1
|
Tan C, Wang S, Barboza-Ramos I, Schanze KS. A Perspective Looking Backward and Forward on the 25th Anniversary of Conjugated Polyelectrolytes. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38584485 DOI: 10.1021/acsami.4c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Conjugated polyelectrolytes are π-conjugated polymers that contain ionic charged groups such as sulfonate (R-SO3-), carboxylate (R-COO-), or ammonium (R-NR3+) combined with a π-conjugated backbone. This perspective provides a summary review of the key developments in the field, starting from the first reports of their synthesis and properties to application-focused developments. The applications include optical sensors for molecular and biomolecular targets, organic electronic applications, and specific biological applications including cellular imaging and photodynamic therapy. This perspective concludes with a discussion of where the field of conjugated polyelectrolytes is expected to lead in the coming years.
Collapse
Affiliation(s)
- Chunyan Tan
- The State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Isaí Barboza-Ramos
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
2
|
Jiang Y, Vázquez RJ, McCuskey SR, Yip BRP, Quek G, Ohayon D, Kundukad B, Wang X, Bazan GC. Recyclable Conjugated Polyelectrolyte Hydrogels for Pseudocapacitor Fabrication. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38150629 DOI: 10.1021/acsami.3c13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
In alignment with widespread interest in carbon neutralization and sustainable practices, we disclose that conjugated polyelectrolyte (CPE) hydrogels are a type of recyclable, electrochemically stable, and environmentally friendly pseudocapacitive material for energy storage applications. By leveraging ionic-electronic coupling in a relatively fluid medium, one finds that hydrogels prepared using a fresh batch of an anionic CPE, namely, Pris-CPE-K, exhibit a specific capacitance of 32.6 ± 6.6 F g-1 in 2 M NaCl and are capable of 80% (26.1 ± 6.5 F g-1) capacitance retention after 100,000 galvanostatic charge-discharge (GCD) cycles at a current density (J) of 10 A g-1. We note that equilibration under a constant potential prior to GCD analysis leads to the K+ counterions in the CPE exchanging with Na+ and, thus, the relevant active material Pris-CPE-Na. It is possible to remove the CPE material from the electrochemical cell via extraction with water and to carry out a simple purification through dialysis to produce a recycled material, namely Re-CPE-Na. The recycling workup has no significant detrimental impact on the electrochemical performance. Specifically, Re-CPE-Na hydrogels display an initial specific capacitance of 26.3 ± 1.2 F g-1 (at 10 A g-1) and retain 77% of the capacitance after a subsequent 100,000 GCD cycles. Characterization by NMR, FTIR, and Raman spectroscopies, together with XPS and GPC measurements, revealed no change in the structure of the backbone or side chains. However, rheological measurements gave evidence of a slight loss in G' and G''. Overall, that CPE hydrogels display recyclability argues in favor of considering them as a novel materials platform for energy storage applications within an economically viable circular recycling strategy.
Collapse
Affiliation(s)
- Yan Jiang
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
| | - Ricardo Javier Vázquez
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Samantha R McCuskey
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore
| | - Benjamin Rui Peng Yip
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
| | - Glenn Quek
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
| | - David Ohayon
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
| | - Binu Kundukad
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore
| | - Xuehang Wang
- Department of Radiation Science and Technology, Delft University of Technology, Delft 2629 JB, Netherlands
| | - Guillermo C Bazan
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
3
|
Wang ZY, Zhu R. Conjugated [5]Cumulene Polymers Enabled by Condensation Polymerization of Propargylic Electrophiles. J Am Chem Soc 2023; 145:23755-23763. [PMID: 37853723 DOI: 10.1021/jacs.3c08290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Cumulenes, sp-hybridized carbon motifs featuring consecutive double bonds, have rarely been explored as π-elements for conjugated polymers. Long cumulenic conjugated polymers can serve as models for approaching carbyne, an intriguing yet elusive carbon allotrope. However, their synthesis is notoriously difficult due to intrinsic instability. To date, only few [3]cumulene-based polymers have been synthesized, mostly relying on surface chemistry. Higher cumulene-based polymers remain unknown. Here, we present a "meet in the middle" strategy to overcome this challenge and synthesize high-molecular-weight, stable, and solution-processable conjugated [5]cumulene polymers (Mw up to 67.9 kg/mol). Our approach involves a new polymerization method called step-growth condensation polymerization of propargylic electrophiles (step-growth CPPE). The structures and molecular weights of the cumulenic polymers are established by various spectroscopic methods, including a comparative analysis of a discrete oligomer series. By introducing ortho-substituents on the aryl side groups, we successfully address the stability-conjugation dilemma. Electronic communication between cumulene units is found to be contingent upon the aromaticity of the π-spacers, enabling flexible energy-level adjustment and new narrow band gap polymers. The synthetic methodology and structure-property relationship established in this work serve as the starting points for the exploration of this fascinating family of sp-carbon-rich materials.
