
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Anan Wu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Bing-Tao Guan
- Department of Chemistry, Fudan University, Shanghai, China
| | - Jianping Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Ping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
4
|
Wang Y, Li C, Tan C, Chen C. Integrated Ziegler-Natta/Brookhart-Ni Catalysts for the Synthesis of Sutured Polar High-Impact Polypropylenes. Angew Chem Int Ed Engl 2025; 64:e202417849. [PMID: 39487628 DOI: 10.1002/anie.202417849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
The direct synthesis of polar high-impact polypropylenes using industrially-preferred heterogeneous catalysts is challenging due to the poisoning of polar functional groups towards metal center and the high stereo-selectivity requirement. In this work, dual-site catalysts combining Ziegler-Natta and Brookhart-Ni catalysts were used to produce polar polyolefin ionomers, followed by polar high-impact polypropylenes containing isotactic polypropylene and branched polyethylene as toughening agents. Three combination modes between these catalysts were investigated, including mixed, core-shell, and integrated types. The integrated dual-site catalyst achieved the optimal material properties because the polyolefin ionomer acted as a suture molecule that stitched different components into a whole network. This produced sutured polar high-impact polypropylenes with excellent mechanical properties and compatibility with polar substances. The restraining effect of the suture molecules greatly reduced the release of microplastic particles after aging. Moreover, the obtained polar high-impact polypropylene can serve as an efficient compatibilizer to recycle polyethylene/polypropylene mixed-waste plastics. This work provides an appealing and potentially practical strategy to upgrade the widely used polypropylenes and to alleviate the ever-growing plastic pollution issue.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, 230601, China
| | - Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, 230601, China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
5
|
Atterberry BA, Wimmer EJ, Klostermann S, Frey W, Kästner J, Estes DP, Rossini AJ. Structural characterization of surface immobilized platinum hydrides by sensitivity-enhanced 195Pt solid state NMR spectroscopy and DFT calculations. Chem Sci 2025; 16:1271-1287. [PMID: 39677932 PMCID: PMC11638849 DOI: 10.1039/d4sc06450j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Supported single-site platinum hydride compounds are promising heterogeneous catalysts for organic transformations. Few methods exist to describe the structures of single-site Pt catalysts with atomic resolution because of their disordered structures and low Pt loadings. Here, we study the compounds formed when bis(tri-tert-butylphosphino)platinum, Pt(P t Bu3)2, is supported on dehydroxylated SiO2 or SiO2-Al2O3. First, we obtain magic angle spinning (MAS) 1H, 31P and 195Pt ssNMR spectra of four model Pt phosphine compounds with oxidation states of 0 or +2 and coordination numbers between 2 and 4. These compounds are analogs of potential structures present in the supported compounds. MAS 195Pt ssNMR spectra were obtained using 31P{195Pt} sideband selective J-resolved and J-HMQC experiments. The measured 1H and 31P chemical shifts, 31P-195Pt J-couplings and 195Pt chemical shift (CS) tensors are shown to be diagnostic of oxidation state and coordination number. Room temperature 1H ssNMR spectra of Pt(P t Bu3)2 supported on SiO2 or SiO2-Al2O3 show diagnostic hydride NMR signals, suggesting that Pt(P t Bu3)2 undergoes oxidative addition, resulting in surface hydrides and Pt-oxygen bonds to the support surface. MAS dynamic nuclear polarization (DNP) enables 31P{195Pt} correlation NMR experiments on the supported compounds. These experiments enable the measurement of the 31P-195Pt J-coupling constants and 195Pt CS tensors. Combined NMR and DFT analyses suggest that the primary surface platinum species are [HPt(P t Bu3)2OSi] on SiO2 and [HPt(P t Bu3)2]+[Si-O--Al] on SiO2-Al2O3. The Pt-oxygen bond length is dependent on the support and estimated as 2.1-2.3 Å and 2.7-3.0 Å for SiO2 and SiO2-Al2O3, respectively.
Collapse
Affiliation(s)
- Benjamin A Atterberry
- Iowa State University, Department of Chemistry Ames IA 50011 USA
- US DOE Ames National Laboratory Ames Iowa 50011 USA
| | - Erik J Wimmer
- University of Stuttgart, Department of Chemistry Stuttgart Baden-Württemberg 70569 Germany
| | - Sina Klostermann
- University of Stuttgart, Department of Chemistry Stuttgart Baden-Württemberg 70569 Germany
| | - Wolfgang Frey
- University of Stuttgart, Department of Chemistry Stuttgart Baden-Württemberg 70569 Germany
| | - Johannes Kästner
- University of Stuttgart, Department of Chemistry Stuttgart Baden-Württemberg 70569 Germany
| | - Deven P Estes
- University of Stuttgart, Department of Chemistry Stuttgart Baden-Württemberg 70569 Germany
| | - Aaron J Rossini
- Iowa State University, Department of Chemistry Ames IA 50011 USA
- US DOE Ames National Laboratory Ames Iowa 50011 USA
| |
Collapse
|
6
|
Song K, Jing H, Yang B, Shao J, Tao Y, Zhang W. Enhancing Oxygen Reduction Reaction of Single-Atom Catalysts by Structure Tuning. CHEMSUSCHEM 2025; 18:e202401713. [PMID: 39187438 DOI: 10.1002/cssc.202401713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Deciphering the fine structure has always been a crucial approach to unlocking the distinct advantages of high activity, selectivity, and stability in single-atom catalysts (SACs). However, the complex system and unclear catalytic mechanism have obscured the significance of exploring the fine structure. Therefore, we endeavored to develop a three-component strategy to enhance oxygen reduction reaction (ORR), delving deep into the profound implications of the fine structure, focusing on central atoms, coordinating atoms, and environmental atoms. Firstly, the mechanism by which the chemical state and element type of central atoms influence catalytic performance is discussed. Secondly, the significance of coordinating atoms in SACs is analyzed, considering both the number and type. Lastly, the impact of environmental atoms in SACs is reviewed, encompassing existence state and atomic structure. Thorough analysis and summarization of how the fine structure of SACs influences the ORR have the potential to offer valuable insights for the accurate design and construction of SACs.
Collapse
Affiliation(s)
- Kexin Song
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Haifeng Jing
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Binbin Yang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Jing Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Youkun Tao
- College of Science, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Wei Zhang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| |
Collapse
|
7
|
Ma M, Yuan W, Zhong W, Cheng Y, Yao H, Zhao Y. In-situ activation of biomimetic single-site bioorthogonal nanozyme for tumor-specific combination therapy. Biomaterials 2025; 312:122755. [PMID: 39151270 DOI: 10.1016/j.biomaterials.2024.122755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Copper-catalyzed click chemistry offers creative strategies for activation of therapeutics without disrupting biological processes. Despite tremendous efforts, current copper catalysts face fundamental challenges in achieving high efficiency, atom economy, and tissue-specific selectivity. Herein, we develop a facile "mix-and-match synthetic strategy" to fabricate a biomimetic single-site copper-bipyridine-based cerium metal-organic framework (Cu/Ce-MOF@M) for efficient and tumor cell-specific bioorthogonal catalysis. This elegant methodology achieves isolated single-Cu-site within the MOF architecture, resulting in exceptionally high catalytic performance. Cu/Ce-MOF@M favors a 32.1-fold higher catalytic activity than the widely used MOF-supported copper nanoparticles at single-particle level, as first evidenced by single-molecule fluorescence microscopy. Furthermore, with cancer cell-membrane camouflage, Cu/Ce-MOF@M demonstrates preferential tropism for its parent cells. Simultaneously, the single-site CuII species within Cu/Ce-MOF@M are reduced by upregulated glutathione in cancerous cells to CuI for catalyzing the click reaction, enabling homotypic cancer cell-activated in situ drug synthesis. Additionally, Cu/Ce-MOF@M exhibits oxidase and peroxidase mimicking activities, further enhancing catalytic cancer therapy. This study guides the reasonable design of highly active heterogeneous transition-metal catalysts for targeted bioorthogonal reactions.
Collapse
Affiliation(s)
- Mengmeng Ma
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wei Yuan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yu Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Haochen Yao
- Hepatobiliary and Pancreatic Surgery Department, General Surgery Center, First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
8
|
Clausen KU, Meng X, Reisig K, Näther C, Strunskus T, Berndt R, Tuczek F. Monolayers of a thiacalix[3]pyridine-supported molybdenum(0) tricarbonyl complex on Au(111): characterisation with surface spectroscopy and scanning tunneling microscopy. Dalton Trans 2024; 53:18304-18312. [PMID: 39450532 DOI: 10.1039/d4dt02521k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Deposition of dome-shaped metal-organic complexes on metallic surfaces to produce well-defined single site catalysts is a novel approach combining aspects of homogeneous and heterogeneous catalysis. In order to investigate the bonding of small molecules to such systems, a molybdenum(0) tricarbonyl complex supported by a thiacalix[3]pyridine is synthesized and deposited on Au(111) and Ag(111) surfaces by vacuum evaporation. The resulting mono- and submonolayers are investigated with surface spectroscopy and STM. All of these methods indicate a parallel orientation of the molybdenum complex with respect to the surface. The vibrational properties and frequency shifts of the adsorbed complexes with respect to the bulk are evaluated with the help of conventional IR and IRRA spectroscopy, coupled to DFT calculations. Compared to a similar Mo(0) tricarbonyl complex supported by an azacalixpyridine ligand, the title complex exhibits a higher stability in the bulk and adsorbed to surfaces which goes along with a lower reactivity towards oxygen.
