1
|
Araujo L, Nascimento MAC, Cardozo TM, Fantuzzi F. Unveiling distinct bonding patterns in noble gas hydrides via interference energy analysis. Phys Chem Chem Phys 2024. [PMID: 39513372 DOI: 10.1039/d4cp04028g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Despite their apparent simplicity, the helium hydride ion (HeH+) and its analogues with heavier noble gas (Ng) atoms present intriguing challenges due to their unusual electronic structures and distinct ground-state heterolytic bond dissociation profiles. In this work, we employ modern valence bond calculations and the interference energy analysis to investigate the nature of the chemical bond in NgH+ (Ng = He, Ne, Ar). Our findings reveal that the energy well formation in their ground-state potential energy curves is driven by a reduction in kinetic energy caused by quantum interference, identical to cases of homolytic bond dissociation. However, clear differences in bonding situation emerge: in HeH+ and ArH+, electron charge transfer leads to Ng+-H covalent bonds, while in NeH+, a preferred Ne + H+ valence bond structure suggests the formation of a dative bond. This study highlights the distinct bonding mechanisms within the NgH+ series, showcasing the interplay between quantum interference and quasi-classical effects in molecules featuring noble gases.
Collapse
Affiliation(s)
- Lucas Araujo
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, CT, A-622, Cid. Univ., Rio de Janeiro, RJ 21941-909, Brazil.
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Marco A C Nascimento
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, CT, A-622, Cid. Univ., Rio de Janeiro, RJ 21941-909, Brazil.
| | - Thiago M Cardozo
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, CT, A-622, Cid. Univ., Rio de Janeiro, RJ 21941-909, Brazil.
| | - Felipe Fantuzzi
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, Canterbury CT2 7NH, UK.
| |
Collapse
|
2
|
Araujo L, Fantuzzi F, Cardozo TM. Chemical Aristocracy: He 3 Dication and Analogous Noble-Gas-Exclusive Covalent Compounds. J Phys Chem Lett 2024; 15:3757-3763. [PMID: 38551487 PMCID: PMC11017316 DOI: 10.1021/acs.jpclett.4c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Herein, we predict the first set of covalently bonded triatomic molecular compounds composed exclusively of noble gases. Using a combination of double-hybrid DFT, CCSD(T), and MRCI+Q calculations and a range of bonding analyses, we explored a set of 270 doubly charged triatomics, which included various combinations of noble gases and main group elements. This extensive exploration uncovered nine noble-gas-exclusive covalent compounds incorporating helium, neon, argon, or combinations thereof, exemplified by cases such as He32+ and related systems. This work brings to light a previously uncharted domain of noble gas chemistry, demonstrating the potential of noble gases in forming covalent molecular clusters.
Collapse
Affiliation(s)
- Lucas Araujo
- Instituto
de Química, Universidade Federal
do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, Brazil
| | - Felipe Fantuzzi
- School
of Chemistry and Forensic Science, University
of Kent, Park Wood Road, Canterbury CT2 7NH, U.K.
| | - Thiago M. Cardozo
- Instituto
de Química, Universidade Federal
do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
3
|
Chan K, Ying F, He D, Yang L, Zhao Y, Xie J, Su JH, Wu B, Yang XJ. One-Electron (2c/1e) Tin···Tin Bond Stabilized by ortho-Phenylenediamido Ligands. J Am Chem Soc 2024; 146:2333-2338. [PMID: 38241610 DOI: 10.1021/jacs.3c11893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Odd-electron bonds, i.e., the two-center, three-electron (2c/3e), or one-electron (2c/1e) bonds, have attracted tremendous interest owing to their novel bonding nature and radical properties. Herein, complex [K(THF)6][LSn:···Sn:L] (1), featuring the first and unsupported 2c/1e Sn···Sn σ-bond with a long distance (3.2155(9) Å), was synthesized by reduction of stannylene [LSn:] (L = N,N-dpp-o-phenylene diamide) with KC8. The one-electron Sn-Sn bond in 1 was confirmed by the crystal structure, DFT calculations, EPR spectroscopy, and reactivity studies. This compound can be viewed as a stabilized radical by delocalizing to two metal centers and can readily mediate radical reactions such as C-C coupling of benzaldehyde.