Collapse
Affiliation(s)
- Zi-Yuan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rong Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Weng G, Mallarapu R, Vlček V. Embedding vertex corrections in GW self-energy: Theory, implementation, and outlook. J Chem Phys 2023; 158:144105. [PMID: 37061461 DOI: 10.1063/5.0139117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
The vertex function (Γ) within the Green's function formalism encapsulates information about all higher-order electron-electron interaction beyond those mediated by density fluctuations. Herein, we present an efficient approach that embeds vertex corrections in the one-shot GW correlation self-energy for isolated and periodic systems. The vertex-corrected self-energy is constructed through the proposed separation-propagation-recombination procedure: the electronic Hilbert space is separated into an active space and its orthogonal complement denoted as the "rest;" the active component is propagated by a space-specific effective Hamiltonian different from the rest. The vertex corrections are introduced by a rescaled time-dependent nonlocal exchange interaction. The direct Γ correction to the self-energy is further updated by adjusting the rescaling factor in a self-consistent post-processing cycle. Our embedding method is tested mainly on donor-acceptor charge-transfer systems. The embedded vertex effects consistently and significantly correct the quasiparticle energies of the gap-edge states. The fundamental gap is generally improved by 1-3 eV upon the one-shot GW approximation. Furthermore, we provide an outlook for applications of (embedded) vertex corrections in calculations of extended solids.
Collapse
Affiliation(s)
- Guorong Weng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | - Rushil Mallarapu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | - Vojtěch Vlček
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| |
Collapse
|
5
|
Müllen K, Scherf U. Conjugated Polymers: Where We Come From, Where We Stand, and Where We Might Go. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Klaus Müllen
- Max Planck Institute for Polymer Research Ackermannweg 10 D‐50128 Mainz Germany
| | - Ullrich Scherf
- Department of Chemistry, Macromolecular Chemistry Group (BUWmakro), and Wuppertal Institute for Smart Materials & Systems (CM@S) University of Wuppertal Gauss‐Str. 20 D‐42119 Wuppertal Germany
| |
Collapse
|
6
|
Wang K, Shi Y, Li Z. Colorful Luminescence of Conjugated Polyelectrolytes Induced by Molecular Weight. Polymers (Basel) 2022; 14:5372. [PMID: 36559738 PMCID: PMC9785289 DOI: 10.3390/polym14245372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022] Open
Abstract
Due to their distinctive intrinsic advantages, the nanoaggregates of conjugated polyelectrolytes (CPEs) are fascinating and attractive for various luminescence applications. Generally, the emission luminescence of CPEs is determined by the conjugated backbone structure, i.e., different conjugated backbones of CPEs produce emission luminescence with different emission wavelength bands. Here, we polymerized the bis(boronic ester) of benzothiadiazole and an alkyl sulfonate sodium-substituted dibromobenzothiatriazole to provide PBTBTz-SO3Na with different molecular weights via controlling the ratio of the monomer and the catalyst. Theoretically, the CPEs with the same molecular structure usually display similar photoelectronic performances. However, the resulting PBTBTz-SO3Na reveal a similar light absorption property, but different luminescence. The higher molecular weight is, the stronger the fluorescence intensity of PBTBTz-SO3Na that occurs. PBTBTz-SO3Na with different molecular weights have different colors of luminescence. It is well known that the molecular aggregates often led to weaker luminescent properties for most of the conjugated polymers. However, PBTBTz-SO3Na exhibits a higher molecular weight with an increasing molecular chain aggregation, i.e., the nanoaggregates of PBTBTz-SO3Na are beneficial to emission luminescence. This work provides a new possible chemical design of CPEs with a controllable, variable luminescence for further optoelectronics and biomedicine applications.