Collapse
Affiliation(s)
- Kai Uwe Clausen
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany.
| | - Xiangzhi Meng
- Institute of Experimental and Applied Physics, Christian-Albrechts-University of Kiel, Leibnizstraße 11-19, 24118 Kiel, Germany
| | - Katrin Reisig
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany.
| | - Christian Näther
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany.
| | - Thomas Strunskus
- Department of Material Science, Christian-Albrechts-University of Kiel, Kaiserstraße 1, 24118 Kiel, Germany
| | - Richard Berndt
- Institute of Experimental and Applied Physics, Christian-Albrechts-University of Kiel, Leibnizstraße 11-19, 24118 Kiel, Germany
| | - Felix Tuczek
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany.
| |
Collapse
|
9
|
Agarwal A, Mais M, Perras FA. Selective 17O-labeling of silica. Chem Commun (Camb) 2024; 60:12189-12192. [PMID: 39344939 DOI: 10.1039/d4cc04584j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The addition of 17OH2 to silica at room temperature leads to spontaneous hydroxyl oxygen exchange and the selective isotopic enrichment of silanols, as observed using in and ex situ17O NMR. The discovery that silanols are labile alters our understanding of the chemistry of silica surfaces.
Collapse
Affiliation(s)
- Amil Agarwal
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, IA, USA.
| | - Marco Mais
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, IA, USA.
| | - Frédéric A Perras
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, IA, USA.
- Department of Chemistry, Iowa State University, Ames, IA, USA
| |
Collapse
|
10
|
Zhao Q, Zhao X, Liu Z, Ge Y, Ruan J, Cai H, Zhang S, Ye C, Xiong Y, Chen W, Meng G, Liu Z, Zhang J. Constructing Pd and Cu Crowding Single Atoms by Protein Confinement to Promote Sonogashira Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402971. [PMID: 39011789 DOI: 10.1002/adma.202402971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/23/2024] [Indexed: 07/17/2024]
Abstract
For multicenter-catalyzed reactions, it is important to accurately construct heterogeneous catalysts containing multiple active centers with high activity and low cost, which is more challenging compared to homogeneous catalysts because of the low activity and spatial confinement of active centers in the loaded state. Herein, a convenient protein confinement strategy is reported to locate Pd and Cu single atoms in crowding state on carbon coated alumina for promoting Sonogashira reaction, the most powerful method for constructing the acetylenic moiety in molecules. The single-atomic Pd and Cu centers take advantage in not only the maximized atomic utilization for low cost, but also the much-enhanced performance by facilitating the activation of aryl halides and alkynes. Their locally crowded dispersion brings them closer to each other, which facilitates the transmetallation process of acetylide intermediates between them. Thus, the Sonogashira reaction is drove smoothly by the obtained catalyst with a turnover frequency value of 313 h-1, much more efficiently than that by commercial Pd/C and CuI catalyst, conventional Pd and Cu nanocatalysts, and mixed Pd and Cu single-atom catalyst. The obtained catalyst also exhibits the outstanding durability in the recycling test.
Collapse
Affiliation(s)
- Qinying Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Xudong Zhao
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
| | - Zhiyi Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Yi Ge
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jiaxiong Ruan
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Hongyi Cai
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Shasha Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Chenliang Ye
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, China
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Zhiliang Liu
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
| | - Jian Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
11
|
Sun J, Dong J, Gao L, Zhao YQ, Moon H, Scott SL. Catalytic Upcycling of Polyolefins. Chem Rev 2024; 124:9457-9579. [PMID: 39151127 PMCID: PMC11363024 DOI: 10.1021/acs.chemrev.3c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 08/18/2024]
Abstract
The large production volumes of commodity polyolefins (specifically, polyethylene, polypropylene, polystyrene, and poly(vinyl chloride)), in conjunction with their low unit values and multitude of short-term uses, have resulted in a significant and pressing waste management challenge. Only a small fraction of these polyolefins is currently mechanically recycled, with the rest being incinerated, accumulating in landfills, or leaking into the natural environment. Since polyolefins are energy-rich materials, there is considerable interest in recouping some of their chemical value while simultaneously motivating more responsible end-of-life management. An emerging strategy is catalytic depolymerization, in which a portion of the C-C bonds in the polyolefin backbone is broken with the assistance of a catalyst and, in some cases, additional small molecule reagents. When the products are small molecules or materials with higher value in their own right, or as chemical feedstocks, the process is called upcycling. This review summarizes recent progress for four major catalytic upcycling strategies: hydrogenolysis, (hydro)cracking, tandem processes involving metathesis, and selective oxidation. Key considerations include macromolecular reaction mechanisms relative to small molecule mechanisms, catalyst design for macromolecular transformations, and the effect of process conditions on product selectivity. Metrics for describing polyolefin upcycling are critically evaluated, and an outlook for future advances is described.
Collapse
Affiliation(s)
- Jiakai Sun
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
| | - Jinhu Dong
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Lijun Gao
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Yu-Quan Zhao
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
| | - Hyunjin Moon
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Susannah L. Scott
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| |
Collapse
|
12
|
Wyss V, Dinu IA, Marot L, Palivan CG, Delley MF. Thermocatalytic epoxidation by cobalt sulfide inspired by the material's electrocatalytic activity for oxygen evolution reaction. Catal Sci Technol 2024; 14:4550-4565. [PMID: 39139589 PMCID: PMC11318377 DOI: 10.1039/d4cy00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
New discoveries in catalysis by earth-abundant materials can be guided by leveraging knowledge across two sub-disciplines of heterogeneous catalysis: electrocatalysis and thermocatalysis. Cobalt sulfide has been reported to be a highly active electrocatalyst for the oxygen evolution reaction (OER). Under these oxidative conditions, cobalt sulfide forms oxidized surfaces that outperform directly prepared cobalt oxide in OER catalysis. We postulated that the catalytic activity of oxidized cobalt sulfide for OER could reflect a more general ability to catalyze O-transfer reactions. Herein, we show that cobalt sulfide (CoS x ) indeed catalyzes the epoxidation of cyclooctene, a thermal O-transfer reaction. Similarly to OER, the surface-oxidized CoS x formed under reaction conditions outperformed the directly prepared cobalt oxide, hydroxide, and oxyhydroxide for epoxidation catalysis. Another notable phenomenological parallel to OER was revealed by the electron paramagnetic resonance (EPR) analysis of all spent Co-based catalysts that showed significant structural changes and the formation of paramagnetic Co(ii) and Co(iv) species. Mechanistic investigations suggest that a higher density of Co(ii) and/or an easier formation of high-valent Co species in the case of surface-oxidized cobalt sulfide is responsible for its high activity as an epoxidation catalyst. Our results provide important insight into the surface chemistry of Co-based catalysts and show the potential of oxidized CoS x as an earth-abundant catalyst for O-transfer reactivity beyond OER. This work highlights the utility of bridging electrocatalysis and thermocatalysis for the development of more sustainable chemical processes.
Collapse
Affiliation(s)
- Vanessa Wyss
- Department of Chemistry, University of Basel 4058 Basel Switzerland
| | | | - Laurent Marot
- Department of Physics, University of Basel 4056 Basel Switzerland
| | | | | |
Collapse
|
13
|
Yang Y, Miao C, Wang R, Zhang R, Li X, Wang J, Wang X, Yao J. Advances in morphology-controlled alumina and its supported Pd catalysts: synthesis and applications. Chem Soc Rev 2024; 53:5014-5053. [PMID: 38600823 DOI: 10.1039/d3cs00776f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Alumina materials, as one of the cornerstones of the modern chemical industry, possess physical and chemical properties that include excellent mechanical strength and structure stability, which also make them highly suitable as catalyst supports. Alumina-supported Pd-based catalysts with the advantages of exceptional catalytic performance, flexible regulated surface metal/acid sites, and good regeneration ability have been widely used in many traditional chemical industry fields and have also shown great application prospects in emerging fields. This review aims to provide an overview of the recent advances in alumina and its supported Pd-based catalysts. Specifically, the synthesis strategies, morphology transformation mechanisms, and structural properties of alumina with various morphologies are comprehensively summarized and discussed in-depth. Then, the preparation approaches of Pd/Al2O3 catalysts (impregnation, precipitation, and other emerging methods), as well as the metal-support interactions (MSIs), are revisited. Moreover, Some promising applications have been chosen as representative reactions in fine chemicals, environmental purification, and sustainable development fields to highlight the universal functionality of the alumina-supported Pd-based catalysts. The role of the Pd species, alumina support, promoters, and metal-support interactions in the enhancement of catalytic performance are also discussed. Finally, some challenges and upcoming opportunities in the academic and industrial application of the alumina and its supported Pd-based are presented and put forward.
Collapse
Affiliation(s)
- Yanpeng Yang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Chenglin Miao
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Ruoyu Wang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Rongxin Zhang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Xiaoyu Li
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Jieguang Wang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Xi Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 51031, P. R. China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China.
| |
Collapse
|
14
|
Dombrowski JP, Kalendra V, Ziegler MS, Lakshmi KV, Bell AT, Tilley TD. M-Ge-Si thermolytic molecular precursors and models for germanium-doped transition metal sites on silica. Dalton Trans 2024; 53:7340-7349. [PMID: 38602311 DOI: 10.1039/d4dt00644e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The synthesis, thermolysis, and surface organometallic chemistry of thermolytic molecular precursors based on a new germanosilicate ligand platform, -OGe[OSi(OtBu)3]3, is described. Use of this ligand is demonstrated with preparation of complexes containing the first-row transition metals Cr, Mn, and Fe. The thermolysis and grafting behavior of the synthesized complexes, Fe{OGe[OSi(OtBu)3]3}2 (FeGe), Mn{OGe[OSi(OtBu)3]3}2(THF)2 (MnGe) and Cr{OGe[OSi(OtBu)3]3}2(THF)2 (CrGe), was evaluated using a combination of thermogravimetric analysis; nuclear magnetic resonance (NMR), ultraviolet-visible (UV-Vis), and electron paramagnetic resonance (EPR) spectroscopies; and single-crystal X-ray diffraction (XRD). Grafting of the precursors onto SBA-15 mesoporous silica and subsequent calcination in air led to substantial changes in transition metal coordination environments and oxidation states, the implications of which are discussed in the context of low-coordinate and low oxidation state thermolytic molecular precursors.
