1
|
Wang B, Kim HJ, Bradley KM, Chen C, McLendon C, Yang Z, Benner SA. Joining Natural and Synthetic DNA Using Biversal Nucleotides: Efficient Sequencing of Six-Nucleotide DNA. J Am Chem Soc 2024; 146:35129-35138. [PMID: 39625448 DOI: 10.1021/jacs.4c11043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
By rearranging hydrogen bond donor and acceptor groups within a standard Watson-Crick geometry, DNA can add eight independently replicable nucleotides forming four additional not found in standard Terran DNA. For many applications, the orthogonal pairing of standard and nonstandard pairs offers a key advantage. However, other applications require standard and nonstandard nucleotides to communicate with each other. This is especially true when seeking to recruit high-throughput instruments (e.g., Illumina), designed to sequence standard 4-nucleotide DNA, to sequence DNA that includes added nucleotides. For this purpose, PCR workflows are needed to replace nonstandard nucleotides in (for example) a 6-letter DNA sequence by defined mixtures of standard nucleotides built from 4 nucleotides. High-throughput sequencing can then report the sequences of those mixtures to bioinformatic alignment tools, which infer the original 6-nucleotide sequence by analysis of the mixtures. Unfortunately, the intrinsic orthogonality of standard and nonstandard nucleotides often demand polymerases that violate pairing biophysics to do this replacement, leading to inefficiencies in this "transliteration" process. Thus, laboratory in vitro evolution (LIVE) using "anthropogenic evolvable genetic information systems" (AEGIS), an important "consumer" of new sequencing tools, has been slow to be democratized; robust sequencing is needed to identify the AegisBodies and AegisZymes that AEGIS-LIVE delivers. This work introduces a new way to connect synthetic and standard molecular biology: biversal nucleotides. In an example presented here, a pyrimidine analogue (pyridine-2-one, y) pairs with Watson-Crick geometry to both a nonstandard base (2-amino-8-imidazo-[1,2a]-1,3,5-triazin-[8H]-4-one, P, the Watson-Crick partner of 6-amino-5-nitro-[1H]-pyridin-2-one, Z) and a base that completes the Watson-Crick hydrogen bond pattern (2-amino-2'-deoxyadenosine, amA). PCR amplification of GACTZP DNA with dyTP delivers products where Z:P pairs are cleanly transliterated to A:T pairs. In parallel, PCR of the same GACTZP sample at higher pH delivers products where Z:P pairs are cleanly transliterated to C:G pairs. By allowing robust sequencing of 6-letter GACTZP DNA, this workflow will help democratize AEGIS-LIVE. Further, other implementations of the biversal concept can enable communication across and between standard DNA and synthetic DNA more generally.
Collapse
Affiliation(s)
- Bang Wang
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd, Alachua, Florida 32601, United States
- Firebird Biomolecular Sciences, LLC, Alachua, Florida 32601, United States
| | - Hyo-Joong Kim
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd, Alachua, Florida 32601, United States
| | - Kevin M Bradley
- Firebird Biomolecular Sciences, LLC, Alachua, Florida 32601, United States
| | - Cen Chen
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd, Alachua, Florida 32601, United States
| | - Chris McLendon
- Firebird Biomolecular Sciences, LLC, Alachua, Florida 32601, United States
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd, Alachua, Florida 32601, United States
- Firebird Biomolecular Sciences, LLC, Alachua, Florida 32601, United States
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd, Alachua, Florida 32601, United States
- Firebird Biomolecular Sciences, LLC, Alachua, Florida 32601, United States
| |
Collapse
|
2
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024; 124:11962-12005. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
3
|
Pradeep Kumar AK, Santra S, Ghosh D. Photophysics of Nitro-Substituted Unnatural Nucleic Acid Base. J Phys Chem A 2024; 128:9551-9558. [PMID: 39471278 DOI: 10.1021/acs.jpca.4c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The unnatural nucleic acid base (uNAB), 6-amino-3-methyl-5-nitropyridin-2(1H)one, often referred to as Z can form a base pair with the uNAB 2-aminoimidazo[1,2-a]-1,3,5-triazin-4(8H)-one (referred to as P) and is analogous to a guanine-cytosine (G-C) pair. However, it is well-known that the nonradiative decay pathway of the P-Z pair is significantly different from that of the G-C pair (Cui et al., Front. Chem. 2020, 8, 605117-605125). In this work, we study the excited state processes in Z using state-of-the-art multireference methods and dynamical techniques to ascertain the predominant nonradiative channels. We find that unlike in the natural NABs, the excited state processes in Z are driven primarily by the -NO2 group rotation. The electron-withdrawing effect of the -NO2 substituent plays a crucial role. We further ascertained that ultrafast deactivation channels are possible in Z and identified the stationary point geometries that are responsible for these channels.
Collapse
Affiliation(s)
| | - Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
Niu W, Guo J. Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology. Chem Rev 2024; 124:10577-10617. [PMID: 39207844 PMCID: PMC11470805 DOI: 10.1021/acs.chemrev.3c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Over the past two decades, genetic code expansion (GCE)-enabled methods for incorporating noncanonical amino acids (ncAAs) into proteins have significantly advanced the field of synthetic biology while also reaping substantial benefits from it. On one hand, they provide synthetic biologists with a powerful toolkit to enhance and diversify biological designs beyond natural constraints. Conversely, synthetic biology has not only propelled the development of ncAA incorporation through sophisticated tools and innovative strategies but also broadened its potential applications across various fields. This Review delves into the methodological advancements and primary applications of site-specific cellular incorporation of ncAAs in synthetic biology. The topics encompass expanding the genetic code through noncanonical codon addition, creating semiautonomous and autonomous organisms, designing regulatory elements, and manipulating and extending peptide natural product biosynthetic pathways. The Review concludes by examining the ongoing challenges and future prospects of GCE-enabled ncAA incorporation in synthetic biology and highlighting opportunities for further advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| |
Collapse
|
5
|
Jann C, Giofré S, Bhattacharjee R, Lemke EA. Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids. Chem Rev 2024; 124:10281-10362. [PMID: 39120726 PMCID: PMC11441406 DOI: 10.1021/acs.chemrev.3c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Over 500 natural and synthetic amino acids have been genetically encoded in the last two decades. Incorporating these noncanonical amino acids into proteins enables many powerful applications, ranging from basic research to biotechnology, materials science, and medicine. However, major challenges remain to unleash the full potential of genetic code expansion across disciplines. Here, we provide an overview of diverse genetic code expansion methodologies and systems and their final applications in prokaryotes and eukaryotes, represented by Escherichia coli and mammalian cells as the main workhorse model systems. We highlight the power of how new technologies can be first established in simple and then transferred to more complex systems. For example, whole-genome engineering provides an excellent platform in bacteria for enabling transcript-specific genetic code expansion without off-targets in the transcriptome. In contrast, the complexity of a eukaryotic cell poses challenges that require entirely new approaches, such as striving toward establishing novel base pairs or generating orthogonally translating organelles within living cells. We connect the milestones in expanding the genetic code of living cells for encoding novel chemical functionalities to the most recent scientific discoveries, from optimizing the physicochemical properties of noncanonical amino acids to the technological advancements for their in vivo incorporation. This journey offers a glimpse into the promising developments in the years to come.
Collapse
Affiliation(s)
- Cosimo Jann
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Sabrina Giofré
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Rajanya Bhattacharjee
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
International PhD Programme (IPP), 55128 Mainz, Germany
| | - Edward A. Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
6
|
Takezawa Y, Shionoya M. Enzymatic synthesis of ligand-bearing oligonucleotides for the development of metal-responsive DNA materials. Org Biomol Chem 2024; 22:7259-7270. [PMID: 38967487 DOI: 10.1039/d4ob00947a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Metal-mediated artificial base pairs are some of the most promising building blocks for constructing DNA-based supramolecules and functional materials. These base pairs are formed by coordination bonds between ligand-type nucleobases and a bridging metal ion and have been exploited to develop metal-responsive DNA materials and DNA-templated metal arrays. In this review, we provide an overview of methods for the enzymatic synthesis of DNA strands containing ligand-type artificial nucleotides that form metal-mediated base pairs. Conventionally, ligand-bearing DNA oligomers have been synthesized via solid-phase synthesis using a DNA synthesizer. In recent years, there has been growing interest in enzymatic methods as an alternative approach to synthesize ligand-bearing DNA oligomers, because enzymatic reactions proceed under mild conditions and do not require protecting groups. DNA polymerases are used to incorporate ligand-bearing unnatural nucleotides into DNA, and DNA ligases are used to connect artificial DNA oligomers to natural DNA fragments. Template-independent polymerases are also utilized to post-synthetically append ligand-bearing nucleotides to DNA oligomers. In addition, enzymatic replication of DNA duplexes containing metal-mediated base pairs has been intensively studied. Enzymatic methods facilitate the synthesis of DNA strands containing ligand-bearing nucleotides at both internal and terminal positions. Enzymatically synthesized ligand-bearing DNAs have been applied to metal-dependent self-assembly of DNA structures and the allosteric control of DNAzyme activity through metal-mediated base pairing. Therefore, the enzymatic synthesis of ligand-bearing oligonucleotides holds great potential in advancing the development of various metal-responsive DNA materials, such as molecular sensors and machines, providing a versatile tool for DNA supramolecular chemistry and nanotechnology.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.