Collapse
|
7
|
Rimmele M, Glöcklhofer F, Heeney M. Post-polymerisation approaches for the rapid modification of conjugated polymer properties. MATERIALS HORIZONS 2022; 9:2678-2697. [PMID: 35983884 PMCID: PMC9620492 DOI: 10.1039/d2mh00519k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Post-polymerisation functionalisation provides a facile and efficient way for the introduction of functional groups on the backbone of conjugated polymers. Using post-polymerisation functionalisation approaches, the polymer chain length is usually not affected, meaning that the resulting polymers only differ in their attached functional groups or side chains, which makes them particularly interesting for investigating the influence of the different groups on the polymer properties. For such functionalisations, highly efficient and selective reactions are needed to avoid the formation of complex mixtures or permanent defects in the polymer backbone. A variety of suitable synthetic approaches and reactions that fulfil these criteria have been identified and reported. In this review, a thorough overview is given of the post-polymerisation functionalisations reported to date, with the methods grouped based on the type of reaction used: cycloaddition, oxidation/reduction, nucleophilic aromatic substitution, or halogenation and subsequent cross-coupling reaction. Instead of modifications on the aliphatic side chains of the conjugated polymers, we focus on modifications directly on the conjugated backbones, as these have the most pronounced effect on the optical and electronic properties. Some of the discussed materials have been used in applications, ranging from solar cells to bioelectronics. By providing an overview of this versatile and expanding field for the first time, we showcase post-polymerisation functionalisation as an exciting pathway for the creation of new conjugated materials for a range of applications.
Collapse
Affiliation(s)
- Martina Rimmele
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Florian Glöcklhofer
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
- KAUST Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
8
|
Quek G, Vázquez RJ, McCuskey SR, Kundukad B, Bazan GC. Enabling Electron Injection for Microbial Electrosynthesis with n-Type Conjugated Polyelectrolytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203480. [PMID: 35835449 DOI: 10.1002/adma.202203480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Microbial electrosynthesis-using renewable electricity to stimulate microbial metabolism-holds the promise of sustainable chemical production. A key limitation hindering performance is slow electron-transfer rates at biotic-abiotic interfaces. Here a new n-type conjugated polyelectrolyte is rationally designed and synthesized and its use is demonstrated as a soft conductive material to encapsulate electroactive bacteria Shewanella oneidensis MR-1. The self-assembled 3D living biocomposite amplifies current uptake from the electrode ≈674-fold over controls with the same initial number of cells, thereby enabling continuous synthesis of succinate from fumarate. Such functionality is a result of the increased number of bacterial cells having intimate electronic communication with the electrode and a higher current uptake per cell. This is underpinned by the molecular design of the polymer to have an n-dopable conjugated backbone for facile reduction by the electrode and zwitterionic side chains for compatibility with aqueous media. Moreover, direct arylation polycondensation is employed instead of the traditional Stille polymerization to avoid non-biocompatible tin by-products. By demonstrating synergy between living cells with n-type organic semiconductor materials, these results provide new strategies for improving the performance of bioelectrosynthesis technologies.
Collapse
Affiliation(s)
- Glenn Quek
- Departments of Chemistry and Chemical & Biomolecular Engineering, Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 119077, Singapore
| | - Ricardo Javier Vázquez
- Departments of Chemistry and Chemical & Biomolecular Engineering, Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 119077, Singapore
| | - Samantha R McCuskey
- Departments of Chemistry and Chemical & Biomolecular Engineering, Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 119077, Singapore
| | - Binu Kundukad
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Guillermo C Bazan
- Departments of Chemistry and Chemical & Biomolecular Engineering, Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
9
|
Quek G, Roehrich B, Su Y, Sepunaru L, Bazan GC. Conjugated Polyelectrolytes: Underexplored Materials for Pseudocapacitive Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104206. [PMID: 34626021 DOI: 10.1002/adma.202104206] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Conjugated polyelectrolytes (CPEs) are characterized by an electronically delocalized backbone bearing ionic functionalities. These features lead to properties relevant for use in energy-storing pseudocapacitor devices, including ionic conductivity, water processability, gel-formation, and formation of polaronic species stabilized by electrostatic interactions. In this Perspective, the basis for evaluating the figures of merit for pseudocapacitors is provided, together with the techniques used for their evaluation. The general utility and challenges encountered with neutral conjugated polymers are then discussed. Finally, recent advances on the use of CPEs in pseudocapacitor devices are reviewed. The article is concluded by discussing how their miscibility in aqueous media permits the incorporation of CPEs in living materials that are capable of switching function from extraction of energy from bacterial metabolic pathways to pseudocapacitor energy storage.