Collapse
Affiliation(s)
- Kaiyip Chan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Fei Ying
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Dongyu He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Li Yang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Jing Xie
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Ji-Hu Su
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Biao Wu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
4
|
Echeverría J, Alvarez S. The borderless world of chemical bonding across the van der Waals crust and the valence region. Chem Sci 2023; 14:11647-11688. [PMID: 37920358 PMCID: PMC10619631 DOI: 10.1039/d3sc02238b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/01/2023] [Indexed: 11/04/2023] Open
Abstract
The definition of the van der Waals crust as the spherical section between the atomic radius and the van der Waals radius of an element is discussed and a survey of the application of the penetration index between two interacting atoms in a wide variety of covalent, polar, coordinative or noncovalent bonding situations is presented. It is shown that this newly defined parameter permits the comparison of bonding between pairs of atoms in structural and computational studies independently of the atom sizes.
Collapse
Affiliation(s)
- Jorge Echeverría
- Instituto de Síntesis Química y Catalisis Homogénea (ISQCH) and Departmento de Química Inorgánica, Facultad de Ciencias, Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Santiago Alvarez
- Department de Química Inorgànica i Orgànica, Secció de Química Inorgànica, e Institut de Química Teòrica i Computacional, Universitat de Barcelona Martí i Franquès 1-11 08028 -Barcelona Spain
| |
Collapse
|
5
|
Abstract
According to Ruedenberg's classic treatise on the theory of chemical bonding [K. Ruedenberg, Rev. Mod. Phys. 34, 326-376 (1962)], orbital contraction is an integral consequence of covalent bonding. While the concept is clear, its quantification by quantum chemical calculations is not straightforward, except for the simplest of molecules, such as H2 + and H2. This paper proposes a new, yet simple, approach to the problem, utilizing the modified atomic orbital (MAO) method of Ehrhardt and Ahlrichs [Theor. Chim. Acta 68, 231 (1985)]. Through the use of MAOs, which are an atom-centered minimal basis formed from the molecular and atomic density operators, the wave functions of the species of interest are re-expanded, allowing the computation of the kinetic energy (and any other expectation value) of free and bonded fragments. Thus, it is possible to quantify the intra- and interfragment changes in kinetic energy, i.e., the effects of contraction. Computations are reported for a number of diatomic molecules H2, Li2, B2, C2, N2, O2, F2, CO, P2, and Cl2 and the polyatomics CH3-CH3, CH3-SiH3, CH3-OH, and C2H5-C2H5 (where the single bonds between the heavy atoms are studied) as well as dimers of He, Ne, Ar, and the archetypal ionic molecule NaCl. In all cases, it is found that the formation of a covalent bond is accompanied by an increase in the intra-fragment kinetic energy, an indication of orbital contraction and/or deformation.
Collapse
Affiliation(s)
- George B Bacskay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Thimmakondu VS, Sinjari A, Inostroza D, Vairaprakash P, Thirumoorthy K, Roy S, Anoop A, Tiznado W. Why an integrated approach between search algorithms and chemical intuition is necessary? Phys Chem Chem Phys 2022; 24:11680-11686. [PMID: 35506427 DOI: 10.1039/d2cp00315e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Though search algorithms are appropriate tools for identifying low-energy isomers, fixing several constraints seems to be a fundamental prerequisite to successfully running any structural search program. This causes some potential setbacks as far as identifying all possible isomers, close to the lowest-energy isomer, for any elemental composition. The number of explored candidates, the choice of method, basis set, and availability of CPU time needed to analyze the various initial test structures become necessary restrictions in resolving the issues of structural isomerism reasonably. While one could arrive at new structures through chemical intuition, reproducing or achieving those exact same structures requires increasing the number of variables in any given program, which causes further constraints in exploring the potential energy surface in a reasonable amount of time. Thus, it is emphasized here that an integrated approach between search algorithms and chemical intuition is necessary by taking the C12O2Mg2 system as an example. Our initial search through the AUTOMATON program yielded 1450 different geometries. However, through chemical intuition, we found eighteen new geometries within 40.0 kcal mol-1 at the PBE0-D3/def2-TZVP level. These results indirectly emphasize that an integrated approach between search algorithms and chemical intuition is necessary to further our knowledge in chemical space for any given elemental composition.