Collapse
Affiliation(s)
- James P Dombrowski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - Vidmantas Kalendra
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Micah S Ziegler
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Alexis T Bell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 201 Gilman Hall, Berkeley, CA, USA
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| |
Collapse
|
15
|
Tangyen N, Natongchai W, Del Gobbo S, D’Elia V. Revisiting the Potential of Group VI Inorganic Precatalysts for the Ethenolysis of Fatty Acids through a Mechanochemical Approach. ACS OMEGA 2024; 9:19712-19722. [PMID: 38708207 PMCID: PMC11064009 DOI: 10.1021/acsomega.4c02190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
The utilization of biobased feedstocks to prepare useful compounds is a pivotal trend in current chemical research. Among a varied portfolio of naturally available starting materials, fatty acids are abundant, versatile substrates with multiple applications. In this context, the ethenolysis of unsaturated fatty acid esters such as methyl oleate is an atom-economical way to prepare functional C10 olefins with a biobased footprint. Despite the existence of a variety of metathesis catalysts for the latter process, there is a lack of readily available, efficient, and inexpensive catalytic systems based on earth-abundant metals (Mo, W) whose preparation does not require sophisticated syntheses and manipulations. Here, a systematic exploration of homogeneous and heterogeneous inorganic Mo, W (oxy)halides shows that MoOCl4, while inactive as a homogeneous species, forms active and selective silica-supported ethenolysis precatalysts able to reach equilibrium conversion of methyl oleate within a few minutes upon activation with SnMe4. Such heterogeneous MoOCl4-based precatalysts were easily accessed through mechanochemical solvent-free procedures and found to contain, upon characterization by elemental analysis and Raman spectroscopy, isolated (≡SiO)Mo(=O)Cl3 units or polymeric silica-supported [-O(≡SiO)nMoCl4-nO-]m (n = 1, 2) complexes depending on the molybdenum loading. The former isolated species exhibited a higher catalytic performance. The developed heterogeneous precatalysts could be applied to the ethenolysis of various substrates, including polyunsaturated fatty acid esters and industrial fatty acid methyl ester (FAME) mixtures from palm oil transesterification.
Collapse
Affiliation(s)
| | | | | | - Valerio D’Elia
- Department of Materials Science
and Engineering, VISTEC Advanced Laboratory for Environment-Related
Inorganic and Organic Syntheses, Vidyasirimedhi
Institute of Science and Technology (VISTEC), Payupnai, Wang Chan, 21210 Rayong, Thailand
| |
Collapse
|
16
|
Clausen KU, Schlimm A, Bedbur K, Näther C, Strunskus T, Fu L, Gruber M, Berndt R, Tuczek F. Molybdenum(0)-Tricarbonyl Complex Supported by an Azacalix-pyridine Ligand: Synthesis, Characterization, Surface Deposition and Conversion to a Molybdenum(VI)-Trioxo Complex with O 2. Chemistry 2024; 30:e202303912. [PMID: 38319524 DOI: 10.1002/chem.202303912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
Adsorption of metal-organic complexes on metallic surfaces to produce well-defined single site catalysts is a novel approach combining the advantages of homogeneous and heterogeneous catalysis. To avoid the "surface trans-effect" a dome-shaped molybdenum(0) tricarbonyl complex supported by an tolylazacalix[3](2,6)pyridine ligand is synthesized. This vacuum-evaporable complex both activates CO and reacts with molecular oxygen (O2) to form a Mo(VI) trioxo complex which in turn is capable of catalytically mediating oxygen transfer. The molybdenum tricarbonyl- and trioxo complexes are investigated in the solid state, in homogeneous solution and on noble metal surfaces (Cu, Au) employing a range of spectroscopic and analytical methods.
Collapse
Affiliation(s)
- Kai Uwe Clausen
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth Straße 2, 24118, Kiel, Germany
| | - Alexander Schlimm
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth Straße 2, 24118, Kiel, Germany
| | - Katja Bedbur
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth Straße 2, 24118, Kiel, Germany
| | - Christian Näther
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth Straße 2, 24118, Kiel, Germany
| | - Thomas Strunskus
- Department of Material Science, Christian-Albrechts-University of Kiel, Kaiserstraße 1, 24143, Kiel, Germany
| | - Ling Fu
- Institute of Experimental and Applied Physics, Christian-Albrechts-University of Kiel, Leibnizstraße 11-19, 24118, Kiel, Germany
| | - Manuel Gruber
- Faculty of Physics, University of Duisburg-Essen, Lotharstr. 1, 47057, Duisburg, Germany
| | - Richard Berndt
- Institute of Experimental and Applied Physics, Christian-Albrechts-University of Kiel, Leibnizstraße 11-19, 24118, Kiel, Germany
| | - Felix Tuczek
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth Straße 2, 24118, Kiel, Germany
| |
Collapse
|
17
|
Hou Z, Jena R, McDaniel TJ, Billow BS, Lee S, Barr HI, Odom AL. Modeling Complex Ligands for High Oxidation State Catalysis: Titanium Hydroamination with Unsymmetrical Ligands. ACS Catal 2024; 14:5531-5538. [PMID: 38660613 PMCID: PMC11036360 DOI: 10.1021/acscatal.3c05658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
A method for modeling high oxidation state catalysts is used on precatalysts with unsymmetrical and symmetrical bidentate ligands to get a more detailed understanding of how changes to ancillary ligands affect the hydroamination of alkynes catalyzed by titanium. To model the electronic donor ability, the ligand donor parameter (LDP) was used, and to model the steric effects, percent buried volume (% Vbur) was employed. For the modeling study, 7 previously unpublished unsymmetrical Ti(XX')(NMe2)2 precatalysts were prepared, where XX' is a chelating ligand with pyrrolyl/indolyl linkages. The rates of these unsymmetrical and 10 previously reported symmetrical precatalysts were used with the model kobs = a + b(LDP)1 + c(LDP)2 + d(% Vbur)1 + e(% Vbur)2, where a-e were found through least-squares refinement. The model suggests that (1) the two attachment points of the bidentate ligand XX' are in different environments on the metal (e.g., axial and equatorial in a trigonal bipyramidal or square pyramidal structure), (2) the position of the unsymmetrical ligand on the metal is determined by the electronics of the ligand rather than the sterics, and (3) that one side of the chelating ligand's electronics strongly influences the rate, while the other side's sterics more strongly influences the rate. From these studies, we were able to generate catalysts fitting to this model with rate constants larger than the fastest symmetrical catalyst tested.
Collapse
Affiliation(s)
- Zhilin Hou
- Department of Chemistry, Michigan
State University, 578 S. Shaw Ln, East Lansing, Michigan 48824, United States
| | - Rashmi Jena
- Department of Chemistry, Michigan
State University, 578 S. Shaw Ln, East Lansing, Michigan 48824, United States
| | - Tanner J. McDaniel
- Department of Chemistry, Michigan
State University, 578 S. Shaw Ln, East Lansing, Michigan 48824, United States
| | - Brennan S. Billow
- Department of Chemistry, Michigan
State University, 578 S. Shaw Ln, East Lansing, Michigan 48824, United States
| | - Seokjoo Lee
- Department of Chemistry, Michigan
State University, 578 S. Shaw Ln, East Lansing, Michigan 48824, United States
| | - Hannah I. Barr
- Department of Chemistry, Michigan
State University, 578 S. Shaw Ln, East Lansing, Michigan 48824, United States
| | - Aaron L. Odom
- Department of Chemistry, Michigan
State University, 578 S. Shaw Ln, East Lansing, Michigan 48824, United States
| |
Collapse
|
18
|
Rojas-Buzo S, Salusso D, Le THT, Ortuño MA, Lomachenko KA, Bordiga S. Unveiling the Role and Stabilization Mechanism of Cu + into Defective Ce-MOF Clusters during CO Oxidation. J Phys Chem Lett 2024; 15:3962-3967. [PMID: 38569092 PMCID: PMC11017307 DOI: 10.1021/acs.jpclett.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Copper single-site catalysts supported on Zr-based metal-organic frameworks (MOFs) are well-known systems in which the nature of the active sites has been deeply investigated. Conversely, the redox chemistry of the Ce-counterparts is more limited, because of the often-unclear Cu2+/Cu+ and Ce4+/Ce3+ pairs behavior. Herein, we studied a novel Cu2+ single-site catalyst supported on a defective Ce-MOF, Cu/UiO-67(Ce), as a catalyst for the CO oxidation reaction. Based on a combination of in situ DRIFT and operando XAS spectroscopies, we established that Cu+ sites generated during catalysis play a pivotal role. Moreover, the oxygen vacancies associated with Ce3+ sites and presented in the defective Cu/UiO-67(Ce) material are able to activate the O2 molecules, closing the catalytic cycle. The results presented in this work open a new route for the design of active and stable single-site catalysts supported on defective Ce-MOFs.