| |
Collapse
|
7
|
Laatri S, El Khayari S, Qriouet Z. Exploring the molecular aspect and updating evolutionary approaches to the DNA polymerase enzymes for biotechnological needs: A comprehensive review. Int J Biol Macromol 2024; 276:133924. [PMID: 39033894 DOI: 10.1016/j.ijbiomac.2024.133924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
DNA polymerases are essential enzymes that play a key role in living organisms, as they participate in the synthesis and maintenance of the DNA molecule. The intrinsic properties of these enzymes have been widely observed and studied to understand their functions, activities, and behavior, which has allowed their natural power in DNA synthesis to be exploited in modern biotechnology, to the point of making them true pillars of the field. In this context, the laboratory evolution of these enzymes, either by directed evolution or rational design, has led to the generation of a wide range of new DNA polymerases with novel properties, suitable for a variety of biotechnological needs. In this review, we examine DNA polymerases at the molecular level, their biotechnological use, and their evolutionary methods in relation to the novel properties sought, providing a chronological selection of evolved DNA polymerases cited in the literature that we consider to be of great interest. To our knowledge, this work is the first to bring together the molecular, functional and evolutionary aspects of the DNA polymerase enzyme. We believe it will be of great interest to researchers whose aim is to produce new lines of evolved DNA polymerases.
Collapse
Affiliation(s)
- Said Laatri
- Microbiology and Molecular Biology Laboratory, Faculty of Sciences, Mohammed V-Souissi University, Rabat 10100, Morocco.
| | | | - Zidane Qriouet
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V-Souissi University, Rabat 10100, Morocco
| |
Collapse
|
8
|
Majekodunmi T, Britton D, Montclare JK. Engineered Proteins and Materials Utilizing Residue-Specific Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:9113-9135. [PMID: 39008623 PMCID: PMC11327963 DOI: 10.1021/acs.chemrev.3c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The incorporation of noncanonical amino acids into proteins and protein-based materials has significantly expanded the repertoire of available protein structures and chemistries. Through residue-specific incorporation, protein properties can be globally modified, resulting in the creation of novel proteins and materials with diverse and tailored characteristics. In this review, we highlight recent advancements in residue-specific incorporation techniques as well as the applications of the engineered proteins and materials. Specifically, we discuss their utility in bio-orthogonal noncanonical amino acid tagging (BONCAT), fluorescent noncanonical amino acid tagging (FUNCAT), threonine-derived noncanonical amino acid tagging (THRONCAT), cross-linking, fluorination, and enzyme engineering. This review underscores the importance of noncanonical amino acid incorporation as a tool for the development of tailored protein properties to meet diverse research and industrial needs.
Collapse
Affiliation(s)
- Temiloluwa Majekodunmi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department of Chemistry, New York University, New York, New York 10012, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States
- Department of Radiology, New York University Langone Health, New York, New York 10016, United States
| |
Collapse
|
9
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Wang B, Bradley KM, Kim MJ, Laos R, Chen C, Gerloff DL, Manfio L, Yang Z, Benner SA. Enzyme-assisted high throughput sequencing of an expanded genetic alphabet at single base resolution. Nat Commun 2024; 15:4057. [PMID: 38744910 PMCID: PMC11094070 DOI: 10.1038/s41467-024-48408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
With just four building blocks, low sequence information density, few functional groups, poor control over folding, and difficulties in forming compact folds, natural DNA and RNA have been disappointing platforms from which to evolve receptors, ligands, and catalysts. Accordingly, synthetic biology has created "artificially expanded genetic information systems" (AEGIS) to add nucleotides, functionality, and information density. With the expected improvements seen in AegisBodies and AegisZymes, the task for synthetic biologists shifts to developing for expanded DNA the same analytical tools available to natural DNA. Here we report one of these, an enzyme-assisted sequencing of expanded genetic alphabet (ESEGA) method to sequence six-letter AEGIS DNA. We show how ESEGA analyses this DNA at single base resolution, and applies it to optimized conditions for six-nucleotide PCR, assessing the fidelity of various DNA polymerases, and extending this to AEGIS components with functional groups. This supports the renewed exploitation of expanded DNA alphabets in biotechnology.
Collapse
Affiliation(s)
- Bang Wang
- Foundation for Applied Molecular Evolution, Alachua, FL, USA
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | | | | | - Roberto Laos
- Foundation for Applied Molecular Evolution, Alachua, FL, USA
| | - Cen Chen
- Foundation for Applied Molecular Evolution, Alachua, FL, USA
| | | | - Luran Manfio
- Foundation for Applied Molecular Evolution, Alachua, FL, USA
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution, Alachua, FL, USA.
- Firebird Biomolecular Sciences, LLC, Alachua, FL, USA.
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, FL, USA.
- Firebird Biomolecular Sciences, LLC, Alachua, FL, USA.
| |
Collapse
|
11
|
Chen XR, Jiang WJ, Guo QH, Liu XY, Cui G, Li L. Theoretical insights into the photophysics of an unnatural base Z: A MS-CASPT2 investigation. Photochem Photobiol 2024; 100:380-392. [PMID: 38041414 DOI: 10.1111/php.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/15/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023]
Abstract
We have employed the highly accurate multistate complete active space second-order perturbation theory (MS-CASPT2) method to investigate the photoinduced excited state relaxation properties of one unnatural base, namely Z. Upon excitation to the S2 state of Z, the internal conversion to the S1 state would be dominant. From the S1 state, two intersystem crossing paths leading to the T2 and T1 states and one internal conversion path to the S0 state are possible. However, considering the large barrier to access the S1 /S0 conical intersection and the strong spin-orbit coupling between S1 and T2 states (>40 cm-1 ), the intersystem crossing to the triplet manifolds is predicted to be more preferred. Arriving at the T2 state, the internal conversion to the T1 state and the intersystem crossing back to the S1 state are both possible considering the S1 /T2 /T1 three-state intersection near the T2 minimum. Upon arrival at the T1 state, the deactivation to S0 can be efficient after overcoming a small barrier to access T1 /S0 crossing point, where the spin-orbit coupling (SOC) is as large as 39.7 cm-1 . Our present work not only provides in-depth insights into the photoinduced process of unnatural base Z, but can also help the future design of novel unnatural bases with better photostability.
Collapse
Affiliation(s)
- Xin-Rui Chen
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, China
| | - Wen-Jun Jiang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, China
| | - Qian-Hong Guo
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
12
|
Debnath T, Cisneros GA. Investigation of the stability of D5SIC-DNAM-incorporated DNA duplex in Taq polymerase binary system: a systematic classical MD approach. Phys Chem Chem Phys 2024; 26:7287-7295. [PMID: 38353000 PMCID: PMC11078294 DOI: 10.1039/d3cp05571j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
DNA polymerases are fundamental enzymes that play a crucial role in processing DNA with high fidelity and accuracy ensuring the faithful transmission of genetic information. The recognition of unnatural base pairs (UBPs) by polymerases, enabling their replication, represents a significant and groundbreaking discovery with profound implications for genetic expansion. Romesberg et al. examined the impact of DNA containing 2,6-dimethyl-2H-isoquiniline-1-thione: D5SIC (DS) and 2-methoxy-3-methylnaphthalene: DNAM (DN) UBPs bound to T. aquaticus DNA polymerase (Taq) through crystal structure analysis. Here, we have used polarizable and nonpolarizable classical molecular dynamics (MD) simulations to investigate the structural aspects and stability of Taq in complex with a DNA duplex including a DS-DN pair in the terminal 3' and 5' positions. Our results suggest that the flexibility of UBP-incorporated DNA in the terminal position is arrested by the polymerase, thus preventing fraying and mispairing. Our investigation also reveals that the UBP remains in an intercalated conformation inside the active site, exhibiting two distinct orientations in agreement with experimental findings. Our analysis pinpoints particular residues responsible for favorable interactions with the UBP, with some relying on van der Waals interactions while other on Coulombic forces.