Collapse
Affiliation(s)
- Venkatesan S Thimmakondu
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030, USA.
| | - Aland Sinjari
- School of Mathematics, Biological, Exercise & Physical Sciences, San Diego Miramar College, San Diego, CA, 92126-2910, USA
| | - Diego Inostroza
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Química, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile. .,Universidad Andres Bello, Programa de Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Santiago, Chile
| | - Pothiappan Vairaprakash
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore - 632 014, Tamil Nadu, India
| | - Saikat Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - William Tiznado
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Química, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile.
| |
Collapse
|
7
|
Charry Martinez J, Barborini M, Tkatchenko A. Correlated Wave Functions for Electron-Positron Interactions in Atoms and Molecules. J Chem Theory Comput 2022; 18:2267-2280. [PMID: 35333513 PMCID: PMC9009097 DOI: 10.1021/acs.jctc.1c01193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 11/29/2022]
Abstract
The positron, as the antiparticle of the electron, can form metastable states with atoms and molecules before its annihilation with an electron. Such metastable matter-positron complexes are stabilized by a variety of mechanisms, which can have both covalent and noncovalent character. Specifically, electron-positron binding often involves strong many-body correlation effects, posing a substantial challenge for quantum-chemical methods based on atomic orbitals. Here we propose an accurate, efficient, and transferable variational ansatz based on a combination of electron-positron geminal orbitals and a Jastrow factor that explicitly includes the electron-positron correlations in the field of the nuclei, which are optimized at the level of variational Monte Carlo (VMC). We apply this approach in combination with diffusion Monte Carlo (DMC) to calculate binding energies for a positron e+ and a positronium Ps (the pseudoatomic electron-positron pair), bound to a set of atomic systems (H-, Li+, Li, Li-, Be+, Be, B-, C-, O- and F-). For PsB, PsC, PsO, and PsF, our VMC and DMC total energies are lower than that from previous calculations; hence, we redefine the state of the art for these systems. To assess our approach for molecules, we study the potential-energy surfaces (PES) of two hydrogen anions H- mediated by a positron (e+H22-), for which we calculate accurate spectroscopic properties by using a dense interpolation of the PES. We demonstrate the reliability and transferability of our correlated wave functions for electron-positron interactions with respect to state-of-the-art calculations reported in the literature.
Collapse
Affiliation(s)
| | - Matteo Barborini
- Department of Physics and Materials
Science, University of Luxembourg, L-1511, Luxembourg
City, Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials
Science, University of Luxembourg, L-1511, Luxembourg
City, Luxembourg
| |
Collapse
|
8
|
de Sousa DWO, Nascimento MAC. Three-center two-electron bonds from the quantum interference perspective. Phys Chem Chem Phys 2022; 24:15958-15972. [DOI: 10.1039/d2cp00841f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nature of the three-center two-electron (3c2e) chemical bond is investigated by the Interference Energy Analysis (IEA) method and using of a SC(2, 3) (spin coupled wave function with two...
Collapse
|
9
|
Graziano BJ, Scott TR, Vollmer MV, Dorantes MJ, Young VG, Bill E, Gagliardi L, Lu CC. One-electron Bonds in Copper-Aluminum and Copper-Gallium Complexes. Chem Sci 2022; 13:6525-6531. [PMID: 35756529 PMCID: PMC9176199 DOI: 10.1039/d2sc01998a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Odd-electron bonds have unique electronic structures and are often encountered as transiently stable, homonuclear species. In this study, a pair of copper complexes supported by Group 13 metalloligands, M[N((o-C6H4)NCH2PiPr2)3] (M...
Collapse
Affiliation(s)
- Brendan J Graziano
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis Minnesota 55455 USA
| | - Thais R Scott
- Department of Chemistry, The University of Chicago, Searle Chemistry Laboratory 5735 South Ellis Avenue Chicago Illinois 60637 USA
| | - Matthew V Vollmer
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis Minnesota 55455 USA
| | - Michael J Dorantes
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis Minnesota 55455 USA
| | - Victor G Young
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis Minnesota 55455 USA
| | - Eckhard Bill
- Max Planck Institut für Chemische Energiekonversion Stiftstraβe 34-36 45470 Mülheim an der Ruhr Germany
| | - Laura Gagliardi
- Department of Chemistry, The University of Chicago, Searle Chemistry Laboratory 5735 South Ellis Avenue Chicago Illinois 60637 USA
| | - Connie C Lu
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis Minnesota 55455 USA
- Institut für Anorganische Chemie, Rheinische-Friedrich-Wilhelms Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
10
|
Ho SKY, Lam FYT, de Aguirre A, Maseras F, White AJP, Britovsek GJP. Photolytic Activation of Late-Transition-Metal–Carbon Bonds and Their Reactivity toward Oxygen. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sarah K. Y. Ho
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom
| | - Francis Y. T. Lam
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom
| | - Adiran de Aguirre
- Institute of Chemical Research of Catalonia, The Barcelona Institute for Science and Technology, Avgda. Països Catalans, 16, Tarragona 43007, Catalonia, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia, The Barcelona Institute for Science and Technology, Avgda. Països Catalans, 16, Tarragona 43007, Catalonia, Spain
| | - Andrew J. P. White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom
| | - George J. P. Britovsek
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom
| |
Collapse
|
11
|
Nascimento MAC. The Valence-Bond (VB) Model and Its Intimate Relationship to the Symmetric or Permutation Group. Molecules 2021; 26:molecules26154524. [PMID: 34361677 PMCID: PMC8347111 DOI: 10.3390/molecules26154524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 11/16/2022] Open
Abstract
VB and molecular orbital (MO) models are normally distinguished by the fact the first looks at molecules as a collection of atoms held together by chemical bonds while the latter adopts the view that each molecule should be regarded as an independent entity built up of electrons and nuclei and characterized by its molecular structure. Nevertheless, there is a much more fundamental difference between these two models which is only revealed when the symmetries of the many-electron Hamiltonian are fully taken into account: while the VB and MO wave functions exhibit the point-group symmetry, whenever present in the many-electron Hamiltonian, only VB wave functions exhibit the permutation symmetry, which is always present in the many-electron Hamiltonian. Practically all the conflicts among the practitioners of the two models can be traced down to the lack of permutation symmetry in the MO wave functions. Moreover, when examined from the permutation group perspective, it becomes clear that the concepts introduced by Pauling to deal with molecules can be equally applied to the study of the atomic structure. In other words, as strange as it may sound, VB can be extended to the study of atoms and, therefore, is a much more general model than MO.
Collapse
|
12
|
Pino‐Rios R, Inostroza D, Tiznado W. Neither too Classic nor too Exotic: One‐Electron Na⋅B Bond in NaBH
3
−
Cluster. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ricardo Pino‐Rios
- Laboratorio de Química teórica Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Av. Libertador Bernardo O'Higgins 3363 Santiago, Estación Central, Región Metropolitana Chile
| | - Diego Inostroza
- Universidad Andres Bello Programa de Doctorado en Fisicoquímica Molecular Facultad de Ciencias Exactas Santiago Chile
- Computational and Theoretical Chemistry Group Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andres Bello República 498 Santiago Chile
| | - William Tiznado
- Universidad Andres Bello Programa de Doctorado en Fisicoquímica Molecular Facultad de Ciencias Exactas Santiago Chile
- Computational and Theoretical Chemistry Group Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andres Bello República 498 Santiago Chile
| |
Collapse
|
13
|
de Sousa DWO, Nascimento MAC. Substituent Effects on the Quantum Interference of Two-Center One-Electron Bonds: [B 2X 6] - (X = H, F, Cl, CN, OH, CH 3, and OCH 3). J Phys Chem A 2021; 125:4558-4564. [PMID: 34014679 DOI: 10.1021/acs.jpca.1c02771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interference energy analysis (IEA) provided by the generalized product function energy partitioning (GPF-EP) method was applied to investigate the influence of the neighboring atoms on the nature of the two-center one-electron (2c1e) bonds in the anion dimers of BX3 species (X = H, F, Cl, CN, OH, CH3, and OCH3). The species were studied at the GVB-PP(6/12).SC(1,2)/6-31**G++ level of calculation. The IEA has revealed that there is a balance between two main factors determining the chemical stability of the species. Quantum interference acts as the sole stabilizing effect in the formation of the chemical bonds, particularly as the result of the drop in kinetic energy, and the electronegativity of the substituent has a direct influence on the magnitude of this effect. The quasi-classical energy is responsible for the destabilizing factors, mainly the group bulkiness, and the "electron-withdrawing" effect in the case of the cyano group.
Collapse
|
14
|
Pino-Rios R, Inostroza D, Tiznado W. Neither too Classic nor too Exotic: One-Electron Na⋅B Bond in NaBH 3 - Cluster. Angew Chem Int Ed Engl 2021; 60:12747-12753. [PMID: 33876517 DOI: 10.1002/anie.202101403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/17/2022]
Abstract
It is here reported that the NaBH3 - cluster exhibits a Na⋅B one-electron bond, a well-established type of electron-deficient bonding in the literature. The topological analysis of the electron localization function, at the correlated level, reveals that Na- , when approaching the bonding distance, fairly distributes its valence electron pair between two lobes. One of these electrons is used to bond with BH3 , which participates through its boron empty p-orbital. Furthermore, the bonding situation of LiBH3 - , KBH3 - , MgBH3 , and CaBH3 global minima structures are similar to that of NaBH3 - , extending the family of these new one-electron bond systems with biradicaloid character.