Collapse
Affiliation(s)
- Sergio Rojas-Buzo
- Instituto
de Tecnología Química, Universitat
Politècnica de València - Consejo Superior de Investigaciones
Científicas, Av. de los Naranjos, s/n, 46022 Valencia, Spain
| | - Davide Salusso
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Thanh-Hiep Thi Le
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), University
of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel A. Ortuño
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), University
of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Kirill A. Lomachenko
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Silvia Bordiga
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria
7, 10125 Turin, Italy
| |
Collapse
|
19
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
20
|
Wang Y, Wang Q, Tan C, Chen C. Synthesis of Polar-functionalized Isotactic Polypropylenes Using Commercial Heterogeneous Ziegler-Natta Catalyst. J Am Chem Soc 2024; 146:6837-6845. [PMID: 38426800 DOI: 10.1021/jacs.3c13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The efficient synthesis of polar-functionalized polypropylenes with high molecular weight and high stereoregularity represents a challenging task. This challenge becomes even more daunting when pursuing an industrially preferred heterogeneous process. This study demonstrated the realization of these goals through the use of commercial heterogeneous Ziegler-Natta catalysts in the copolymerization of propylene with ionic cluster polar monomers. The results revealed high copolymerization activity (∼1.1 × 107 g mol-1 h-1), moderate polar monomer incorporation ratios (∼4.9 mol %), high copolymer molecular weight (Mw > 105 g mol-1), high stereoregularity ([mmmm] ∼ 96%), and high melting temperature range (150-162 °C). The utilization of ionic cluster polar monomers improved the thermal stability as well as stereoselectivity of the catalyst. Moreover, the Ziegler-Natta catalyst can homopolymerize ionic cluster polar monomers with high activities (>104 g mol-1 h-1). The resulting polar-functionalized isotactic polypropylenes (iPP) exhibited superior tensile strength, impact strength, creep resistance, transparency, and crystallinity compared with nonpolar iPP. This enhancement was attributable to the dual roles of the ionic cluster polar monomer unit, serving as both a transparent nucleating agent and a dynamic cross-linking functionality. Furthermore, the polar-functionalized iPP exhibited improved compatibility with polar materials, offering benefits for applications in composites, recycling of mixed plastic wastes, 3D printing, and other fields. This study offered a comprehensive solution for the future industrial production of polar-functionalized iPP via copolymerization, bridging the gap between an efficient and practical copolymerization process from a synthetic chemistry perspective and enhanced material properties from an application perspective.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Quan Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
21
|
Mitra KLW, Riehs M, Draguicevic A, Swann WA, Li CW, Velian A. Reaction Chemistry at Discrete Organometallic Fragments on Black Phosphorus. Angew Chem Int Ed Engl 2023; 62:e202311575. [PMID: 37844276 DOI: 10.1002/anie.202311575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
Black phosphorus (bP) is a two-dimensional van der Waals material unique in its potential to serve as a support for single-site catalysts due to its similarity to molecular phosphines, ligands quintessential in homogeneous catalysis. However, there is a scarcity of synthetic methods to install single metal centers on the bP lattice. Here, we demonstrate the functionalization of bP nanosheets with molecular Re and Mo complexes. A suite of characterization techniques, including infrared, X-ray photoelectron and X-ray absorption spectroscopy as well as scanning transmission electron microscopy corroborate that the functionalized nanosheets contain a high density of discrete metal centers directly bound to the bP surface. Moreover, the supported metal centers are chemically accessible and can undergo ligand exchange transformations without detaching from the surface. The steric and electronic properties of bP as a ligand are estimated with respect to molecular phosphines. Sterically, bP resembles tri(tolyl)phosphine when monodentate to a metal center, and bis(diphenylphosphino)propane when bidentate, whereas electronically bP is a σ-donor as strong as a trialkyl phosphine. This work is foundational in elucidating the nature of black phosphorus as a ligand and underscores the viability of using bP as a basis for single-site catalysts.
Collapse
Affiliation(s)
| | - Michael Riehs
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrei Draguicevic
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - William A Swann
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Christina W Li
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Alexandra Velian
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
22
|
Suvarna M, Vaucher AC, Mitchell S, Laino T, Pérez-Ramírez J. Language models and protocol standardization guidelines for accelerating synthesis planning in heterogeneous catalysis. Nat Commun 2023; 14:7964. [PMID: 38042926 PMCID: PMC10693572 DOI: 10.1038/s41467-023-43836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023] Open
Abstract
Synthesis protocol exploration is paramount in catalyst discovery, yet keeping pace with rapid literature advances is increasingly time intensive. Automated synthesis protocol analysis is attractive for swiftly identifying opportunities and informing predictive models, however such applications in heterogeneous catalysis remain limited. In this proof-of-concept, we introduce a transformer model for this task, exemplified using single-atom heterogeneous catalysts (SACs), a rapidly expanding catalyst family. Our model adeptly converts SAC protocols into action sequences, and we use this output to facilitate statistical inference of their synthesis trends and applications, potentially expediting literature review and analysis. We demonstrate the model's adaptability across distinct heterogeneous catalyst families, underscoring its versatility. Finally, our study highlights a critical issue: the lack of standardization in reporting protocols hampers machine-reading capabilities. Embracing digital advances in catalysis demands a shift in data reporting norms, and to this end, we offer guidelines for writing protocols, significantly improving machine-readability. We release our model as an open-source web application, inviting a fresh approach to accelerate heterogeneous catalysis synthesis planning.
Collapse
Affiliation(s)
- Manu Suvarna
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | | | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Teodoro Laino
- IBM Research Europe, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| |
Collapse
|
23
|
Poolwong J, Kracht F, Moinet E, Liang Y, D'Elia V, Anwander R. Samarium- and Ytterbium-Grafted Periodic Mesoporous Silica for Carbon Dioxide Capture and Conversion. Inorg Chem 2023; 62:17972-17984. [PMID: 37856826 DOI: 10.1021/acs.inorgchem.3c02995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Immobilized coordination compounds of Lewis acidic metals are powerful catalytic components of systems for the cycloaddition of CO2 to epoxides that do not require sophisticated coordination frameworks to harness the metal center and modulate its activity. Surface organometallic chemistry (SOMC) is a valuable methodology to prepare well-defined and site-isolated surface complexes and coordination compounds on metal oxides, with ligand environments easily adjustable to a targeted catalytic reaction. In this work, the SOMC methodology is applied to prepare SmII, YbII, and SmIII alkoxide surface complexes on periodic mesoporous (organo)silica of distinct pore symmetry/size for application in the CO2 cycloaddition reaction. The surface complexes are readily accessible by the grafting of the bis(trimethylsilyl)amide precursors LnII[N(SiMe3)2]2(THF)2 (Ln = Sm, Yb) and SmIII[N(SiMe3)2]3, followed by ligand exchange with alcohols (ethanol and neopentanol). The use of periodic mesoporous supports led to hybrid materials with relatively high surface areas and pore sizes, affording good performance in CO2 capture and in the cycloaddition of CO2 to epoxides under mild conditions (60-80 °C, 1-10 bar). In terms of catalytic performance, recyclability, and low amount of added nucleophile TBAX (X = Br, I), the most active materials prepared in this work compare well to a variety of previously reported SOMC-derived surface complexes and to other heterogeneous Lewis acids displaying more elaborate ligand environments.
Collapse
Affiliation(s)
- Jitpisut Poolwong
- VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo1, Payupnai, WangChan, 21210 Rayong, Thailand
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Felix Kracht
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Eric Moinet
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Yucang Liang
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Valerio D'Elia
- VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo1, Payupnai, WangChan, 21210 Rayong, Thailand
| | - Reiner Anwander
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Alrais L, Maksoud WA, Werghi B, Bendjeriou-Sedjerari A, Abou-Hamad E, Hedhili MN, Basset JM. A strategy for high ethylene polymerization performance using titanium single-site catalysts. Chem Commun (Camb) 2023; 59:12503-12506. [PMID: 37786920 DOI: 10.1039/d3cc03042c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The synthesis of heterogeneous Ti(IV)-based catalysts for ethylene polymerization following surface organometallic chemistry concepts is described. The unique feature of this catalyst arises from the silica support, KCC-1700. It has (i) a 3D fibrous morphology that is essential to improve the diffusion of the reactants, and (ii) an aluminum-bound hydroxyl group, [(Si-O-Si)(Si-O-)2Al-OH] 2, used as an anchoring site. The [(Si-O-Si)(Si-O-)(Al-O-)TiNp3] 3 catalyst was obtained by reacting 2 with a tetrakis-(neopentyl) titanium TiNp4. The structure of 3 was fully characterized by FT-IR, advanced solid-state NMR spectroscopy [1H, 13C], elemental and gas-phase analysis (ICP-OES and CHNS analysis), and XPS. The benefits of combining these morphological (3D structure) and electronic properties of the support (aluminum plus titanium) were evidenced in ethylene polymerization. The results show a remarkable enhancement in the catalytic performance with the formation of HDPE. Notably, the resulting HDPE displays a molecular weight of 3 200 000 g mol-1 associated with a polydispersity index (PD) of 2.3. Moreover, the effect of the mesostructure (2D vs. 3D) was demonstrated in the catalytic activity for ethylene polymerization.
Collapse
Affiliation(s)
- Lujain Alrais
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Walid Al Maksoud
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Baraa Werghi
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Anissa Bendjeriou-Sedjerari
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Edy Abou-Hamad
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed N Hedhili
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, 23955-6900, Saudi Arabia
| | - Jean-Marie Basset
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- ENSCP and IRCP-UMR CNRS 8247 ChimieParisTech, 11, rue Pierre et Marie Curie, Cedex 05, PARIS 75231, France
| |
Collapse
|
25
|
Manyuan N, Kawasaki H. Activated platinum in gallium-based room-temperature liquid metals for enhanced reduction reactions. RSC Adv 2023; 13:30273-30280. [PMID: 37849703 PMCID: PMC10577643 DOI: 10.1039/d3ra06571e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
Room-temperature gallium-based liquid metals (LMs) have recently attracted significant attention worldwide for application in catalysis because of their unique combination of fluidic and catalytic properties. Platinum loading in LMs is expected to enhance the catalytic performance of various reaction systems. However, Pt-loaded methods for Ga-based LMs have not yet been sufficiently developed to improve the catalytic performance and Pt utilization efficiency. In this study, a novel method for the fabrication of Pt-incorporated LMs using Pt sputter deposition (Pt(dep)-LMs) was developed. The Pt(dep)-LMs contained well-dispersed Pt flakes with diameters of 0.89 ± 0.6 μm. The catalytic activity of the Pt(dep)-LM with a Pt loading of ∼0.7 wt% was investigated using model reactions such as methylene blue (MB) reduction and hydrogen production in an acidic aqueous solution. The Pt(dep)-LMs showed a higher MB reduction rate (three times) and hydrogen production (three times) than the LM loaded with conventional Pt black (∼0.7 wt%). In contrast to the Pt(dep)-LMs, solid-based Ga with a Pt loading of ∼0.7 wt% did not catalyze the reactions. These results demonstrate that Pt activation occurred in the Pt(dep)-LMs fabricated by Pt sputtering, and that the fluidic properties of the LMs enhanced the catalytic reduction reactions. Thus, these findings highlight the superior performance of the Pt deposition method and the advantages of using Pt-LM-based catalysts.