Collapse
Affiliation(s)
- Tanay Debnath
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
| | - G Andrés Cisneros
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA
| |
Collapse
|
13
|
Debnath T, Cisneros GA. Investigation of dynamical flexibility of D5SIC-DNAM inside DNA duplex in aqueous solution: a systematic classical MD approach. Phys Chem Chem Phys 2024; 26:7435-7445. [PMID: 38353005 PMCID: PMC11080001 DOI: 10.1039/d3cp05572h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Incorporation of artificial 3rd base pairs (unnatural base pairs, UBPs) has emerged as a fundamental technique in pursuit of expanding the genetic alphabet. 2,6-Dimethyl-2H-isoquiniline-1-thione: D5SIC (DS) and 2-methoxy-3-methylnaphthalene: DNAM (DN), a potential unnatural base pair (UBP) developed by Romesberg and colleagues, has been shown to have remarkable capability for replication within DNA. Crystal structures of a Taq polymerase/double-stranded DNA (ds-DNA) complex containing a DS-DN pair in the 3' terminus showed a parallelly stacked geometry for the pre-insertion, and an intercalated geometry for the post-insertion structure. Unconventional orientations of DS-DN inside a DNA duplex have inspired scientists to investigate the conformational orientations and structural properties of UBP-incorporated DNA. In recent years, computational simulations have been used to investigate the geometry of DS-DN within the DNA duplex; nevertheless, unresolved questions persist owing to inconclusive findings. In this work, we investigate the structural and dynamical properties of DS and DN inside a ds-DNA strand in aqueous solution considering both short and long DNA templates using polarizable, and non-polarizable classical MD simulations. Flexible conformational change of UBP with major populations of Watson-Crick-Franklin (WCF) and three distinct non-Watson-Crick-Franklin (nWCFP1, nWCFP2, nWCFO) conformations through intra and inter-strand flipping have been observed. Our results suggest that a dynamical conformational change leads to the production of diffierent conformational distribution for the systems. Simulations with a short ds-DNA duplex suggest nWCF (P1 and O) as the predominant structures, whereas long ds-DNA duplex simulations indicate almost equal populations of WCF, nWCFP1, nWCFO. DS-DN in the terminal position is found to be more flexible with occasional mispairing and fraying. Overall, these results suggest flexibility and dynamical conformational change of the UBP as well as indicate varied conformational distribution irrespective of starting orientation of the UBP and length og DNA strand.
Collapse
Affiliation(s)
- Tanay Debnath
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
| | - G Andrés Cisneros
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA
| |
Collapse
|
14
|
Wang J, Yu H. Threose nucleic acid as a primitive genetic polymer and a contemporary molecular tool. Bioorg Chem 2024; 143:107049. [PMID: 38150936 DOI: 10.1016/j.bioorg.2023.107049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Nucleic acids serve a dual role as both genetic materials in living organisms and versatile molecular tools for various applications. Threose nuclei acid (TNA) stands out as a synthetic genetic polymer, holding potential as a primitive genetic material and as a contemporary molecular tool. In this review, we aim to provide an extensive overview of TNA research progress in these two key aspects. We begin with a retrospect of the initial discovery of TNA, followed by an in-depth look at the structural features of TNA duplex and experimental assessment of TNA as a possible RNA progenitor during early evolution of life on Earth. In the subsequent section, we delve into the recent development of TNA molecular tools such as aptamers, catalysts and antisense oligonucleotides. We emphasize the practical application of functional TNA molecules in the realms of targeted protein degradation and selective gene silencing. Our review culminates with a discussion of future research directions and the technical challenges that remain to be addressed in the field of TNA research.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hanyang Yu
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
15
|
Wang B, Bradley KM, Kim MJ, Laos R, Chen C, Gerloff DL, Manfio L, Yang Z, Benner SA. Enzyme-Assisted High Throughput Sequencing of an Expanded Genetic Alphabet at Single Base Resolution. RESEARCH SQUARE 2023:rs.3.rs-3678081. [PMID: 38196584 PMCID: PMC10775363 DOI: 10.21203/rs.3.rs-3678081/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Many efforts have sought to apply laboratory in vitro evolution (LIVE) to natural nucleic acid (NA) scaffolds to directly evolve functional molecules. However, synthetic biology can move beyond natural NA scaffolds to create molecular systems whose libraries are far richer reservoirs of functionality than natural NAs. For example, "artificially expanded genetic information systems" (AEGIS) add up to eight nucleotides to the four found in standard NA. Even in its simplest 6-letter versions, AEGIS adds functional groups, information density, and folding motifs that natural NA libraries lack. To complete this vision, however, tools are needed to sequence molecules that are created by AEGIS LIVE. Previous sequencing approaches, including approaches from our laboratories, exhibited limited performance and lost many sequences in diverse library mixtures. Here, we present a new approach that enzymatically transforms the target AEGIS DNA. With higher transliteration efficiency and fidelity, this Enzyme-Assisted Sequencing of Expanded Genetic Alphabet (ESEGA) approach produces substantially better sequences of 6-letter (AGCTZP) DNA than previous transliteration approaches. Therefore, ESEGA facilitates precise analysis of libraries, allowing 'next-generation deep sequencing' to accurately quantify the sequences of 6-letter DNA molecules at single base resolution. We then applied ESEGA to three tasks: (a) defining optimal conditions to perform 6-nucleotide PCR (b) evaluating the fidelity of 6-nucleotide PCR with various DNA polymerases, and (c) extending that evaluation to AEGIS components functionalized with alkynyl and aromatic groups. No other approach at present has this scope, allowing this work to be the next step towards exploiting the potential of expanded DNA alphabets in biotechnology.
Collapse
Affiliation(s)
- Bang Wang
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd, Alachua, FL, USA, 32615
- Department of Chemistry, University of Florida, Gainesville, FL, USA, 32611
| | | | - Myong-Jung Kim
- Firebird Biomolecular Sciences, LLC, Alachua, FL, USA, 32615
| | - Roberto Laos
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd, Alachua, FL, USA, 32615
| | - Cen Chen
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd, Alachua, FL, USA, 32615
| | - Dietlind L. Gerloff
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd, Alachua, FL, USA, 32615
| | - Luran Manfio
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd, Alachua, FL, USA, 32615
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd, Alachua, FL, USA, 32615
- Firebird Biomolecular Sciences, LLC, Alachua, FL, USA, 32615
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd, Alachua, FL, USA, 32615
- Firebird Biomolecular Sciences, LLC, Alachua, FL, USA, 32615
| |
Collapse
|
16
|
Kowalski K. Synthesis and chemical transformations of glycol nucleic acid (GNA) nucleosides. Bioorg Chem 2023; 141:106921. [PMID: 37871392 DOI: 10.1016/j.bioorg.2023.106921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Xeno nucleic acids (XNA) are an increasingly important class of hypermodified nucleic acids with great potential in bioorganic chemistry and synthetic biology. Glycol nucleic acid (GNA) is constructed from a three-carbon 1,2-propanediol (propylene glycol) backbone attached to a nucleobase entity, representing the simplest known XNA. This review is intended to present GNA nucleosides from a synthetic chemistry perspective-a perspective that serves as a starting point for biological studies. Therefore this account focuses on synthetic methods for GNA nucleoside synthesis, as well as their postsynthetic chemical transformations. The properties and biological activity of GNA constituents are also highlighted. A literature survey shows four major approaches toward GNA nucleoside scaffold synthesis. These approaches pertain to glycidol ring-opening, Mitsunobu, SN2, and dihydroxylation reactions. The general arsenal of reactions used in GNA chemistry is versatile and encompasses the Sonogashira reaction, Michael addition, silyl-Hilbert-Johnson reaction, halogenation, alkylation, cyclization, Rh-catalyzed N-allylation, Sharpless catalytic dihydroxylation, and Yb(OTf)3-catalyzed etherification. Additionally, various phosphorylation reactions have enabled the synthesis of diverse types of GNA nucleotides, dinucleoside phosphates, phosphordiamidites, and oligos. Furthermore, recent advances in GNA chemistry have resulted in the synthesis of previously unknown redox-active (ferrocenyl) and luminescent (pyrenyl and phenanthrenyl) GNA nucleosides, which are also covered in this review.