Collapse
Affiliation(s)
- Glenn Quek
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Brian Roehrich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Building 232, Santa Barbara, CA, 93106, USA
| | - Yude Su
- Suzhou Institute for Advanced Research, University of Science and Technology of China Suzhou, Jiangsu, 215123, China
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Building 232, Santa Barbara, CA, 93106, USA
| | - Guillermo C Bazan
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
10
|
|
11
|
Sun H, Schanze KS. Functionalization of Water-Soluble Conjugated Polymers for Bioapplications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20506-20519. [PMID: 35473368 DOI: 10.1021/acsami.2c02475] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water-soluble conjugated polymers (WS-CPs) have found widespread use in bioapplications ranging from in vitro optical sensing to in vivo phototherapy. Modification of WS-CPs with specific molecular functional units is necessary to enable them to interact with biological targets. These targets include proteins, nucleic acids, antibodies, cells, and intracellular components. WS-CPs have been modified with covalently linked sugars, peptides, nucleic acids, biotin, proteins, and other biorecognition elements. The objective of this article is to comprehensively review the various synthetic chemistries that have been used to covalently link biofunctional groups onto WS-CP platforms. These chemistries include amidation, nucleophilic substitution, Click reactions, and conjugate addition. Different types of WS-CP backbones have been used as platforms including poly(fluorene), poly(phenylene ethynylene), polythiophene, poly(phenylenevinylene), and others. Example applications of biofunctionalized WS-CPs are also reviewed. These include examples of protein sensing, flow cytometry labeling, and cancer therapy. The major challenges and future development of functionalized conjugated polymers are also discussed.
Collapse
Affiliation(s)
- Han Sun
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
12
|
Mo QL, Fu XY, Wang K, Ge XZ, Hou S, Liu BJ, Xiao FX. Precise Interface Modulation Cascade Enables Unidirectional Charge Transport. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Ahmed M, Tran DT, Putziger J, Ke Z, Abtahi A, Wang Z, Chen K, Lang K, Mei J. Tetracyanocyclopentadienide-Based Stable Poly(aromatic) Anions. ACS Macro Lett 2022; 11:72-77. [PMID: 35574784 DOI: 10.1021/acsmacrolett.1c00711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyelectrolytes, a class of polymer with ionized functional groups in their repeating units, are widely used in various applications. Many ionized groups have been incorporated into polyelectrolytes, but aromatic anions are rarely investigated. Here, we first successfully incorporate a stable tetracyanocyclopentadienide (TCCp) aromatic anion into polynorbornene (PNb)-based electrolytes (PNb-TCCp) through ring-opening metathesis polymerization (ROMP) with controllable molecular weight and low polydispersity. PNb-TCCp shows a high ionic conductivity of 4.5 × 10-5 S/cm in thin films. Due to its highly stable aromatic anion groups and favorable interactions with aromatic cations, it could improve thermal stability of doped conjugated polymers. Pairing with doped poly(3,4-ethylenedioxythiophene) (PEDOT) through salt metathesis, the generated poly ion complex PEDOT:PNb-TCCp retains its conductivity up to 180 °C.
Collapse
Affiliation(s)
- Mustafa Ahmed
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dung T. Tran
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - John Putziger
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhifan Ke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashkan Abtahi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhiyang Wang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Chen
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kai Lang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
14
|
|
15
|
Yang Z, Zhang Z, Xue C, Yang K, Gao R, Yu N, Ren Y. Excited-state engineering of oligothiophenes via phosphorus chemistry towards strong fluorescent materials. Phys Chem Chem Phys 2021; 23:24265-24272. [PMID: 34671795 DOI: 10.1039/d1cp03737d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to efficient intersystem crossing (ISC), combined with efficient non-radiative processes of the triplet excited state, oligothiophenes generally exhibit very weak photoluminescence. Phosphorus (P)-bridged terthiophenes (P-terThs) and phosphorus (P)-bridged bithiophenes (P-biThs) were synthesized. The diverse and well-defined P-chemistry has been applied to fine tune the photophysical properties of these materials. The asymmetric electronic coupling between the P-center and terThs suppressed the electronic interactions of two terTh and biTh moieties in the ground state S0. Particularly, P-terThs and P-biThs having a positively charged P(+)-center induce pronounced asymmetric electronic environments on the two terThs and two biThs, respectively, which allows relaxation from the initial excited state via symmetry breaking charge transfer (SBCT) to give the charge separated state SSBCT. P-terThs and P-biThs having a positively charged P(+)-center exhibit stronger SBCT than others, which may result in a weaker ISC of oligothiophenes, and consequently lead to the photoluminescence quantum yields (PLQYs) being as high as 71% and 39%, respectively. The current study uncovered detailed insights on the effects of phosphorus chemistry on the SBCT of oligothiophenes and their resulting effects on the photophysical properties of P-bridged oligothiophenes, which have not been previously addressed in oligothiophenes.