Collapse
Affiliation(s)
- Nichayanan Manyuan
- Department of Chemistry and Materials Engineering, Kansai University 3-3-35, Yamate-cho, Suita Osaka 564-8680 Japan
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Kansai University 3-3-35, Yamate-cho, Suita Osaka 564-8680 Japan
| |
Collapse
|
26
|
Dey G, Jana R, Saifi S, Kumar R, Bhattacharyya D, Datta A, Sinha ASK, Aijaz A. Dual Single-Atomic Co-Mn Sites in Metal-Organic-Framework-Derived N-Doped Nanoporous Carbon for Electrochemical Oxygen Reduction. ACS NANO 2023; 17:19155-19167. [PMID: 37774140 DOI: 10.1021/acsnano.3c05379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Synthesizing dual single-atom catalysts (DSACs) with atomically isolated metal pairs is a challenging task but can be an effective way to enhance the performance for electrochemical oxygen reduction reaction (ORR). Herein, well-defined DSACs of Co-Mn, stabilized in N-doped porous carbon polyhedra (named CoMn/NC), are synthesized using high-temperature pyrolysis of a Co/Mn-doped zeolitic imidazolate framework. The atomically isolated Co-Mn site in CoMn/NC is recognized by combining microscopic as well as spectroscopic techniques. CoMn/NC exhibited excellent ORR activities in alkaline (E1/2 = 0.89 V) as well as in acidic (E1/2 = 0.82 V) electrolytes with long-term durability and enhanced methanol tolerance. Density functional theory (DFT) suggests that the Co-Mn site is efficiently activating the O-O bond via bridging adsorption, decisive for the 4e- oxygen reduction process. Though the Co-Mn sites favor O2 activation via the dissociative ORR mechanism, stronger adsorption of the intermediates in the dissociative path degrades the overall ORR activity. Our DFT studies conclude that the ORR on an Co-Mn site mainly occurs via bridging side-on O2 adsorption following thermodynamically and kinetically favorable associative mechanistic pathways with a lower overpotential and activation barrier. CoMn/NC performed excellently as a cathode in a proton exchange membrane (PEM) fuel cell and rechargeable Zn-air battery with high peak power densities of 970 and 176 mW cm-2, respectively. This work provides the guidelines for the rational design and synthesis of nonprecious DSACs for enhancing the ORR activity as well as the robustness of DSACs and suggests a design of multifunctional robust electrocatalysts for energy storage and conversion devices.
Collapse
Affiliation(s)
- Gargi Dey
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) - Jais, Amethi, Uttar Pradesh 229304, India
| | - Rajkumar Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata 700032, India
| | - Shadab Saifi
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) - Jais, Amethi, Uttar Pradesh 229304, India
| | - Ravi Kumar
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400094, India
| | - D Bhattacharyya
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400094, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata 700032, India
| | - A S K Sinha
- Department of Chemical & Biochemical Engineering, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) - Jais, Amethi, Uttar Pradesh 229304, India
| | - Arshad Aijaz
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) - Jais, Amethi, Uttar Pradesh 229304, India
| |
Collapse
|
27
|
Zaar F, Moyses Araujo C, Emanuelsson R, Strømme M, Sjödin M. Tetraphenylporphyrin electrocatalysts for the hydrogen evolution reaction: applicability of molecular volcano plots to experimental operating conditions. Dalton Trans 2023; 52:10348-10362. [PMID: 37462421 DOI: 10.1039/d3dt01250f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Recent years have seen an increasing interest in molecular electrocatalysts for the hydrogen evolution reaction (HER). Efficient hydrogen evolution would play an important role in a sustainable fuel economy, and molecular systems could serve as highly specific and tunable alternatives to traditional noble metal surface catalysts. However, molecular catalysts are currently mostly used in homogeneous setups, where quantitative evaluation of catalytic activity is non-standardized and cumbersome, in particular for multistep, multielectron processes. The molecular design community would therefore be well served by a straightforward model for prediction and comparison of the efficiency of molecular catalysts. Recent developments in this area include attempts at applying the Sabatier principle and the volcano plot concept - popular tools for comparing metal surface catalysts - to molecular catalysis. In this work, we evaluate the predictive power of these tools in the context of experimental operating conditions, by applying them to a series of tetraphenylporphyrins employed as molecular electrocatalysts of the HER. We show that the binding energy of H and the redox chemistry of the porphyrins depend solely on the electron withdrawing ability of the central metal ion, and that the thermodynamics of the catalytic cycle follow a simple linear free energy relation. We also find that the catalytic efficiency of the porphyrins is almost exclusively determined by reaction kinetics and therefore cannot be explained by thermodynamics alone. We conclude that the Sabatier principle, linear free energy relations and molecular volcano plots are insufficient tools for predicting and comparing activity of molecular catalysts, and that experimentally useful information of catalytic performance can still only be obtained through detailed knowledge of the catalytic pathway for each individual system.
Collapse
Affiliation(s)
- Felicia Zaar
- Department of Materials Science and Engineering, Division of Nanotechnology and Functional Materials, Uppsala University, Box 35, SE-751 03 Uppsala, Sweden.
| | - C Moyses Araujo
- Materials Theory Division, Department of Physics and Astronomy, Ångström Laboratory, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- Department of Engineering and Physics, Karlstad University, 651 88 Karlstad, Sweden
| | - Rikard Emanuelsson
- Department of Chemistry - BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Maria Strømme
- Department of Materials Science and Engineering, Division of Nanotechnology and Functional Materials, Uppsala University, Box 35, SE-751 03 Uppsala, Sweden.
| | - Martin Sjödin
- Department of Materials Science and Engineering, Division of Nanotechnology and Functional Materials, Uppsala University, Box 35, SE-751 03 Uppsala, Sweden.
| |
Collapse
|
28
|
Rochlitz L, Fischer JWA, Pessemesse Q, Clark AH, Ashuiev A, Klose D, Payard PA, Jeschke G, Copéret C. Ti-Doping in Silica-Supported PtZn Propane Dehydrogenation Catalysts: From Improved Stability to the Nature of the Pt-Ti Interaction. JACS AU 2023; 3:1939-1951. [PMID: 37502165 PMCID: PMC10369412 DOI: 10.1021/jacsau.3c00197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023]
Abstract
Propane dehydrogenation is an important industrial reaction to access propene, the world's second most used polymer precursor. Catalysts for this transformation are required to be long living at high temperature and robust toward harsh oxidative regeneration conditions. In this work, combining surface organometallic chemistry and thermolytic molecular precursor approach, we prepared well-defined silica-supported Pt and alloyed PtZn materials to investigate the effect of Ti-doping on catalytic performances. Chemisorption experiments and density functional calculations reveal a significant change in the electronic structure of the nanoparticles (NPs) due to the Ti-doping. Evaluation of the resulting materials PtZn/SiO2 and PtZnTi/SiO2 during long deactivation phases reveal a stabilizing effect of Ti in PtZnTi/SiO2 with a kd of 0.015 h-1 compared to PtZn/SiO2 with a kd of 0.022 h-1 over 108 h on stream. Such a stabilizing effect is also present during a second deactivation phase after applying a regeneration protocol to the materials under O2 and H2 at high temperatures. A combined scanning transmission electron microscopy, in situ X-ray absorption spectroscopy, electron paramagnetic resonance, and density functional theory study reveals that this effect is related to a sintering prevention of the alloyed PtZn NPs in PtZnTi/SiO2 due to a strong interaction of the NPs with Ti sites. However, in contrast to classical strong metal-support interaction, we show that the coverage of the Pt NPs with TiOx species is not needed to explain the changes in adsorption and reactivity properties. Indeed, the interaction of the Pt NPs with TiIII sites is enough to decrease CO adsorption and to induce a red-shift of the CO band because of electron transfer from the TiIII sites to Pt0.
Collapse
Affiliation(s)
- Lukas Rochlitz
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich CH-8093, Switzerland
| | - Jörg W. A. Fischer
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich CH-8093, Switzerland
| | - Quentin Pessemesse
- Université
de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE,
UMR 5246, ICBMS, Rue
Victor Grignard, Villeurbanne Cedex F-69622, France
| | - Adam H. Clark
- Paul
Scherrer Institut, Villigen CH-5232, Switzerland
| | - Anton Ashuiev
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich CH-8093, Switzerland
| | - Daniel Klose
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich CH-8093, Switzerland
| | - Pierre-Adrien Payard
- Université
de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE,
UMR 5246, ICBMS, Rue
Victor Grignard, Villeurbanne Cedex F-69622, France
| | - Gunnar Jeschke
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich CH-8093, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, Zürich CH-8093, Switzerland
| |
Collapse
|
29
|
Hou Q, Liu K, Al-Maksoud W, Huang Y, Ding D, Lei Y, Zhang Y, Lin B, Zheng L, Liu M, Basset JM, Chen Y. Atomically Dispersed NiN x Site with High Oxygen Electrocatalysis Performance Facilely Produced via a Surface Immobilization Strategy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16809-16817. [PMID: 36972197 DOI: 10.1021/acsami.3c01228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nonprecious-metal heterogeneous catalysts with atomically dispersed active sites demonstrated high activity and selectivity in different reactions, and the rational design and large-scale preparation of such catalysts are of great interest but remain a huge challenge. Current approaches usually involve extremely high-temperature and tedious procedures. Here, we demonstrated a straightforward and scalable preparation strategy. In two simple steps, the atomically dispersed Ni electrocatalyst can be synthesized in a tens grams scale with quantitative yield under mild conditions, and the active Ni sites were produced by immobilizing preorganized NiNx complex on the substrate surface via organic thermal reactions. This catalyst exhibits excellent catalysis performances in both oxygen evolution and reduction reactions. It also exhibited tunable catalysis activity, high catalysis reproducibility, and high stability. The atomically dispersed NiNx sites are tolerant at high Ni concentration, as the random reactions and metal nanoparticle formation that generally occurred at high temperatures were avoided. This strategy illustrated a practical and green method for the industrial manufacture of nonprecious-metal single-site catalysts with a predictable structure.