Collapse
Affiliation(s)
- Konrad Kowalski
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, PL-91403 Lodz, Poland.
| |
Collapse
|
17
|
Huo B, Wang C, Hu X, Wang H, Zhu G, Zhu A, Li L. Peripheral substitution effects on unnatural base pairs: A case of brominated TPT3 to enhance replication fidelity. Bioorg Chem 2023; 140:106827. [PMID: 37683537 DOI: 10.1016/j.bioorg.2023.106827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The high fidelity poses a central role in developing unnatural base pairs (UBPs), which means the high pairing capacity of unnatural bases with their partners, and low mispairing with all the natural bases. Different strategies have been used to develop higher-fidelity UBPs, including optimizing hydrophobic interaction forces between UBPs. Variant substituent groups are allowed to fine tune the hydrophobic forces of different UBPs' candidates. However, the modifications on the skeleton of TPT3 base are rare and the replication fidelity of TPT3-NaM remains hardly to improve so far. In this paper, we reasoned that modifying and/or expanding the aromatic surface by Bromo-substituents to slightly increase hydrophobicity of TPT3 might offer a way to increase the fidelity of this pair. Based on the hypothesis, we synthesized the bromine substituted TPT3, 2-bromo-TPT3 and 2, 4-dibromo-TPT3 as the new TPT3 analogs. While the enzyme reaction kinetic experiments showed that d2-bromo-TPT3-dNaM pair and d2, 4-dibromo-TPT3TP-dNaM pair had slightly less efficient incorporation and extension rates than that of dTPT3-dNaM pair, the assays did reveal that the mispairing of 2-bromo-TPT3 and 2, 4-dibromo-TPT3 with all the natural bases could dramatically decrease in contrast to TPT3. Their lower mispairing capacity promoted us to run polymerase chain amplification reactions, and a higher fidelity of d2-bromo-TPT3-dNaM pair could be obtained with 99.72 ± 0.01% of the in vitro replication fidelity than that of dTPT3-dNaM pair, 99.52 ± 0.09%. In addition, d2-bromo-TPT3-dNaM can also be effectively copied in E. coli cells, which showed the same replication fidelity as that of dTPT3-dNaM in the specific sequence, but a higher fidelity in the random sequence context.
Collapse
Affiliation(s)
- Bianbian Huo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, China Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, China Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoqi Hu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, China Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan Normal University, Xinxiang, Henan 453007, China
| | - Honglei Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, China Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gongming Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, China Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan Normal University, Xinxiang, Henan 453007, China
| | - Anlian Zhu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lingjun Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, China Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan Normal University, Xinxiang, Henan 453007, China; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China; Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
18
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
19
|
Wang H, Zhu W, Wang C, Li X, Wang L, Huo B, Mei H, Zhu A, Zhang G, Li L. Locating, tracing and sequencing multiple expanded genetic letters in complex DNA context via a bridge-base approach. Nucleic Acids Res 2023; 51:e52. [PMID: 36971131 PMCID: PMC10201413 DOI: 10.1093/nar/gkad218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 06/11/2024] Open
Abstract
A panel of unnatural base pairs is developed to expand genetic alphabets. One or more unnatural base pairs (UBPs) can be inserted to enlarge the capacity, diversity, and functionality of canonical DNA, so monitoring the multiple-UBPs-containing DNA by simple and convenient approaches is essential. Herein, we report a bridge-base approach to repurpose the capability of determining TPT3-NaM UBPs. The success of this approach depends on the design of isoTAT that can simultaneously pair with NaM and G as a bridge base, as well as the discovering of the transformation of NaM to A in absence of its complementary base. TPT3-NaM can be transferred to C-G or A-T by simple PCR assays with high read-through ratios and low sequence-dependent properties, permitting for the first time to dually locate the multiple sites of TPT3-NaM pairs. Then we show the unprecedented capacity of this approach to trace accurate changes and retention ratios of multiple TPT3-NaM UPBs during in vivo replications. In addition, the method can also be applied to identify multiple-site DNA lesions, transferring TPT3-NaM makers to different natural bases. Taken together, our work presents the first general and convenient approach capable of locating, tracing, and sequencing site- and number-unlimited TPT3-NaM pairs.
Collapse
Affiliation(s)
- Honglei Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
- State Key Laboratory of Cell Differentiation Regulation and Target Drug, Henan Normal University, Xinxiang 453007, China
| | - Wuyuan Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chao Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaohuan Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Luying Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bianbian Huo
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
- State Key Laboratory of Cell Differentiation Regulation and Target Drug, Henan Normal University, Xinxiang 453007, China
| | - Hui Mei
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Anlian Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lingjun Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
- State Key Laboratory of Cell Differentiation Regulation and Target Drug, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
20
|
Wang Z, Ma W, Fu X, Qi Y, Zhao Y, Zhang S. Development and applications of mRNA treatment based on lipid nanoparticles. Biotechnol Adv 2023; 65:108130. [PMID: 36933868 DOI: 10.1016/j.biotechadv.2023.108130] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/06/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Nucleic acid-based therapies such as messenger RNA have the potential to revolutionize modern medicine and enhance the performance of existing pharmaceuticals. The key challenges of mRNA-based therapies are delivering the mRNA safely and effectively to the target tissues and cells and controlling its release from the delivery vehicle. Lipid nanoparticles (LNPs) have been widely studied as drug carriers and are considered to be state-of-the-art technology for nucleic acid delivery. In this review, we begin by presenting the advantages and mechanisms of action of mRNA therapeutics. Then we discuss the design of LNP platforms based on ionizable lipids and the applications of mRNA-LNP vaccines for prevention of infectious diseases and for treatment of cancer and various genetic diseases. Finally, we describe the challenges and future prospects of mRNA-LNP therapeutics.
Collapse
Affiliation(s)
- Zhe Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Wanting Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Xingxing Fu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
21
|
Langlois NI, Ma KY, Clark HA. Nucleic acid nanostructures for in vivo applications: The influence of morphology on biological fate. APPLIED PHYSICS REVIEWS 2023; 10:011304. [PMID: 36874908 PMCID: PMC9869343 DOI: 10.1063/5.0121820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/12/2022] [Indexed: 05/23/2023]
Abstract
The development of programmable biomaterials for use in nanofabrication represents a major advance for the future of biomedicine and diagnostics. Recent advances in structural nanotechnology using nucleic acids have resulted in dramatic progress in our understanding of nucleic acid-based nanostructures (NANs) for use in biological applications. As the NANs become more architecturally and functionally diverse to accommodate introduction into living systems, there is a need to understand how critical design features can be controlled to impart desired performance in vivo. In this review, we survey the range of nucleic acid materials utilized as structural building blocks (DNA, RNA, and xenonucleic acids), the diversity of geometries for nanofabrication, and the strategies to functionalize these complexes. We include an assessment of the available and emerging characterization tools used to evaluate the physical, mechanical, physiochemical, and biological properties of NANs in vitro. Finally, the current understanding of the obstacles encountered along the in vivo journey is contextualized to demonstrate how morphological features of NANs influence their biological fates. We envision that this summary will aid researchers in the designing novel NAN morphologies, guide characterization efforts, and design of experiments and spark interdisciplinary collaborations to fuel advancements in programmable platforms for biological applications.
Collapse
Affiliation(s)
- Nicole I. Langlois
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Kristine Y. Ma
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
22
|
Romesberg FE. Discovery, implications and initial use of semi-synthetic organisms with an expanded genetic alphabet/code. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220030. [PMID: 36633274 PMCID: PMC9835597 DOI: 10.1098/rstb.2022.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/25/2022] [Indexed: 01/13/2023] Open
Abstract
Much recent interest has focused on developing proteins for human use, such as in medicine. However, natural proteins are made up of only a limited number of canonical amino acids with limited functionalities, and this makes the discovery of variants with some functions difficult. The ability to recombinantly express proteins containing non-canonical amino acids (ncAAs) with properties selected to impart the protein with desired properties is expected to dramatically improve the discovery of proteins with different functions. Perhaps the most straightforward approach to such an expansion of the genetic code is through expansion of the genetic alphabet, so that new codon/anticodon pairs can be created to assign to ncAAs. In this review, I briefly summarize more than 20 years of effort leading ultimately to the discovery of synthetic nucleotides that pair to form an unnatural base pair, which when incorporated into DNA, is stably maintained, transcribed and used to translate proteins in Escherichia coli. In addition to discussing wide ranging conceptual implications, I also describe ongoing efforts at the pharmaceutical company Sanofi to employ the resulting 'semi-synthetic organisms' or SSOs, for the production of next-generation protein therapeutics. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Floyd E. Romesberg
- Platform Innovation, Synthorx, a Sanofi Company, 11099 N. Torrey Pines Road, Suite 190, La Jolla, CA 92037, USA
| |
Collapse
|
23
|
Rajasree SC, Takezawa Y, Shionoya M. Cu II-mediated stabilisation of DNA duplexes bearing consecutive ethenoadenine lesions and its application to a metal-responsive DNAzyme. Chem Commun (Camb) 2023; 59:1006-1009. [PMID: 36524578 DOI: 10.1039/d2cc06179a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-mediated nucleobase pairing can play a central role in the expression of metal-responsive DNA functions. We report the CuII-mediated stabilisation of DNA duplexes bearing damaged nucleobases, 1,N6-ethenoadenine (εA), as metal-binding sites, which was utilised to construct a metal-responsive DNAzyme. Consecutive incorporation of three or more εA-εA mismatch pairs allowed for CuII-dependent significant duplex stabilisation through metal-mediated εA-CuII-εA base pairing. Subsequently, a split DNAzyme with three εA-CuII-εA base pairs was strategically designed. The activity of the εA-modified DNAzyme was enhanced by 5.3-fold upon addition of CuII ions. This study demonstrates the utility of εA lesions for building metal-responsive DNA architectures.