Collapse
Affiliation(s)
- Ricardo Pino-Rios
- Laboratorio de Química teórica, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Estación Central, Región Metropolitana, Chile
| | - Diego Inostroza
- Universidad Andres Bello, Programa de Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Santiago, Chile.,Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile
| | - William Tiznado
- Universidad Andres Bello, Programa de Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Santiago, Chile.,Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile
| |
Collapse
|
15
|
Oliveira MAS, Oliveira RSS, Borges I. Quantifying bond strengths via a Coulombic force model: application to the impact sensitivity of nitrobenzene, nitrogen-rich nitroazole, and non-aromatic nitramine molecules. J Mol Model 2021; 27:69. [PMID: 33543327 DOI: 10.1007/s00894-021-04669-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/12/2021] [Indexed: 11/28/2022]
Abstract
The quantification of bond strengths is a useful and general concept in chemistry. In this work, a Coulombic force model based on atomic electric charges computed using the accurate distributed multipole analysis (DMA) partition of the molecular charge density was employed to quantify the weakest N-NO2 and C-NO2 bond strengths of 19 nitrobenzene, 11 nitroazole, and 10 nitramine molecules. These bonds are known as trigger linkages because they are usually related to the initiation of an explosive. The three families of explosives combine different types of molecular properties and structures ranging from essentially aromatic molecules (nitrobenzenes) to others with moderate aromaticity (nitroazoles) and non-aromatic molecules with cyclic and acyclic skeletons (nitramines). We used the results to investigate the impact sensitivity of the corresponding explosives employing the trigger linkage concept. For this purpose, the computed Coulombic bond strength of the trigger linkages was used to build four sensitivity models that lead to an overall good agreement between the predicted values and available experimental sensitivity values even when the model included the three chemical families simultaneously. We discussed the role of the trigger linkages for determining the sensitivity of the explosives and rationalized eventual discrepancies in the models by examining alternative decomposition mechanisms and features of the molecular structures.
Collapse
Affiliation(s)
- Marco Aurélio Souza Oliveira
- Departamento de Química, Instituto Militar de Engenharia, Praça General Tibúrcio, 80, Rio de Janeiro, RJ, 22290-270, Brazil
| | | | - Itamar Borges
- Departamento de Química, Instituto Militar de Engenharia, Praça General Tibúrcio, 80, Rio de Janeiro, RJ, 22290-270, Brazil.
| |
Collapse
|
16
|
Yang J, Yang Y, Xie Z, Yu H, Huang Q, Xu Y, He J, Wen T, Liu Q. Ca 2+ mediated mechanism of octa-brominated dioxin/furan formation via BDE-209 thermolysis: Introducing the Mayer bond order difference. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123229. [PMID: 32585521 DOI: 10.1016/j.jhazmat.2020.123229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/29/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) that form during industrial thermal processes, such as the cement kiln co-processing of BDE-209, are highly toxic contaminants. Nevertheless, the formation mechanisms of octa-brominated dioxins/furans (OBDD/Fs), most PBDD/F congeners, and one precursor of the more toxic lower PBDD/Fs from BDE-209 have received little attention. In cement kiln co-processes, the Ca2+-mediated regulation of OBDD/F formation is still debated. In this study, simulation experiments revealed that the average brominating degree of PBDD/Fs was 7.8, indicating that OBDD/Fs are dominant congeners (93.6 % median). Density functional theory (DFT) calculations found a new transition state (TS1) with a lower energy barrier than that found in a previous study. Three major OBDD/F formation reactions suggested that the presence of Ca2+ was thermodynamically beneficial to the formation of OBDD/Fs. This promotion effect can be attributed to the transfer of electron density leading to a change in the Mayer bond order (MBO) among elements when Ca2+ was bound. Intriguingly, in the transition state structures of the Ca2+-bound and Ca2+-free systems, the MBO difference among the old and new bonds can reveal the difficulty of Ca2+-mediated OBDD/F formation reactions from BDE-209.
Collapse
Affiliation(s)
- Jinzhong Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Yufei Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Zhen Xie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Haibin Yu
- China National Environmental Monitoring Centre, Beijing 100012, PR China.