Collapse
Affiliation(s)
- Zi Yang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China. .,Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201203 Shanghai, People's Republic of China.,University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Zhikai Zhang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China.
| | - Cece Xue
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China.
| | - Kai Yang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China.
| | - Rong Gao
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China.
| | - Na Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China.
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China. .,Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201203 Shanghai, People's Republic of China.,University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| |
Collapse
|
16
|
Lassi E, Squeo BM, Sorrentino R, Scavia G, Mrakic-Sposta S, Gussoni M, Vercelli B, Galeotti F, Pasini M, Luzzati S. Sulfonate-Conjugated Polyelectrolytes as Anode Interfacial Layers in Inverted Organic Solar Cells. Molecules 2021; 26:molecules26030763. [PMID: 33540730 PMCID: PMC7867262 DOI: 10.3390/molecules26030763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Conjugated polymers with ionic pendant groups (CPEs) are receiving increasing attention as solution-processed interfacial materials for organic solar cells (OSCs). Various anionic CPEs have been successfully used, on top of ITO (Indium Tin Oxide) electrodes, as solution-processed anode interlayers (AILs) for conventional devices with direct geometry. However, the development of CPE AILs for OSC devices with inverted geometry is an important topic that still needs to be addressed. Here, we have designed three anionic CPEs bearing alkyl-potassium-sulfonate side chains. Their functional behavior as anode interlayers has been investigated in P3HT:PC61BM (poly(3-hexylthiophene): [6,6]-phenyl C61 butyric acid methyl ester) devices with an inverted geometry, using a hole collecting silver electrode evaporated on top. Our results reveal that to obtain effective anode modification, the CPEs' conjugated backbone has to be tailored to grant self-doping and to have a good energy-level match with the photoactive layer. Furthermore, the sulfonate moieties not only ensure the solubility in polar orthogonal solvents, induce self-doping via a right choice of the conjugated backbone, but also play a role in the gaining of hole selectivity of the top silver electrode.
Collapse
Affiliation(s)
- Elisa Lassi
- Institute of Chemical Sciences and Technologies “G. Natta ”-SCITEC, National Research Council, CNR-SCITEC, via Corti 12, 20133 Milan, Italy; (E.L.); (B.M.S.); (R.S.); (G.S.); (M.G.); (F.G.)
| | - Benedetta Maria Squeo
- Institute of Chemical Sciences and Technologies “G. Natta ”-SCITEC, National Research Council, CNR-SCITEC, via Corti 12, 20133 Milan, Italy; (E.L.); (B.M.S.); (R.S.); (G.S.); (M.G.); (F.G.)
| | - Roberto Sorrentino
- Institute of Chemical Sciences and Technologies “G. Natta ”-SCITEC, National Research Council, CNR-SCITEC, via Corti 12, 20133 Milan, Italy; (E.L.); (B.M.S.); (R.S.); (G.S.); (M.G.); (F.G.)
| | - Guido Scavia
- Institute of Chemical Sciences and Technologies “G. Natta ”-SCITEC, National Research Council, CNR-SCITEC, via Corti 12, 20133 Milan, Italy; (E.L.); (B.M.S.); (R.S.); (G.S.); (M.G.); (F.G.)
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council, CNR-IFC, Piazza Ospedale Maggiore 3, 20162 Milan, Italy;
| | - Maristella Gussoni
- Institute of Chemical Sciences and Technologies “G. Natta ”-SCITEC, National Research Council, CNR-SCITEC, via Corti 12, 20133 Milan, Italy; (E.L.); (B.M.S.); (R.S.); (G.S.); (M.G.); (F.G.)
| | - Barbara Vercelli
- Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council, CNR-ICMATE, Via Roberto Cozzi 53, 20125 Milan, Italy;
| | - Francesco Galeotti
- Institute of Chemical Sciences and Technologies “G. Natta ”-SCITEC, National Research Council, CNR-SCITEC, via Corti 12, 20133 Milan, Italy; (E.L.); (B.M.S.); (R.S.); (G.S.); (M.G.); (F.G.)
| | - Mariacecilia Pasini
- Institute of Chemical Sciences and Technologies “G. Natta ”-SCITEC, National Research Council, CNR-SCITEC, via Corti 12, 20133 Milan, Italy; (E.L.); (B.M.S.); (R.S.); (G.S.); (M.G.); (F.G.)