Collapse
Affiliation(s)
- Qiankun Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Kang Liu
- School of Physics and Electronic, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Walid Al-Maksoud
- Catalysis Centre, PSE, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yuchang Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - De Ding
- Shaanxi Electric Power Research Institute, Xi'an, Shanxi 710054, People's Republic of China
| | - Yongpeng Lei
- Powder Metallurgy Research Institute, Central South University, Changsha, Hunan 410083, China
| | - Yi Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Bin Lin
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Chinese Academy of Science, Institute of High Energy Physics, Beijing 100049, People's Republic of China
| | - Min Liu
- School of Physics and Electronic, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Jean-Marie Basset
- Catalysis Centre, PSE, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| |
Collapse
|
30
|
Li W, Dong C, Wang X, Wang J, Yang Y. POSS@TiCl4 Nanoparticles: A minimalism styled Ziegler-Natta Catalytic System. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
31
|
Samudrala KK, Conley MP. Effects of surface acidity on the structure of organometallics supported on oxide surfaces. Chem Commun (Camb) 2023; 59:4115-4127. [PMID: 36912586 DOI: 10.1039/d3cc00047h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Well-defined organometallics supported on high surface area oxides are promising heterogeneous catalysts. An important design factor in these materials is how the metal interacts with the functionalities on an oxide support, commonly anionic X-type ligands derived from the reaction of an organometallic M-R with an -OH site on the oxide. The metal can either form a covalent M-O bond or form an electrostatic M+⋯-O ion-pair, which impacts how well-defined organometallics will interact with substrates in catalytic reactions. A less common reaction pathway involves the reaction of a Lewis site on the oxide with the organometallic, resulting in abstraction to form an ion-pair, which is relevant to industrial olefin polymerization catalysts. This Feature Article views the spectrum of reactivity between an organometallic and an oxide through the prism of Brønsted and/or Lewis acidity of surface sites and draws analogies to the molecular frame where Lewis and Brønsted acids are known to form reactive ion-pairs. Applications of the well-defined sites developed in this article are also discussed.
Collapse
Affiliation(s)
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| |
Collapse
|
32
|
Hülsey MJ, Wang S, Zhang B, Ding S, Yan N. Approaching Molecular Definition on Oxide-Supported Single-Atom Catalysts. Acc Chem Res 2023; 56:561-572. [PMID: 36795591 DOI: 10.1021/acs.accounts.2c00728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
ConspectusSingle-atom catalysts (SACs) offer unique advantages such as high (noble) metal utilization through maximum possible dispersion, large metal-support contact areas, and oxidation states usually unattainable in classic nanoparticle catalysis. In addition, SACs can serve as models for determining active sites, a simultaneously desired as well as elusive target in the field of heterogeneous catalysis. Due to the complexity of heterogeneous catalysts bearing a variety of different sites on metal particles and the respective support as well as at their interface, studies of intrinsic activities and selectivities remain largely inconclusive. While SACs could close this gap, many supported SACs remain intrinsically ill-defined due to complexities arising from the variety of different adsorption sites for atomically dispersed metals, hampering the establishment of meaningful structure-activity correlations. In addition to overcoming this limitation, well-defined SACs could even be utilized to shed light on fundamental phenomena in catalysis that remain ambiguous when studies are obscured by the complexity of heterogeneous catalysts.In this Account, we describe approaches to break down the complexity of supported single-atom catalysts through the careful choice of oxide supports with specific binding motives as well as the adsorption of well-defined ligands such as ionic liquids on single metal sites. An example of molecularly defined oxide supports is polyoxometalates (POMs), which are metal oxo clusters with precisely known composition and structure. POMs exhibit a limited number of sites to anchor atomically dispersed metals such as Pt, Pd, and Rh. Polyoxometalate-supported single-atom catalysts (POM-SACs) thus represent ideal systems for the in situ spectroscopic study of single atom sites during reactions as, in principle, all sites are identical and thus equally active in catalytic reactions. We have utilized this benefit in studies of the mechanism of CO and alcohol oxidation reactions as well as the hydro(deoxy)genation of various biomass-derived compounds. More so, the redox properties of polyoxometalates can be finely tuned by changing the composition of the support while keeping the geometry of the single-atom active site largely constant. We further developed soluble analogues of heterogeneous POM-SACs, opening the door to advanced liquid-phase nuclear magnetic resonance (NMR) and UV-vis techniques but, in particular, to electrospray ionization mass spectrometry (ESI-MS) which proves powerful in determining catalytic intermediates as well as their gas-phase reactivity. Employing this technique, we were able to resolve some of the long-standing questions about hydrogen spillover, demonstrating the broad utility of studies on defined model catalysts.
Collapse
Affiliation(s)
- Max J Hülsey
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Sikai Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Bin Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Shipeng Ding
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
33
|
Sousa-Castillo A, Mariño-López A, Puértolas B, Correa-Duarte MA. Nanostructured Heterogeneous Catalysts for Bioorthogonal Reactions. Angew Chem Int Ed Engl 2023; 62:e202215427. [PMID: 36479797 DOI: 10.1002/anie.202215427] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Bioorthogonal chemistry has inspired a new subarea of chemistry providing a powerful tool to perform novel biocompatible chemospecific reactions in living systems. Following the premise that they do not interfere with biological functions, bioorthogonal reactions are increasingly applied in biomedical research, particularly with respect to genetic encoding systems, fluorogenic reactions for bioimaging, and cancer therapy. This Minireview compiles recent advances in the use of heterogeneous catalysts for bioorthogonal reactions. The synthetic strategies of Pd-, Au-, and Cu-based materials, their applicability in the activation of caged fluorophores and prodrugs, and the possibilities of using external stimuli to release therapeutic substances at a specific location in a diseased tissue are discussed. Finally, we highlight frontiers in the field, identifying challenges, and propose directions for future development in this emerging field.
Collapse
|
34
|
Rodriguez J, Boudjelel M, Schrock RR, Conley MP. A Tungsten Oxo Alkylidene Supported on Sulfated Zirconium Oxide for Olefin Metathesis. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Jessica Rodriguez
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Maxime Boudjelel
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Richard R. Schrock
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Matthew P. Conley
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
35
|
Rosen AS, Vijay S, Persson KA. Free-atom-like d states beyond the dilute limit of single-atom alloys. Chem Sci 2023; 14:1503-1511. [PMID: 36794204 PMCID: PMC9906637 DOI: 10.1039/d2sc05772g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Through a data-mining and high-throughput density functional theory approach, we identify a diverse range of metallic compounds that are predicted to have transition metals with "free-atom-like" d states that are highly localized in terms of their energetic distribution. Design principles that favor the formation of localized d states are uncovered, among which we note that site isolation is often necessary but that the dilute limit, as in most single-atom alloys, is not a pre-requisite. Additionally, the majority of localized d state transition metals identified from the computational screening study exhibit partial anionic character due to charge transfer from neighboring metal species. Using CO as a representative probe molecule, we show that localized d states for Rh, Ir, Pd, and Pt tend to reduce the binding strength of CO compared to their pure elemental analogues, whereas this does not occur as consistently for the Cu binding sites. These trends are rationalized through the d-band model, which suggests that the significantly reduced d-band width results in an increased orthogonalization energy penalty upon CO chemisorption. With the multitude of inorganic solids that are predicted to have highly localized d states, the results of the screening study are likely to result in new avenues for heterogeneous catalyst design from an electronic structure perspective.