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Ya Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Jie He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Tao Wen
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Qingqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
17
|
Clarifying the quantum mechanical origin of the covalent chemical bond. Nat Commun 2020; 11:4893. [PMID: 32994392 PMCID: PMC7524788 DOI: 10.1038/s41467-020-18670-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/28/2020] [Indexed: 11/08/2022] Open
Abstract
Lowering of the electron kinetic energy (KE) upon initial encounter of radical fragments has long been cited as the primary origin of the covalent chemical bond based on Ruedenberg's pioneering analysis of H[Formula: see text] and H2 and presumed generalization to other bonds. This work reports KE changes during the initial encounter corresponding to bond formation for a range of different bonds; the results demand a re-evaluation of the role of the KE. Bonds between heavier elements, such as H3C-CH3, F-F, H3C-OH, H3C-SiH3, and F-SiF3 behave in the opposite way to H[Formula: see text] and H2, with KE often increasing on bringing radical fragments together (though the total energy change is substantially stabilizing). The origin of this difference is Pauli repulsion between the electrons forming the bond and core electrons. These results highlight the fundamental role of constructive quantum interference (or resonance) as the origin of chemical bonding. Differences between the interfering states distinguish one type of bond from another.
Collapse
|
18
|
Three-center two-electron bonds in the boranes B2H6 and B3H8− from the quantum interference perspective. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02654-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Racioppi S, Sironi A, Macchi P. On generalized partition methods for interaction energies. Phys Chem Chem Phys 2020; 22:24291-24298. [DOI: 10.1039/d0cp03087b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The breakdown of interaction energy has always been a very important means to understand chemical bonding and it has become a seamlessly useful tool for modern supramolecular chemistry.
Collapse
Affiliation(s)
- Stefano Racioppi
- Università degli Studi di Milano
- Dipartimento di Chimica A
- 20133 Milano
- Italy
- Department of Chemistry and Chemical Engineering
| | - Angelo Sironi
- Università degli Studi di Milano
- Dipartimento di Chimica A
- 20133 Milano
- Italy
| | - Piero Macchi
- Dipartimento di Chimica
- Materiali e Ingegneria Chimica Politecnico di Milano
- 20131 Milano
- Italy
- Italian Institute of technology
| |
Collapse
|
20
|
Fantuzzi F, Wolff W, Quitián-Lara HM, Boechat-Roberty HM, Hilgers G, Rudek B, Nascimento MAC. Unexpected reversal of stability in strained systems containing one-electron bonds. Phys Chem Chem Phys 2019; 21:24984-24992. [PMID: 31709438 DOI: 10.1039/c9cp04964a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ring strain energy is a very well documented feature of neutral cycloalkanes, and influences their structural, thermochemical and reactivity properties. In this work, we apply density functional theory and high-level coupled cluster calculations to describe the geometry and relative stability of C6H12+˙ radical cations, whose cyclic isomers are prototypes of singly-charged cycloalkanes. Molecular ions with the mentioned stoichiometry were produced via electron impact experiments using a gaseous cyclohexane sample (20-2000 eV). From our calculations, in addition to structures that resemble linear and branched alkenes as well as distinct conformers of cyclohexane, we have found low-lying species containing three-, four- and five-membered rings with the presence of an elongated C-C bond. Remarkably, the stability trend of these ring-bearing radical cations is anomalous, and the three-membered species are up to 11.3 kcal mol-1 more stable than the six-membered chair structure. Generalized Valence Bond calculations and the Spin Coupled theory with N electrons and M orbitals were used in conjunction with the Generalized Product Function Energy Partitioning (GPF-EP) method and Interference Energy Analysis (IEA) to describe the chemical bonding in such moieties. Our results confirm that these elongated C-C motifs are one-electron sigma bonds. Our calculations also reveal the effects that drive thermochemical preference of strained systems over their strained-free isomers, and the origin of the unusual stability trend observed for cycloalkane radical cations.
Collapse
Affiliation(s)
- Felipe Fantuzzi
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, 21941-909, Rio de Janeiro, Brazil. and Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany and Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Wania Wolff
- Instituto de Física, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, 21941-972, Rio de Janeiro, Brazil.
| | - Heidy M Quitián-Lara
- Observatório do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antônio 43, 20080-090, Rio de Janeiro, Brazil
| | - Heloisa M Boechat-Roberty
- Observatório do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antônio 43, 20080-090, Rio de Janeiro, Brazil
| | - Gerhard Hilgers
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - Benedikt Rudek
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany and Massachusetts General Hospital, Department of Radiation Oncology, 30 Fruit Street, Boston, MA 02114, USA
| | - Marco Antonio Chaer Nascimento
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, 21941-909, Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
Abstract
The possibility of multiple bond formation between Periodic Table Group 13 – 15 elements is considered. The ways of triple bond formation between these elements are discussed; particular attention is paid to the B≡B triple bonds. New non-linear compounds with triple bonds and their molecular structures are considered. The causes are given for the formation of compounds with unusually short distances between chemically non-bonded atoms. The grounds of the theory of two-centre three-electron bonds are presented and conditions of existence of isolated square planar carbon clusters are analyzed.