Collapse
Affiliation(s)
- Silpa Chandran Rajasree
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
24
|
Hu L, Takezawa Y, Shionoya M. Cu II-mediated DNA base pairing of a triazole-4-carboxylate nucleoside prepared by click chemistry. Chem Commun (Camb) 2023; 59:892-895. [PMID: 36594822 DOI: 10.1039/d2cc06205d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Artificial metal-mediated DNA base pairing is a promising strategy for creating highly functionalized DNA supramolecules. Here we report a novel ligand-type triazole-4-carboxylate (TazC) nucleoside that is readily prepared by the click reaction. TazC nucleosides were found to form a stable TazC-CuII-TazC base pair inside DNA duplexes, resulting in CuII-specific duplex stabilization (ΔTm = +7.7 °C). This study demonstrates that the triazole derivatives are useful in the development of metal-mediated base pairing.
Collapse
Affiliation(s)
- Lingyun Hu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
25
|
Lakshman MK. Base Modifications of Nucleosides via the Use of Peptide-Coupling Agents, and Beyond. CHEM REC 2023; 23:e202200182. [PMID: 36166699 DOI: 10.1002/tcr.202200182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/26/2022] [Indexed: 01/24/2023]
Abstract
Several naturally occurring purine and pyrimidine nucleosides contain an amide linkage as part of the heterocyclic aglycone. Enolization of the amide and conversion to leaving groups at the amide carbon atom permits base modification by addition-elimination types of processes. Although a number of methods have been developed over the years for accomplishing such conversions, the present Personal Account describes efforts from the Lakshman laboratories. Facile activation of the amido groups in nucleobases can be achieved with peptide-coupling agents. Subsequent reaction with nucleophiles then accomplishes the base modifications. In many cases, the activation and displacement steps can be done as two-step, one-pot processes, whereas in other cases, discrete storable activated nucleosides can be isolated for subsequent displacement reactions. Using such an approach a wide range of nucleoside base modifications is readily achievable. In many instances, mechanistic investigations have been conducted so as to understand the activation process.
Collapse
Affiliation(s)
- Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.,The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
26
|
Abstract
To expand the existing genetic letters beyond the natural four nucleotides, such as G, C, A, and T, it is necessary to design robust nucleotides that can not only produce stable and unperturbed DNA but also function naturally in living cells. Although hydrophobic bases, such as d5SICS (2,6-dimethyl-2H-isoquiniline-1-thione) and dNaM (2-methoxy-3-methylnaphthalene) were shown to be replicated in bacterial cells, the d5SICS:dNaM base-pair was found to perturb the structure of the duplex DNA. Therefore, it is necessary to design nucleobases that can form base pairs like the natural G:C and A:T pairs. Here, a reliable dispersion-corrected density functional theory has been used to design several nucleobases that can produce three-hydrogen-bonded base pairs like the G:C pair. In doing so, the Watson-Crick faces of d5SICS and dNaM were modified by replacing the hydrophobic groups with hydrogen bond donors and acceptors. As dNaM contains an unnatural C-glycosidic bond (C-dNaM), it was also modified to contain the natural N-glycosidic bond (N-dNaM). This technique produced 91 new bases (N-d5SICS-X (X = 1-33), C-dNaM-X (X = 1-35), and N-dNaM-X (X = 1-23), where X is the different types of modifications applied to d5SICS and dNaM) and 259 base-pairs. Among these base pairs, 76 base pairs are found to be more stable than the G:C pair. Interestingly, the N-d5SICS-32:C-dNaM-32 and N-d5SICS-32:N-dNaM-20 pairs are found to be the most stable with binding energies of about -28.0 kcal/mol. The base-pair patterns of these pairs are also analogous to that of the G:C pair. Hence, it is proposed that N-d5SICS-32, C-dNaM-32, and N-dNaM-20 would act as efficient new genetic letters to produce stable and unperturbed artificial DNA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Khamaria, Jabalpur, India
| | - P Das
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Khamaria, Jabalpur, India
| |
Collapse
|
27
|
Wang G, He C, Zou J, Liu J, Du Y, Chen T. Enzymatic Synthesis of DNA with an Expanded Genetic Alphabet Using Terminal Deoxynucleotidyl Transferase. ACS Synth Biol 2022; 11:4142-4155. [PMID: 36455255 DOI: 10.1021/acssynbio.2c00456] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Development of unnatural base pairs (UBPs) has significantly expanded the genetic alphabet both in vitro and in vivo and led to numerous potential applications in the biotechnology and biopharmaceutical industry. Efficient synthesis of oligonucleotides containing unnatural nucleobases is undoubtedly an essential prerequisite for making full use of the UBPs, and de novo synthesis of oligonucleotides with terminal deoxynucleotidyl transferases (TdTs) has emerged as a method of great potential to overcome limitations of traditional solid-phase synthesis. Herein, we report the efficient template-independent incorporation of nucleotides of unnatural nucleobases dTPT3 and dNaM, which have been designed to make one of the most successful UBPs to date, dTPT3-dNaM, into DNA oligonucleotides with a TdT enzyme under optimized conditions. We also demonstrate the efficient TdT incorporation of dTPT3 derivatives with different functional linkers into oligonucleotides for orthogonal labeling of nucleic acids and applications thereof. The development of a method for the daily laboratory preparation of DNAs with UBPs at arbitrary sites with the assistance of TdT is also described.
Collapse
Affiliation(s)
- Guangyuan Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chuanping He
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jinrong Zou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jiayun Liu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
28
|
Tellurium-Modified Nucleosides, Nucleotides, and Nucleic Acids with Potential Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238379. [PMID: 36500495 PMCID: PMC9737395 DOI: 10.3390/molecules27238379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Tellurium was successfully incorporated into proteins and applied to protein structure determination through X-ray crystallography. However, studies on tellurium modification of DNA and RNA are limited. This review highlights the recent development of Te-modified nucleosides, nucleotides, and nucleic acids, and summarizes the main synthetic approaches for the preparation of 5-PhTe, 2'-MeTe, and 2'-PhTe modifications. Those modifications are compatible with solid-phase synthesis and stable during Te-oligonucleotide purification. Moreover, the ideal electronic and atomic properties of tellurium for generating clear isomorphous signals give Te-modified DNA and RNA great potential applications in 3D crystal structure determination through X-ray diffraction. STM study also shows that Te-modified DNA has strong topographic and current peaks, which immediately suggests potential applications in nucleic acid direct imaging, nanomaterials, molecular electronics, and diagnostics. Theoretical studies indicate the potential application of Te-modified nucleosides in cancer therapy.