Collapse
Affiliation(s)
- Andrew S. Rosen
- Department of Materials Science and Engineering, University of California, BerkeleyBerkeleyCalifornia94720USA,Miller Institute for Basic Research in Science, University of California, BerkeleyBerkeleyCalifornia 94720USA,Materials Science Division, Lawrence Berkeley National LaboratoryBerkeleyCalifornia 94720USA
| | - Sudarshan Vijay
- Department of Materials Science and Engineering, University of California, BerkeleyBerkeleyCalifornia94720USA,Materials Science Division, Lawrence Berkeley National LaboratoryBerkeleyCalifornia 94720USA
| | - Kristin A. Persson
- Department of Materials Science and Engineering, University of California, BerkeleyBerkeleyCalifornia94720USA,Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyCalifornia 94720USA
| |
Collapse
|
36
|
‘Catalyst + X’ strategies for transition metal-catalyzed olefin-polar monomer copolymerization. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Kato T, Nagae H, Yonehara K, Kitano T, Nagashima H, Tanaka S, Oku T, Mashima K. Continuous Plug Flow Process for the Transesterification of Methyl Acrylate and 1,4-Butanediol by a Zn-Immobilized Catalyst for Producing 4-Hydroxybutyl Acrylate. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Taito Kato
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka560-8531, Japan
- Corporate Research Division, Nippon Shokubai Company Limited, Suita, Osaka564-0034, Japan
| | - Haruki Nagae
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka560-8531, Japan
| | - Koji Yonehara
- Innovation & Business Development Division, Nippon Shokubai Company Limited, Suita, Osaka564-0034, Japan
| | - Tomoyuki Kitano
- Corporate Research Division, Nippon Shokubai Company Limited, Suita, Osaka564-0034, Japan
| | - Hiroki Nagashima
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki305-8565, Japan
| | - Shinji Tanaka
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki305-8565, Japan
| | - Tomoharu Oku
- Corporate Research Division, Nippon Shokubai Company Limited, Suita, Osaka564-0034, Japan
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka560-8531, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka565-0871, Japan
| |
Collapse
|
38
|
Yaacoub L, Dutta I, Werghi B, Chen BWJ, Zhang J, Hamad EA, Ling Ang EP, Pump E, Sedjerari AB, Huang KW, Basset JM. Formic Acid Dehydrogenation via an Active Ruthenium Pincer Catalyst Immobilized on Tetra-Coordinated Aluminum Hydride Species Supported on Fibrous Silica Nanospheres. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Layal Yaacoub
- Division of Physical Science and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Indranil Dutta
- Division of Physical Science and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Baraa Werghi
- Division of Physical Science and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Benjamin W. J. Chen
- Agency for Science, Technology, and Research, Institute of High Performance Computing, 1 Fusionopolis Way, #16−16 Connexis, Singapore 138632, Singapore
| | - Jia Zhang
- Agency for Science, Technology, and Research, Institute of High Performance Computing, 1 Fusionopolis Way, #16−16 Connexis, Singapore 138632, Singapore
| | - Edy Abou Hamad
- Imaging and Characterization Department, KAUST Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Eleanor Pei Ling Ang
- Division of Physical Science and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Eva Pump
- Division of Physical Science and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Anissa Bendjeriou Sedjerari
- Division of Physical Science and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- Division of Physical Science and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Agency for Science, Technology, and Research, Institute of Materials Research and Engineering and Institute of Sustainability for Chemicals, Energy and Environment, Singapore 138634, Singapore
| | - Jean-Marie Basset
- Division of Physical Science and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Institut de Recherche de Chimie Paris, 11 Rue Pierre et Marie Curie, Cedex 05 75231, Paris
| |
Collapse
|
39
|
Samudrala KK, Huynh W, Dorn RW, Rossini AJ, Conley MP. Formation of a Strong Heterogeneous Aluminum Lewis Acid on Silica. Angew Chem Int Ed Engl 2022; 61:e202205745. [DOI: 10.1002/anie.202205745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/10/2022]
Affiliation(s)
| | - Winn Huynh
- Department of Chemistry University of California, Riverside Riverside CA 92521 USA
| | - Rick W. Dorn
- Department of Chemistry Iowa State University Ames IA 50011 USA
- U.S. Department of Energy Ames Laboratory Ames IA 50011 USA
| | - Aaron J. Rossini
- Department of Chemistry Iowa State University Ames IA 50011 USA
- U.S. Department of Energy Ames Laboratory Ames IA 50011 USA
| | - Matthew P. Conley
- Department of Chemistry University of California, Riverside Riverside CA 92521 USA
| |
Collapse
|
40
|
Abou Nakad J, Rajapaksha R, Szeto KC, De Mallmann A, Taoufik M. Preparation of Tripodal Vanadium Oxo-Organometallic Species Supported on Silica, [(≡SiO) 3V(═O)], for Selective Nonoxidative Dehydrogenation of Propane. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jessy Abou Nakad
- Université Lyon 1, Institut de Chimie Lyon, CPE Lyon, CNRS, UMR 5128 CP2M, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne Cedex, France
| | - Remy Rajapaksha
- Université Lyon 1, Institut de Chimie Lyon, CPE Lyon, CNRS, UMR 5128 CP2M, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne Cedex, France
| | - Kai C. Szeto
- Université Lyon 1, Institut de Chimie Lyon, CPE Lyon, CNRS, UMR 5128 CP2M, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne Cedex, France
| | - Aimery De Mallmann
- Université Lyon 1, Institut de Chimie Lyon, CPE Lyon, CNRS, UMR 5128 CP2M, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne Cedex, France
| | - Mostafa Taoufik
- Université Lyon 1, Institut de Chimie Lyon, CPE Lyon, CNRS, UMR 5128 CP2M, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne Cedex, France
| |
Collapse
|
41
|
Sun X, Li H. Recent progress of Ga-based liquid metals in catalysis. RSC Adv 2022; 12:24946-24957. [PMID: 36199892 PMCID: PMC9434383 DOI: 10.1039/d2ra04795k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Within the last decade, the application of gallium-based liquid metals in catalysis has received great attention from around the world. This article provides an overview concerning Ga-based liquid metals (LMs) in energy and environmental applications, such as the catalytic synthesis of ethylene by non-petroleum routes via Pd-Ga liquid catalysts, alkane dehydrogenation via Pd-Ga or Pt-Ga catalysts, CO2 hydrogenation to methanol via Ni Ga or Pd/Ga2O3 catalysts, and catalytic degradation of CO2 via EGaIn liquid metal catalysts below 500 °C, where Ga-based liquid metal catalysts exhibit high selectivity and low energy consumption. The formation of isolated metal sites in a liquid metal matrix allows the integration of several characteristics of multiphase catalysis (particularly the operational friendliness of product separation procedures) with those of homogeneous catalysis. In the end, this article sheds light on future prospects, opportunities, and challenges of liquid metal catalysis.
Collapse
Affiliation(s)
- Xi Sun
- Dalian Institute of Chemical Physic, CAS Dalian 116023 China
| | - Hui Li
- Dalian Institute of Chemical Physic, CAS Dalian 116023 China
| |
Collapse
|
42
|
Late Transition Metal Catalysts with Chelating Amines for Olefin Polymerization. Catalysts 2022. [DOI: 10.3390/catal12090936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polyolefins are the most consumed polymeric materials extensively used in our daily life and are usually generated by coordination polymerization in the polyolefin industry. Olefin polymerization catalysts containing transition metal–organic compound combinations are undoubtedly crucial for the development of the polyolefin industry. The nitrogen donor atom has attracted considerable interest and is widely used in combination with the transition metal for the fine-tuning of the chemical environment around the metal center. In addition to widely reported olefin polymerization catalysts with imine and amide donors (sp2 hybrid N), late transition metal catalysts with chelating amine donors (sp3 hybrid N) for olefin polymerization have never been reviewed. In this review paper, we focus on late transition metal (Ni, Pd, Fe, and Co) catalysts with chelating amines for olefin polymerization. A variety of late transition metal catalysts bearing different neutral amine donors are surveyed for olefin polymerization, including amine–imine, amine–pyridine, α-diamine, and [N, N, N] tridentate ligands with amine donors. The relationship between catalyst structure and catalytic performance is also encompassed. This review aims to promote the design of late transition metal catalysts with unique chelating amine donors for the development of high-performance polyolefin materials.
Collapse
|
43
|
Jedidi A, Al-Harbi MS, Aziz SG, Osman OI, Cavallo L. Hydroaminoalkylation of alkenes using transition metals complexes grafted on silica SBA15 as catalysts. J Mol Graph Model 2022; 117:108281. [PMID: 35987187 DOI: 10.1016/j.jmgm.2022.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 10/15/2022]
Abstract
The gas-phase hydroaminoalkylation reaction of propene catalyzed by group 4 (M = Ti, Zr and Hf) metal amido complexes [(≡Si-O-)(M(-NMe2)3] was investigated by using PBE0-D3/SVP//TZVP level of theory. The geometrical analysis traced the formation of the metallaaziridines and the azametallacyclopentanes as key intermediates in these reactions. The metallaaziridines were simulated through the activation of α-C-H bonds of the amido groups; while the azametallacyclopentanes were configured by slotting the propene double bond onto the M - C bonds of the metallaaziridines. The latter reaction was considered the rate-determining step. Thermochemical calculations showed that the order of catalytic activity is: Ti ≥ Zr > Hf; while the preference of the azametallacyclopentanes is: Hf > Zr ≥ Ti.
Collapse
Affiliation(s)
- Abdesslem Jedidi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Manal S Al-Harbi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Saadullah G Aziz
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Osman I Osman
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Chemistry Department, Faculty of Science, University of Khartoum, P.O. Box 312, Khartoum, 111111, Sudan
| | - Luigi Cavallo
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
44
|
Conley M, Samudrala KK, Huynh W, Dorn RW, Rossini AJ. Formation of a Strong Heterogeneous Aluminum Lewis Acid on Silica. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthew Conley
- University of California, Riverside Chemistry 501 Big Springs Rd 92521 Riverside UNITED STATES
| | | | - Winn Huynh
- University of California Riverside Chemistry UNITED STATES
| | | | | |
Collapse
|
45
|
Musso JV, De Jesus Silva J, Benedikter MJ, Groos J, Frey W, Copéret C, Buchmeiser MR. Cationic molybdenum oxo alkylidenes stabilized by N-heterocyclic carbenes: from molecular systems to efficient supported metathesis catalysts. Chem Sci 2022; 13:8649-8656. [PMID: 35974748 PMCID: PMC9337747 DOI: 10.1039/d2sc03321f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 01/14/2023] Open
Abstract
Cationic d0 group 6 olefin metathesis catalysts have been recently shown to display in most instances superior activity in comparison to their neutral congeners. Furthermore, their catalytic performance is greatly improved upon immobilization on silica. In this context, we have developed the new family of molecular cationic molybdenum oxo alkylidene complexes stabilized by N-heterocyclic carbenes of the general formula [Mo(O)(CHCMe3)(IMes)(OR)[X-]] (IMes = 1,3-dimesitylimidazol-2-ylidene; R = 1,3-dimesityl-C6H3, C6F5; X- = B(3,5-(CF3)2C6H3)4 -, B(ArF)4, tetrakis(perfluoro-t-butoxy)aluminate (PFTA)). Immobilization of [Mo(O)(CHCMe3)(IMes)(O-1,3-dimesityl-C6H3)+B(ArF)4 -] on silica via surface organometallic chemistry yields an active alkene metathesis catalyst that shows the highest productivity towards terminal olefins amongst all existing molybdenum oxo alkylidene catalysts.