The bibliography includes 181 references.
Collapse
|
22
|
de Sousa DWO, Nascimento MAC. One-electron bonds are not "half-bonds". Phys Chem Chem Phys 2019; 21:13319-13336. [PMID: 31184654 DOI: 10.1039/c9cp02209k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the success of the molecular orbital (MO) and valence-bond (VB) models to describe the electronic structure and properties of molecules, neither MO nor VB provides an explanation for the nature of the chemical bond. The first to address this problem was Ruedenberg, who showed that chemical bonds result from quantum interference. He developed a method to calculate the interference contribution to the total electronic energy and density and applied it to molecules containing typical two-centre two-electron (2c-2e) covalent bonds. To test the generality of Ruedenberg's hypothesis, we developed a powerful Interference Energy Analysis (IEA) method to calculate the interference contributions of individual chemical bonds to the total energy of diatomic and polyatomic molecules, and showed that any two-electron bond, despite its polarity, results from quantum interference. Nevertheless, many stable molecules are experimentally known whose chemical structures clearly indicate the existence of two-centre one-electron bonds (2c-1e). Therefore, the question remains if quantum interference will be the dominant effect for these systems. This work describes the extension of the IEA for treating two-centre one-electron bonds, making use of a Generalised Product Function (GPF) built from spin coupled wave functions of N electrons in M orbitals, SC(N,M). Several diatomic and polyatomic molecules were analysed and whenever possible the results were compared with the analogous case of a two-electron bond. The results indicate that interference is the dominant effect for the one-electron bonds, which reinforces the role of quantum interference as the central element in chemical bonding theory.
Collapse
Affiliation(s)
- David Wilian Oliveira de Sousa
- Instituto de Química, Universidade Federal do Rio de Janeiro Cidade Universitária, CT Bloco A Sala 412, Rio de Janeiro, RJ 21941-909, Brazil.
| | | |
Collapse
|
23
|
Nance PJ, Thompson NB, Oyala PH, Peters JC. Zerovalent Rhodium and Iridium Silatranes Featuring Two-Center, Three-Electron Polar σ Bonds. Angew Chem Int Ed Engl 2019; 58:6220-6224. [PMID: 30759317 DOI: 10.1002/anie.201814206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/26/2019] [Indexed: 12/19/2022]
Abstract
Species with 2-center, 3-electron (2c/3e- ) σ bonds are of interest owing to their fascinating electronic structures and potential for interesting reactivity patterns. Report here is the synthesis and characterization of a pair of zerovalent (d9 ) trigonal pyramidal Rh and Ir complexes that feature 2c/3e- σ bonds to the Si atom of a tripodal tris(phosphine)silatrane ligand. X-ray diffraction, continuous wave and pulse electron paramagnetic resonance, density-functional theory calculations, and reactivity studies have been used to characterize these electronically distinctive compounds. The data available highlight a 2c/3e- bonding framework with a σ*-SOMO of metal 4- or 5dz 2 parentage that is partially stabilized by significant mixing with Si (3pz ) and metal (5- or 6pz ) orbitals. Metal-ligand covalency thus buffers the expected destabilization of transition-metal (TM)-silyl σ*-orbitals by d-p mixing, affording well-characterized examples of TM-main group, and hence polar, 2c/3e- σ "half-bonds".
Collapse
Affiliation(s)
- Patricia J Nance
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Niklas B Thompson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
24
|
Nance PJ, Thompson NB, Oyala PH, Peters JC. Zerovalent Rhodium and Iridium Silatranes Featuring Two‐Center, Three‐Electron Polar σ Bonds. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Patricia J. Nance
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Niklas B. Thompson
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Paul H. Oyala
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Jonas C. Peters
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
25
|
Abstract
Recently it has been proposed that the positron, the anti-particle analog of the electron, is capable of forming an anti-matter bond in a composite system consists of two hydride anions and a positron [Angew. Chem. Int. Ed. 57, 8859-8864 (2018)]. In order to dig into the nature of this novel bond the newly developed multi-component quantum theory of atoms in molecules (MC-QTAIM) is applied to this positronic system. The topological analysis reveals that this species is composed of two atoms in molecules, each containing a proton and half of the electronic and the positronic populations. Further analysis elucidates that the electron exchange phenomenon is virtually non-existent between the two atoms and no electronic covalent bond is conceivable in between. On the other hand, it is demonstrated that the positron density enclosed in each atom is capable of stabilizing interactions with the electron density of the neighboring atom. This electrostatic interaction suffices to make the whole system bonded against all dissociation channels. Thus, the positron indeed acts like an anti-matter glue between the two atoms.