- Correspondence: (M.P.); (S.L.)
| | - Silvia Luzzati
- Institute of Chemical Sciences and Technologies “G. Natta ”-SCITEC, National Research Council, CNR-SCITEC, via Corti 12, 20133 Milan, Italy; (E.L.); (B.M.S.); (R.S.); (G.S.); (M.G.); (F.G.)
- Correspondence: (M.P.); (S.L.)
| |
Collapse
|
17
|
Rafiq M, Jing J, Liang Y, Hu Z, Zhang X, Tang H, Tian L, Li Y, Huang F. A pyridinium-pended conjugated polyelectrolyte for efficient photocatalytic hydrogen evolution and organic solar cells. Polym Chem 2021. [DOI: 10.1039/d0py01351j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A pyridinium-pended conjugated polyelectrolyte with photo-induced amine doping behaviour was designed for multiple applications.
Collapse
Affiliation(s)
- Muhammad Rafiq
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- State Key Laboratory of Pulp and Paper Engineering
- School of Chemistry and Chemical Engineering
- South China University of Technology
| | - Jianhua Jing
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- State Key Laboratory of Pulp and Paper Engineering
- School of Chemistry and Chemical Engineering
- South China University of Technology
| | - Yuanying Liang
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- State Key Laboratory of Pulp and Paper Engineering
- School of Chemistry and Chemical Engineering
- South China University of Technology
| | - Zhicheng Hu
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- State Key Laboratory of Pulp and Paper Engineering
- School of Chemistry and Chemical Engineering
- South China University of Technology
| | - Xi Zhang
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- State Key Laboratory of Pulp and Paper Engineering
- School of Chemistry and Chemical Engineering
- South China University of Technology
| | - Haoran Tang
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- State Key Laboratory of Pulp and Paper Engineering
- School of Chemistry and Chemical Engineering
- South China University of Technology
| | - Li Tian
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- State Key Laboratory of Pulp and Paper Engineering
- School of Chemistry and Chemical Engineering
- South China University of Technology
| | - Yingwei Li
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- State Key Laboratory of Pulp and Paper Engineering
- School of Chemistry and Chemical Engineering
- South China University of Technology
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- State Key Laboratory of Pulp and Paper Engineering
- School of Chemistry and Chemical Engineering
- South China University of Technology
| |
Collapse
|
18
|
Liu L, Li Y, Khalil M, Xu Z, Xie G, Zhang X, Li J, Li W. Improving Both Electron and Hole Mobilities of an Ambipolar Polymer by Integrating Sodium
Sulfonate‐Tethered
Alkyl Side Chains
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Li‐Na Liu
- Key Laboratory of Synthetic and Self‐assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yun‐Peng Li
- Key Laboratory of Synthetic and Self‐assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Maria Khalil
- Key Laboratory of Synthetic and Self‐assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Zi‐Wen Xu
- Key Laboratory of Synthetic and Self‐assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Guanghui Xie
- Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials, Zhengzhou Institute of Technology, 6 Yingcai Street Huiji District Zhengzhou Henan 450044 China
| | - Xingmin Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences 239 Zhangheng Road, Pudong District Shanghai 201204 China
| | - Jingjing Li
- Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials, Zhengzhou Institute of Technology, 6 Yingcai Street Huiji District Zhengzhou Henan 450044 China
| | - Wei‐Shi Li
- Key Laboratory of Synthetic and Self‐assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials, Zhengzhou Institute of Technology, 6 Yingcai Street Huiji District Zhengzhou Henan 450044 China
| |
Collapse
|
19
|
Weng G, Vlček V. Quasiparticles and Band Structures in Organized Nanostructures of Donor-Acceptor Copolymers. J Phys Chem Lett 2020; 11:7177-7183. [PMID: 32787318 DOI: 10.1021/acs.jpclett.0c02262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The performance of organic semiconductor devices is linked to highly ordered nanostructures of self-assembled molecules and polymers. Many-body perturbation theory is employed to study the excited states in bulk copolymers. The results show that acceptors in the polymer scaffold introduce a, hitherto unrecognized, conduction impurity band that leads to electron localization. The donor states are responsible for the formation of conjugated bands, which are only mildly perturbed by the presence of the acceptors. Along the polymer axis, the nonlocal electronic correlations among copolymer strands hinder efficient band transport, which is, however, strongly enhanced across individual chains. Holes are most effectively transported along the π-π stacking, while electrons in the impurity band follow the edge-to-edge directions. The copolymers exhibit regions with inverted transport polarity, in which electrons and holes are efficiently transported in mutually orthogonal directions.