Collapse
Affiliation(s)
- Janis V Musso
- Institute of Polymer Chemistry, University of Stuttgart Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Jordan De Jesus Silva
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1-5 CH-8093 Zürich Switzerland
| | - Mathis J Benedikter
- Institute of Polymer Chemistry, University of Stuttgart Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Jonas Groos
- Institute of Polymer Chemistry, University of Stuttgart Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Wolfgang Frey
- Institute of Organic Chemistry, Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1-5 CH-8093 Zürich Switzerland
| | - Michael R Buchmeiser
- Institute of Polymer Chemistry, University of Stuttgart Pfaffenwaldring 55 D-70569 Stuttgart Germany
- German Institutes of Textile and Fiber Research (DITF) Denkendorf Körschtalstr. 26, 73770 Denkendorf Germany
| |
Collapse
|
46
|
Zhang H, Zhang Z, Cai Z, Li M, Liu Z. Influence of Silica-Supported Alkylaluminum on Heterogeneous Zwitterionic Anilinonaphthoquinone Nickel and Palladium-Catalyzed Ethylene Polymerization and Copolymerization with Polar Monomers. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhaoyu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhengguo Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Mingyuan Li
- Department of Chemistry, Guangdong Technion Israel Institute of Technology, Shantou 515063, P. R. China
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
47
|
Venkatesh A, Gioffrè D, Atterberry BA, Rochlitz L, Carnahan SL, Wang Z, Menzildjian G, Lesage A, Copéret C, Rossini AJ. Molecular and Electronic Structure of Isolated Platinum Sites Enabled by the Expedient Measurement of 195Pt Chemical Shift Anisotropy. J Am Chem Soc 2022; 144:13511-13525. [PMID: 35861681 DOI: 10.1021/jacs.2c02300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Techniques that can characterize the molecular structures of dilute surface species are required to facilitate the rational synthesis and improvement of Pt-based heterogeneous catalysts. 195Pt solid-state NMR spectroscopy could be an ideal tool for this task because 195Pt isotropic chemical shifts and chemical shift anisotropy (CSA) are highly sensitive probes of the local chemical environment and electronic structure. However, the characterization of Pt surface-sites is complicated by the typical low Pt loadings that are between 0.2 and 5 wt% and broadening of 195Pt solid-state NMR spectra by CSA. Here, we introduce a set of solid-state NMR methods that exploit fast MAS and indirect detection using a sensitive spy nucleus (1H or 31P) to enable the rapid acquisition of 195Pt MAS NMR spectra. We demonstrate that high-resolution wideline 195Pt MAS NMR spectra can be acquired in minutes to a few hours for a series of molecular and single-site Pt species grafted on silica with Pt loading of only 3-5 wt%. Low-power, long-duration, sideband-selective excitation, and saturation pulses are incorporated into t1-noise eliminated dipolar heteronuclear multiple quantum coherence, perfect echo resonance echo saturation pulse double resonance, or J-resolved pulse sequences. The complete 195Pt MAS NMR spectrum is then reconstructed by recording a series of 1D NMR spectra where the offset of the 195Pt pulses is varied in increments of the MAS frequency. Analysis of the 195Pt MAS NMR spectra yields the 195Pt chemical shift tensor parameters. Zeroth order approximation density functional theory calculations accurately predict 195Pt CS tensor parameters. Simple and predictive orbital models relate the CS tensor parameters to the Pt electronic structure and coordination environment. The methodology developed here paves the way for the detailed structural and electronic analysis of dilute platinum surface-sites.
Collapse
Affiliation(s)
- Amrit Venkatesh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Domenico Gioffrè
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Benjamin A Atterberry
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Lukas Rochlitz
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Scott L Carnahan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Zhuoran Wang
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, UMR 5082, F-69100 Villeurbanne, France
| | - Georges Menzildjian
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, UMR 5082, F-69100 Villeurbanne, France
| | - Anne Lesage
- Univ Lyon, ENS Lyon, Université Lyon 1, CNRS, High-Field NMR Center of Lyon, UMR 5082, F-69100 Villeurbanne, France
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Aaron J Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.,US DOE Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
48
|
Wang K, Horlyck J, Finn MT, Mesa MG, Voutchkova-Kostal A. Electronic Effects of Support Doping on Hydrotalcite-Supported Iridium N-Heterocyclic Carbene Complexes. ACS OMEGA 2022; 7:24705-24713. [PMID: 35874240 PMCID: PMC9301727 DOI: 10.1021/acsomega.2c02593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The electronic effects of supports on immobilized organometallic complexes impact their activity and lifetime, yet remain poorly understood. Here we describe a systematic study of the support effects experienced by an organometallic complex immobilized on doped hydrotalcite-like materials. To that end, we describe the synthesis and characterization of the first organometallic species immobilized on a palette of doped hydrotalcites via sulfonate linkers. The organometallic species consists of iridium N-heterocyclic carbene (NHC) carbonyl complex ([Na][Ir-(NHC-Ph-SO3)2(CO)2]), a highly active molecular catalyst for transfer hydrogenation of glycerol. The hydrotalcite supports are composed of Al, Mg, and a compatible transition-metal dopant (Fe, Cu, Ni, Zn). The materials were characterized extensively by STEM, XPS, TGA, PXRD, FT-IR, N2 desorption, ICP-AES, TPD, and microcalorimetry to probe the morphology and electronic properties of the support and elucidate structure-property relationships.
Collapse
Affiliation(s)
- Kai Wang
- Department
of Chemistry, The George Washington University, 800 22nd St NW, Washington, DC 20052, United States
| | - Jonathan Horlyck
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Matthew T. Finn
- Department
of Chemistry, The George Washington University, 800 22nd St NW, Washington, DC 20052, United States
| | - Marta Granollers Mesa
- Energy
and Bioproducts Research Institute (EBRI), Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | - Adelina Voutchkova-Kostal
- Department
of Chemistry, The George Washington University, 800 22nd St NW, Washington, DC 20052, United States
| |
Collapse
|
49
|
Rochlitz L, Pessemesse Q, Fischer JWA, Klose D, Clark AH, Plodinec M, Jeschke G, Payard PA, Copéret C. A Robust and Efficient Propane Dehydrogenation Catalyst from Unexpectedly Segregated Pt 2Mn Nanoparticles. J Am Chem Soc 2022; 144:13384-13393. [PMID: 35834364 DOI: 10.1021/jacs.2c05618] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The increasing demand for short chain olefins like propene for plastics production and the availability of shale gas make the development of highly performing propane dehydrogenation (PDH) catalysts, robust toward industrially applied harsh regeneration conditions, a highly important field of research. A combination of surface organometallic chemistry and thermolytic molecular precursor approach was used to prepare a nanometric, bimetallic Pt-Mn material (3 wt % Pt, 1.3 wt % Mn) supported on silica via consecutive grafting of a Mn and Pt precursor on surface OH groups present on the support surface, followed by a treatment under a H2 flow at high temperature. The material exhibits a 70% fraction of the overall Mn as MnII single sites on the support surface; the remaining Mn is incorporated in segregated Pt2Mn nanoparticles. The material shows great performance in PDH reaction with a low deactivation rate. In particular, it shows outstanding robustness during repeated regeneration cycles, with conversion and selectivity stabilizing at ca. 37 and 98%, respectively. Notably, a material with a lower Pt loading of only 0.05 wt % shows an outstanding catalytic performance─initial productivity of 4523 gC3H6/gPt h and an extremely low kd of 0.003 h-1 under a partial pressure of H2, which are among the highest reported productivities. A combined in situ X-ray absorption spectroscopy, scanning transmission electron microscopy, electron paramagnetic resonance, and metadynamics at the density functional theory level study could show that the strong interaction between the MnII-decorated support and the unexpectedly segregated Pt2Mn particles is most likely responsible for the outstanding performance of the investigated materials.
Collapse
Affiliation(s)
- Lukas Rochlitz
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Quentin Pessemesse
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.,Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE, UMR 5246, ICBMS, rue Victor Grignard, F-69622 Villeurbanne Cedex, France
| | - Jörg W A Fischer
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Daniel Klose
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Adam H Clark
- Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Milivoj Plodinec
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Pierre-Adrien Payard
- Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE, UMR 5246, ICBMS, rue Victor Grignard, F-69622 Villeurbanne Cedex, France
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
50
|
Brown CM, Lundberg DJ, Lamb JR, Kevlishvili I, Kleinschmidt D, Alfaraj YS, Kulik HJ, Ottaviani MF, Oldenhuis NJ, Johnson JA. Endohedrally Functionalized Metal-Organic Cage-Cross-Linked Polymer Gels as Modular Heterogeneous Catalysts. J Am Chem Soc 2022; 144:13276-13284. [PMID: 35819842 DOI: 10.1021/jacs.2c04289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immobilization of homogeneous catalysts onto supports to improve recyclability while maintaining catalytic efficiency is often a trial-and-error process limited by poor control of the local catalyst environment and few strategies to append catalysts to support materials. Here, we introduce a modular heterogenous catalysis platform that addresses these challenges. Our approach leverages the well-defined interiors of self-assembled Pd12L24 metal-organic cages/polyhedra (MOCs): simple mixing of a catalyst-ligand of choice with a polymeric ligand, spacer ligands, and a Pd salt induces self-assembly of Pd12L24-cross-linked polymer gels featuring endohedrally catalyst-functionalized junctions. Semi-empirical calculations show that catalyst incorporation into the MOC junctions of these materials has minimal affect on the MOC geometry, giving rise to well-defined nanoconfined catalyst domains as confirmed experimentally using several techniques. Given the unique network topology of these freestanding gels, they are mechanically robust regardless of their endohedral catalyst composition, allowing them to be physically manipulated and transferred from one reaction to another to achieve multiple rounds of catalysis. Moreover, by decoupling the catalyst environment (interior of MOC junctions) from the physical properties of the support (the polymer matrix), this strategy enables catalysis in environments where homogeneous catalyst analogues are not viable, as demonstrated for the Au(I)-catalyzed cyclization of 4-pentynoic acid in aqueous media.
Collapse
Affiliation(s)
- Christopher M Brown
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David J Lundberg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jessica R Lamb
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Denise Kleinschmidt
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yasmeen S Alfaraj
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | - Nathan J Oldenhuis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|