Collapse
|
29
|
Zhu W, Wang H, Li X, Tie W, Huo B, Zhu A, Li L. Amplification, Enrichment, and Sequencing of Mutagenic Methylated DNA Adduct through Specifically Pairing with Unnatural Nucleobases. J Am Chem Soc 2022; 144:20165-20170. [DOI: 10.1021/jacs.2c06110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wuyuan Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
- State Key Laboratory of Cell Differentiation Regulation and Target Drug, Henan Normal University, Xinxiang 453007, China
| | - Honglei Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaohuan Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wenchao Tie
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bianbian Huo
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Anlian Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lingjun Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
- State Key Laboratory of Cell Differentiation Regulation and Target Drug, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
30
|
Huo B, Zhang X, Wang C, Wang H, Zhu G, Zhu W, Zhu A, Mei H, Li L. Mechanistic Insight into the Photoinduced Damage of an Unnatural Base Pair. Chemistry 2022; 28:e202201730. [DOI: 10.1002/chem.202201730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Bianbian Huo
- Department Henan Key Laboratory of Organic Functional Molecule and Drug Innovation Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Key Laboratory of Green Chemical Media and Reactions Ministry of Education Henan Normal University Xinxiang Henan 453007 P. R. China
- State Key Laboratory of Cell Differentiation Regulation and Target Drug Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Xiguang Zhang
- Department Henan Key Laboratory of Organic Functional Molecule and Drug Innovation Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Key Laboratory of Green Chemical Media and Reactions Ministry of Education Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Chao Wang
- Department Henan Key Laboratory of Organic Functional Molecule and Drug Innovation Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Key Laboratory of Green Chemical Media and Reactions Ministry of Education Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Honglei Wang
- Department Henan Key Laboratory of Organic Functional Molecule and Drug Innovation Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Key Laboratory of Green Chemical Media and Reactions Ministry of Education Henan Normal University Xinxiang Henan 453007 P. R. China
- State Key Laboratory of Cell Differentiation Regulation and Target Drug Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Gongming Zhu
- Department Henan Key Laboratory of Organic Functional Molecule and Drug Innovation Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Key Laboratory of Green Chemical Media and Reactions Ministry of Education Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Wuyuan Zhu
- Department Henan Key Laboratory of Organic Functional Molecule and Drug Innovation Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Key Laboratory of Green Chemical Media and Reactions Ministry of Education Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Anlian Zhu
- Department Henan Key Laboratory of Organic Functional Molecule and Drug Innovation Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Key Laboratory of Green Chemical Media and Reactions Ministry of Education Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Hui Mei
- Shenzhen Key Laboratory of Synthetic Genomics Guangdong Provincial Key Laboratory of Synthetic Genomics CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Lingjun Li
- Department Henan Key Laboratory of Organic Functional Molecule and Drug Innovation Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Key Laboratory of Green Chemical Media and Reactions Ministry of Education Henan Normal University Xinxiang Henan 453007 P. R. China
- State Key Laboratory of Cell Differentiation Regulation and Target Drug Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
31
|
Song Z, Liang Y, Yang J. Nanopore Detection Assisted DNA Information Processing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183135. [PMID: 36144924 PMCID: PMC9504103 DOI: 10.3390/nano12183135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 05/27/2023]
Abstract
The deoxyribonucleotide (DNA) molecule is a stable carrier for large amounts of genetic information and provides an ideal storage medium for next-generation information processing technologies. Technologies that process DNA information, representing a cross-disciplinary integration of biology and computer techniques, have become attractive substitutes for technologies that process electronic information alone. The detailed applications of DNA technologies can be divided into three components: storage, computing, and self-assembly. The quality of DNA information processing relies on the accuracy of DNA reading. Nanopore detection allows researchers to accurately sequence nucleotides and is thus widely used to read DNA. In this paper, we introduce the principles and development history of nanopore detection and conduct a systematic review of recent developments and specific applications in DNA information processing involving nanopore detection and nanopore-based storage. We also discuss the potential of artificial intelligence in nanopore detection and DNA information processing. This work not only provides new avenues for future nanopore detection development, but also offers a foundation for the construction of more advanced DNA information processing technologies.
Collapse
Affiliation(s)
- Zichen Song
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuan Liang
- Department of Computer Science and Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
32
|
Wu KB, Skrodzki CJA, Su Q, Lin J, Niu J. "Click handle"-modified 2'-deoxy-2'-fluoroarabino nucleic acid as a synthetic genetic polymer capable of post-polymerization functionalization. Chem Sci 2022; 13:6873-6881. [PMID: 35774169 PMCID: PMC9200136 DOI: 10.1039/d2sc00679k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023] Open
Abstract
The functions of natural nucleic acids such as DNA and RNA have transcended genetic information carriers and now encompass affinity reagents, molecular catalysts, nanostructures, data storage, and many others. However, the vulnerability of natural nucleic acids to nuclease degradation and the lack of chemical functionality have imposed a significant constraint on their ever-expanding applications. Herein, we report the synthesis and polymerase recognition of a 5-(octa-1,7-diynyl)uracil 2'-deoxy-2'-fluoroarabinonucleic acid (FANA) triphosphate. The DNA-templated, polymerase-mediated primer extension using this "click handle"-modified FANA (cmFANA) triphosphate and other FANA nucleotide triphosphates consisting of canonical nucleobases efficiently generated full-length products. The resulting cmFANA polymers exhibited excellent nuclease resistance and the ability to undergo efficient click conjugation with azide-functionalized molecules, thereby becoming a promising platform for serving as a programmable and evolvable synthetic genetic polymer capable of post-polymerization functionalization.
Collapse
Affiliation(s)
- Kevin B Wu
- Department of Chemistry, Boston College 2609 Beacon Street, Chestnut Hill MA 20467 USA
| | | | - Qiwen Su
- Department of Chemistry, Boston College 2609 Beacon Street, Chestnut Hill MA 20467 USA
| | - Jennifer Lin
- Department of Chemistry, Boston College 2609 Beacon Street, Chestnut Hill MA 20467 USA
| | - Jia Niu
- Department of Chemistry, Boston College 2609 Beacon Street, Chestnut Hill MA 20467 USA
| |
Collapse
|
33
|
Bornewasser L, Domnick C, Kath-Schorr S. Stronger together for in-cell translation: natural and unnatural base modified mRNA. Chem Sci 2022; 13:4753-4761. [PMID: 35655897 PMCID: PMC9067582 DOI: 10.1039/d2sc00670g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
The preparation of highly modified mRNAs and visualization of their cellular distribution are challenging. We report in-cell application of in vitro transcribed mRNA containing natural base modifications and site-specifically introduced artificial nucleotides. Click chemistry on mRNA allows visualization in cells with excellent signal intensities. While non-specific introduction of reporter groups often leads to loss in mRNA functionality, we combined the benefits from site-specificity in the 3′-UTR incorporated unnatural nucleotides with the improved translation efficiency of the natural base modifications Ψ and 5mC. A series of experiments is described to observe, quantify and verify mRNA functionality. This approach represents a new way to visualize mRNA delivery into cells and monitor its spread on a cellular level and translation efficiency. We observed increased protein expression from this twofold chemically modified, artificial mRNA counterbalancing a reduced transfection rate. This synergetic effect can be exploited as a powerful tool for future research on mRNA therapeutics. Introducing unnatural base modifications site-specifically into the 3′-UTR of an mRNA bearing natural base modifications allows efficient visualization in cells by click chemistry. An enhanced protein expression in cells is observed from this twofold modified mRNA.![]()
Collapse
Affiliation(s)
- Lisa Bornewasser
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Christof Domnick
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Stephanie Kath-Schorr
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| |
Collapse
|
34
|
Hu L, Takezawa Y, Shionoya M. Metal-mediated DNA base pairing of easily prepared 2-oxo-imidazole-4-carboxylate nucleotides. Chem Sci 2022; 13:3977-3983. [PMID: 35440985 PMCID: PMC8985573 DOI: 10.1039/d2sc00926a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
Metal-mediated DNA base pairs, which consist of two ligand-type artificial nucleobases and a bridging metal ion, have attracted increasing attention in recent years as a different base pairing mode from natural base pairing. Metal-mediated base pairing has been extensively studied, not only for metal-dependent thermal stabilisation of duplexes, but also for metal assembly by DNA templates and construction of functional DNAs that can be controlled by metals. Here, we report the metal-mediated base paring properties of a novel 2-oxo-imidazole-4-carboxylate (ImOC) nucleobase and a previously reported 2-oxo-imidazole-4-carboxamide (ImOA) nucleobase, both of which can be easily derived from a commercially available uridine analogue. The ImOC nucleobases were found to form stable ImOC–CuII–ImOC and ImOC–HgII–ImOC base pairs in the presence of the corresponding metal ions, leading to an increase in the duplex melting temperature by +20 °C and +11 °C, respectively. The ImOC bases did not react with other divalent metal ions and showed superior metal selectivity compared to similar nucleobase design reported so far. The ImOC–CuII–ImOC base pair was much more stable than mismatch pairs with other natural nucleobases, confirming the base pair specificity in the presence of CuII. Furthermore, we demonstrated the quantitative assembly of three CuII ions inside a DNA duplex with three consecutive ImOC–ImOC pairs, showing great potential of DNA-template based CuII nanoarray construction. The study of easily-prepared ImOC base pairs will provide a new design strategy for metal-responsive DNA materials. A novel 2-oxo-imidazole-4-carboxylate (ImOC) nucleobase, which can be easily derived from a commercially available uridine analogue, was found to form stable CuII- and HgII-mediated base pairs in DNA duplexes.![]()
Collapse
Affiliation(s)
- Lingyun Hu
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
35
|
Kumar V, Rozners E. Fluorobenzene Nucleobase Analogues for Triplex-Forming Peptide Nucleic Acids. Chembiochem 2022; 23:e202100560. [PMID: 34889020 PMCID: PMC8935525 DOI: 10.1002/cbic.202100560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/24/2021] [Indexed: 02/06/2023]
Abstract
2,4-Difluorotoluene is a nonpolar isostere of thymidine that has been used as a powerful mechanistic probe to study the role of hydrogen bonding in nucleic acid recognition and interactions with polymerases. In the present study, we evaluated five fluorinated benzenes as nucleobase analogues in peptide nucleic acids designed for triple helical recognition of double helical RNA. We found that analogues having para and ortho fluorine substitution patterns (as in 2,4-difluorotoluene) selectively stabilized Hoogsteen triplets with U-A base pairs. The results were consistent with attractive electrostatic interactions akin to non-canonical F to H-N and C-H to N hydrogen bonding. The fluorinated nucleobases were not able to stabilize Hoogsteen-like triplets with pyrimidines in either G-C or A-U base pairs. Our results illustrate the ability of fluorine to engage in non-canonical base pairing and provide insights into triple helical recognition of RNA.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Chemistry, Binghamton University, Binghamton, New York, 13902, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, Binghamton, New York, 13902, USA
| |
Collapse
|
36
|
Zhu G, Song P, Wu J, Luo M, Chen Z, Chen T. Application of Nucleic Acid Frameworks in the Construction of Nanostructures and Cascade Biocatalysts: Recent Progress and Perspective. Front Bioeng Biotechnol 2022; 9:792489. [PMID: 35071205 PMCID: PMC8777461 DOI: 10.3389/fbioe.2021.792489] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids underlie the storage and retrieval of genetic information literally in all living organisms, and also provide us excellent materials for making artificial nanostructures and scaffolds for constructing multi-enzyme systems with outstanding performance in catalyzing various cascade reactions, due to their highly diverse and yet controllable structures, which are well determined by their sequences. The introduction of unnatural moieties into nucleic acids dramatically increased the diversity of sequences, structures, and properties of the nucleic acids, which undoubtedly expanded the toolbox for making nanomaterials and scaffolds of multi-enzyme systems. In this article, we first introduce the molecular structures and properties of nucleic acids and their unnatural derivatives. Then we summarized representative artificial nanomaterials made of nucleic acids, as well as their properties, functions, and application. We next review recent progress on constructing multi-enzyme systems with nucleic acid structures as scaffolds for cascade biocatalyst. Finally, we discuss the future direction of applying nucleic acid frameworks in the construction of nanomaterials and multi-enzyme molecular machines, with the potential contribution that unnatural nucleic acids may make to this field highlighted.