Collapse
Affiliation(s)
- Mohammad Goli
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5531, Iran
| | - Shant Shahbazian
- Department of Physics, Shahid Beheshti University, G. C., Evin, Tehran, Iran, 19839, P.O. Box 19395-4716
| |
Collapse
|
26
|
Vollmer MV, Xie J, Cammarota RC, Young VG, Bill E, Gagliardi L, Lu CC. Formal Nickelate(−I) Complexes Supported by Group 13 Ions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Matthew V. Vollmer
- Department of Chemistry and Supercomputing Institute University of Minnesota 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Jing Xie
- Department of Chemistry and Supercomputing Institute University of Minnesota 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Ryan C. Cammarota
- Department of Chemistry and Supercomputing Institute University of Minnesota 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Victor G. Young
- Department of Chemistry and Supercomputing Institute University of Minnesota 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Eckhard Bill
- Max-Planck-Institut für chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Laura Gagliardi
- Department of Chemistry and Supercomputing Institute University of Minnesota 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Connie C. Lu
- Department of Chemistry and Supercomputing Institute University of Minnesota 207 Pleasant St. SE Minneapolis MN 55455 USA
| |
Collapse
|
27
|
Vollmer MV, Xie J, Cammarota RC, Young VG, Bill E, Gagliardi L, Lu CC. Formal Nickelate(-I) Complexes Supported by Group 13 Ions. Angew Chem Int Ed Engl 2018; 57:7815-7819. [PMID: 29719097 DOI: 10.1002/anie.201803356] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 11/08/2022]
Abstract
Formal nickelate(-I) complexes bearing Group 13 metalloligands (M=Al and Ga) were isolated. These 17 e- complexes were synthesized by one-electron reduction of the corresponding Ni0 →MIII precursors, and were investigated by single-crystal X-ray diffraction, EPR spectroscopy, and quantum chemical calculations. Collectively, the experimental and computational data support: 1) the strengthening of the Ni-M bond upon one-electron reduction, and 2) the delocalization of the unpaired spin across the Ni and M atoms. An intriguing electronic configuration is revealed where three valence electrons occupy two σ-type bonding interactions: Ni(3dz2 )2 →M and σ-(Ni-M)1 . The latter is an unusual Ni-M σ-bonding molecular orbital that comprises primarily the Ni 4pz and M npz /ns atomic orbitals.
Collapse
Affiliation(s)
- Matthew V Vollmer
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Jing Xie
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Ryan C Cammarota
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Victor G Young
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Eckhard Bill
- Max-Planck-Institut für chemische Energiekonversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Laura Gagliardi
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Connie C Lu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
28
|
Hydrogenated Benzene in Circumstellar Environments: Insights into the Photostability of Super-hydrogenated PAHs. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/1538-4357/aaa977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Barbosa AGH, Henriques AM, Monteiro JGS, Fleming FP, Esteves PM. The multiconfiguration Spin-Coupled approach for the description of the three-center two-electron chemical bond of some carbenium and nonclassical ions. Theor Chem Acc 2018. [DOI: 10.1007/s00214-017-2193-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Clark T. Polarization, donor-acceptor interactions, and covalent contributions in weak interactions: a clarification. J Mol Model 2017; 23:297. [PMID: 28956190 DOI: 10.1007/s00894-017-3473-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
The concepts of polarization (induction), charge transfer and covalent bonding contributions are discussed in terms of weak interactions. They are shown to be different incarnations of the same phenomenon, so that using polarization to describe them is most consistent as it is the only real, measurable and uniquely defined quantity of the three. Dispersion is discussed as a form of polarization within the Feynman description. Model calculations are described. Graphical abstract The electron density of a hydride ion (nucleus white) polarized by a single positive point charge (brown).
Collapse
Affiliation(s)
- Timothy Clark
- Computer-Chemie-Centrum, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany.
| |
Collapse
|