Collapse
Affiliation(s)
- Gan Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ping Song
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jing Wu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Minglan Luo
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhipeng Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
37
|
Wang H, Wang L, Ma N, Zhu W, Huo B, Zhu A, Li L. Access to Photostability-Enhanced Unnatural Base Pairs via Local Structural Modifications. ACS Synth Biol 2022; 11:334-342. [PMID: 34889587 DOI: 10.1021/acssynbio.1c00451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Completing the storage and retrieval of increased genetic information in vivo and producing therapeutic proteins have been achieved by the unnatural base pair dNaM-dTPT3. Up to now, some biological and chemical approaches are implemented to improve the semi-synthetic organism (SSO). However, the photosensitivity of this pair, suggested as a potential threat to the healthy growth of cells, is still a problem to solve. Hence, we designed and synthesized a panel of TPT3 analogues with the basic structural skeletons of TPT3 but modified thiophene rings at variant sites to improve the photostability of unnatural base pairs. A comprehensive screening strategy, including photosensitivity tests, kinetic experiments, and replication in vitro by PCR and in vivo by amplification, was implemented. A new pair, dNaM-dTAT1, which had almost equally high efficiency and fidelity with the dNaM-dTPT3 pair itself both in vivo and in vitro, was proven to be more photostable and thermostable and less toxic to E. coli cells. The discovery of dNaM-dTAT1 represents our first progress for the optimization of this type of bases toward more photostable properties; our data also suggest that less photosensitive unnatural base pairs will be beneficial to build a healthier cellular replication system.
Collapse
Affiliation(s)
- Honglei Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Luying Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Nana Ma
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wuyuan Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bianbian Huo
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Anlian Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lingjun Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
38
|
Heinrich J, Bossak‐Ahmad K, Riisom M, Haeri HH, Steel TR, Hergl V, Langhans A, Schattschneider C, Barrera J, Jamieson SMF, Stein M, Hinderberger D, Hartinger CG, Bal W, Kulak N. Incorporation of β-Alanine in Cu(II) ATCUN Peptide Complexes Increases ROS Levels, DNA Cleavage and Antiproliferative Activity. Chemistry 2021; 27:18093-18102. [PMID: 34658072 PMCID: PMC9299640 DOI: 10.1002/chem.202102601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Indexed: 12/30/2022]
Abstract
Redox-active Cu(II) complexes are able to form reactive oxygen species (ROS) in the presence of oxygen and reducing agents. Recently, Faller et al. reported that ROS generation by Cu(II) ATCUN complexes is not as high as assumed for decades. High complex stability results in silencing of the Cu(II)/Cu(I) redox cycle and therefore leads to low ROS generation. In this work, we demonstrate that an exchange of the α-amino acid Gly with the β-amino acid β-Ala at position 2 (Gly2→β-Ala2) of the ATCUN motif reinstates ROS production (• OH and H2 O2 ). Potentiometry, cyclic voltammetry, EPR spectroscopy and DFT simulations were utilized to explain the increased ROS generation of these β-Ala2-containing ATCUN complexes. We also observed enhanced oxidative cleavage activity towards plasmid DNA for β-Ala2 compared to the Gly2 complexes. Modifications with positively charged Lys residues increased the DNA affinity through electrostatic interactions as determined by UV/VIS, fluorescence, and CD spectroscopy, and consequently led to a further increase in nuclease activity. A similar trend was observed regarding the cytotoxic activity of the complexes against several human cancer cell lines where β-Ala2 peptide complexes had lower IC50 values compared to Gly2. The higher cytotoxicity could be attributed to an increased cellular uptake as determined by ICP-MS measurements.
Collapse
Affiliation(s)
- Julian Heinrich
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
- Institute of ChemistryOtto-von-Guericke-Universität MagdeburgUniversitätsplatz 239106MagdeburgGermany
| | - Karolina Bossak‐Ahmad
- Institute of Biochemistry and BiophysicsPolish Academy of SciencePawińskiego 5a02-106WarsawPoland
| | - Mie Riisom
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Haleh H. Haeri
- Institute of ChemistryMartin-Luther-Universität Halle-WittenbergVon-Danckelmann-Platz 406120HalleGermany
| | - Tasha R. Steel
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Vinja Hergl
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| | - Alexander Langhans
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| | - Corinna Schattschneider
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| | - Jannis Barrera
- Institute of ChemistryOtto-von-Guericke-Universität MagdeburgUniversitätsplatz 239106MagdeburgGermany
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Stephen M. F. Jamieson
- Auckland Cancer Society Research CentreUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Matthias Stein
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstrasse 139106MagdeburgGermany
| | - Dariush Hinderberger
- Institute of ChemistryMartin-Luther-Universität Halle-WittenbergVon-Danckelmann-Platz 406120HalleGermany
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Wojciech Bal
- Institute of Biochemistry and BiophysicsPolish Academy of SciencePawińskiego 5a02-106WarsawPoland
| | - Nora Kulak
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
- Institute of ChemistryOtto-von-Guericke-Universität MagdeburgUniversitätsplatz 239106MagdeburgGermany
| |
Collapse
|
39
|
Kashida H, Asanuma H. Pseudo Base Pairs that Exhibit High Duplex Stability and Orthogonality through Covalent and Non-covalent Interactions. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hiromu Kashida
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
| | | |
Collapse
|
40
|
Depmeier H, Hoffmann E, Bornewasser L, Kath‐Schorr S. Strategies for Covalent Labeling of Long RNAs. Chembiochem 2021; 22:2826-2847. [PMID: 34043861 PMCID: PMC8518768 DOI: 10.1002/cbic.202100161] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/26/2021] [Indexed: 12/17/2022]
Abstract
The introduction of chemical modifications into long RNA molecules at specific positions for visualization, biophysical investigations, diagnostic and therapeutic applications still remains challenging. In this review, we present recent approaches for covalent internal labeling of long RNAs. Topics included are the assembly of large modified RNAs via enzymatic ligation of short synthetic oligonucleotides and synthetic biology approaches preparing site-specifically modified RNAs via in vitro transcription using an expanded genetic alphabet. Moreover, recent approaches to employ deoxyribozymes (DNAzymes) and ribozymes for RNA labeling and RNA methyltransferase based labeling strategies are presented. We discuss the potentials and limits of the individual methods, their applicability for RNAs with several hundred to thousands of nucleotides in length and indicate future directions in the field.
Collapse
Affiliation(s)
- Hannah Depmeier
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Eva Hoffmann
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Lisa Bornewasser
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | | |
Collapse
|
41
|
Karadeema RJ, Morris SE, Lairson LL, Krishnamurthy R. Towards an understanding of the molecular mechanisms of variable unnatural base pair behavior-A biophysical analysis of dNaM-dTPT3. Chemistry 2021; 27:13991-13997. [PMID: 34382264 DOI: 10.1002/chem.202102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 11/08/2022]
Abstract
The series of unnatural base pairs (UBPs) developed by the Romesberg lab which pair via hydrophobic and packing interactions have been replicated, transcribed, and translated inside of a living organism. However, as to why these UBPs exhibit variable fidelity and efficiency when used in different contexts is not clear. In an effort to gain some insights, we investigated the thermal stability and pairing selectivity of the (d) NaM -(d) TPT3 UBP in 11nt duplexes via UV spectroscopy and the effects on helical structure via CD spectroscopy. We observed that while the duplexes containing a UBP are less stable than fully natural duplexes, they are generally more stable than duplexes containing natural mispairs. This work provides the first insights connecting the thermal stability of the (d) NaM -(d) TPT3 UBP to the molecular mechanisms for varying replication fidelity in different sequence contexts in DNA, asymmetrical transcription fidelity, and codon:anticodon interactions and can assist in future UBP development.
Collapse
Affiliation(s)
| | | | - Luke L Lairson
- The Scripps Research Institute, Chemistry, UNITED STATES
| | - Ramanarayanan Krishnamurthy
- The Scripps Research Institute, Chemistry snd The Skaggs Institute For Chemical Biology, 10550 North Torrey Pines Rd, MB-16, 92037, La Jolla, UNITED STATES
| |
Collapse
|
42
|
Hashimoto K, Fischer EC, Romesberg FE. Efforts toward Further Integration of an Unnatural Base Pair into the Biology of a Semisynthetic Organism. J Am Chem Soc 2021; 143:8603-8607. [PMID: 34096294 DOI: 10.1021/jacs.1c03860] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have developed semisynthetic organisms (SSOs) that by virtue of a family of synthetic, unnatural base pairs (UBPs), store and retrieve increased information. To date, transcription in the SSOs has relied on heterologous expression of the RNA polymerase from T7 bacteriophage; here, we explore placing transcription under the control of the endogenous host multisubunit RNA polymerase. The results demonstrate that the E. coli RNA polymerase is able to transcribe DNA containing a UBP and that with the most optimal UBP identified to date it should be possible to select for increased uptake of unnatural triphosphates. These advances should facilitate the creation of next generation SSOs.
Collapse
Affiliation(s)
- Koji Hashimoto
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Emil C Fischer
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Floyd E Romesberg
- Synthorx, a Sanofi Company, La Jolla, California 92037, United States
| |
Collapse
|
43
|
Zhu M, Messaoudi S. Diastereoselective Decarboxylative Alkynylation of Anomeric Carboxylic Acids Using Cu/Photoredox Dual Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01600] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mingxiang Zhu
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay, Malabry, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay, Malabry, France
| |
Collapse
|
44
|
|
45
|
Manandhar M, Chun E, Romesberg FE. Genetic Code Expansion: Inception, Development, Commercialization. J Am Chem Soc 2021; 143:4859-4878. [DOI: 10.1021/jacs.0c11938] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Miglena Manandhar
- Synthorx, a Sanofi Company, La Jolla, California 92037, United States
| | - Eugene Chun
- Synthorx, a Sanofi Company, La Jolla, California 92037, United States
| | | |
Collapse
|
46
|
Site-Specific Fluorescent Labeling of RNA Interior Positions. Molecules 2021; 26:molecules26051341. [PMID: 33802273 PMCID: PMC7959133 DOI: 10.3390/molecules26051341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023] Open
Abstract
The introduction of fluorophores into RNA for both in vitro and in cellulo studies of RNA function and cellular distribution is a subject of great current interest. Here I briefly review methods, some well-established and others newly developed, which have been successfully exploited to site-specifically fluorescently label interior positions of RNAs, as a guide to investigators seeking to apply this approach to their studies. Most of these methods can be applied directly to intact RNAs, including (1) the exploitation of natural posttranslational modifications, (2) the repurposing of enzymatic transferase reactions, and (3) the nucleic acid-assisted labeling of intact RNAs. In addition, several methods are described in which specifically labeled RNAs are prepared de novo.
Collapse
|
47
|
Miao S, Liang Y, Rundell S, Bhunia D, Devari S, Munyaradzi O, Bong D. Unnatural bases for recognition of noncoding nucleic acid interfaces. Biopolymers 2021; 112:e23399. [PMID: 32969496 PMCID: PMC7855516 DOI: 10.1002/bip.23399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
The notion of using synthetic heterocycles instead of the native bases to interface with DNA and RNA has been explored for nearly 60 years. Unnatural bases compatible with the DNA/RNA coding interface have the potential to expand the genetic code and co-opt the machinery of biology to access new macromolecular function; accordingly, this body of research is core to synthetic biology. While much of the literature on artificial bases focuses on code expansion, there is a significant and growing effort on docking synthetic heterocycles to noncoding nucleic acid interfaces; this approach seeks to illuminate major processes of nucleic acids, including regulation of transcription, translation, transport, and transcript lifetimes. These major avenues of research at the coding and noncoding interfaces have in common fundamental principles in molecular recognition. Herein, we provide an overview of foundational literature in biophysics of base recognition and unnatural bases in coding to provide context for the developing area of targeting noncoding nucleic acid interfaces with synthetic bases, with a focus on systems developed through iterative design and biophysical study.
Collapse
Affiliation(s)
- Shiqin Miao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Yufeng Liang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Sarah Rundell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Debmalya Bhunia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Shekar Devari
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Oliver Munyaradzi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Dennis Bong
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
48
|
Abstract
The encoded biosynthesis of proteins provides the ultimate paradigm for high-fidelity synthesis of long polymers of defined sequence and composition, but it is limited to polymerizing the canonical amino acids. Recent advances have built on genetic code expansion - which commonly permits the cellular incorporation of one type of non-canonical amino acid into a protein - to enable the encoded incorporation of several distinct non-canonical amino acids. Developments include strategies to read quadruplet codons, use non-natural DNA base pairs, synthesize completely recoded genomes and create orthogonal translational components with reprogrammed specificities. These advances may enable the genetically encoded synthesis of non-canonical biopolymers and provide a platform for transforming the discovery and evolution of new materials and therapeutics.
Collapse
Affiliation(s)
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
49
|
Ouaray Z, Benner SA, Georgiadis MM, Richards NGJ. Building better polymerases: Engineering the replication of expanded genetic alphabets. J Biol Chem 2020; 295:17046-17059. [PMID: 33004440 PMCID: PMC7863901 DOI: 10.1074/jbc.rev120.013745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/30/2020] [Indexed: 11/30/2022] Open
Abstract
DNA polymerases are today used throughout scientific research, biotechnology, and medicine, in part for their ability to interact with unnatural forms of DNA created by synthetic biologists. Here especially, natural DNA polymerases often do not have the "performance specifications" needed for transformative technologies. This creates a need for science-guided rational (or semi-rational) engineering to identify variants that replicate unnatural base pairs (UBPs), unnatural backbones, tags, or other evolutionarily novel features of unnatural DNA. In this review, we provide a brief overview of the chemistry and properties of replicative DNA polymerases and their evolved variants, focusing on the Klenow fragment of Taq DNA polymerase (Klentaq). We describe comparative structural, enzymatic, and molecular dynamics studies of WT and Klentaq variants, complexed with natural or noncanonical substrates. Combining these methods provides insight into how specific amino acid substitutions distant from the active site in a Klentaq DNA polymerase variant (ZP Klentaq) contribute to its ability to replicate UBPs with improved efficiency compared with Klentaq. This approach can therefore serve to guide any future rational engineering of replicative DNA polymerases.
Collapse
Affiliation(s)
- Zahra Ouaray
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
| | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom; Foundation for Applied Molecular Evolution, Alachua, Florida, USA.
| |
Collapse
|
50
|
Špaček J, Karalkar N, Fojta M, Wang J, Benner SA. Electrochemical reduction and oxidation of eight unnatural 2′-deoxynucleosides at a pyrolytic graphite electrode. Electrochim Acta 2020; 362. [DOI: 10.1016/j.electacta.2020.137210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|