Collapse
Affiliation(s)
- Guorong Weng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Vojtěch Vlček
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
20
|
Bai Y, Hu Z, Jiang JX, Huang F. Hydrophilic Conjugated Materials for Photocatalytic Hydrogen Evolution. Chem Asian J 2020; 15:1780-1790. [PMID: 32293789 DOI: 10.1002/asia.202000247] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/12/2020] [Indexed: 12/29/2022]
Abstract
Photocatalytic hydrogen evolution is viewed as a promising green strategy to utilize the inexhaustible solar energy and provide clean hydrogen fuels with zero-emission characteristic. The nature of semiconductor-based photocatalysts is the key point to achieve efficient photocatalytic hydrogen evolution. Conjugated materials have been recently emerging as a novel class of photocatalysts for hydrogen evolution and photocatalytic reactions due to their electronic properties can be well controlled via tailor-made chemical structures. Hydrophilic conjugated materials, a subgroup of conjugated materials, possess multiple advantages for photocatalytic applications, thus spurring remarkable progress on both material realm and photocatalytic applications. This minireview aims to provide a brief review of the recent developments of hydrophilic conjugated polymers/small molecules for photocatalytic applications, and special concern on the rational molecular design and their impact on photocatalytic performance will be reviewed. Perspectives on the hydrophilic conjugated materials and challenges to their applications in the photocatalytic field are also presented.
Collapse
Affiliation(s)
- Yuanqing Bai
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Zhicheng Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Jia-Xing Jiang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P.R. China
| |
Collapse
|
21
|
Kee S, Zhang P, Travas-Sejdic J. Direct writing of 3D conjugated polymer micro/nanostructures for organic electronics and bioelectronics. Polym Chem 2020. [DOI: 10.1039/d0py00719f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
3D direct writing and meniscus-guided pen writing methods, which are capable of fabricating 3D micro/nanostructures from soluble π-conjugated polymers (CPs) and CP precursors, and recent advances in these techniques are addressed in this review.
Collapse
Affiliation(s)
- Seyoung Kee
- Polymer Biointerface Centre
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| | - Peikai Zhang
- Polymer Biointerface Centre
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| |
Collapse
|
22
|
Wang K, Li Y, Li Y. Challenges to the Stability of Active Layer Materials in Organic Solar Cells. Macromol Rapid Commun 2020; 41:e1900437. [DOI: 10.1002/marc.201900437] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Kun Wang
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 451191 China
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic MaterialsCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic MaterialsCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| |
Collapse
|
23
|
Anderson CL, Dai N, Teat SJ, He B, Wang S, Liu Y. Electronic Tuning of Mixed Quinoidal‐Aromatic Conjugated Polyelectrolytes: Direct Ionic Substitution on Polymer Main‐Chains. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Christopher L. Anderson
- The Molecular Foundry Lawrence Berkeley National Laboratory One Cyclotron Road Berkeley CA 94720 USA
- Department of Chemistry University of California Berkeley Berkeley CA 94720 USA
| | - Nan Dai
- Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Simon J. Teat
- Advanced Light Source Lawrence Berkeley National Laboratory One Cyclotron Road Berkeley CA 94720 USA
| | - Bo He
- The Molecular Foundry Lawrence Berkeley National Laboratory One Cyclotron Road Berkeley CA 94720 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory One Cyclotron Road Berkeley CA 94720 USA
| | - Shu Wang
- Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yi Liu
- The Molecular Foundry Lawrence Berkeley National Laboratory One Cyclotron Road Berkeley CA 94720 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory One Cyclotron Road Berkeley CA 94720 USA
| |
Collapse
|
24
|
Yang Y, Liu Z, Zhang G, Zhang X, Zhang D. The Effects of Side Chains on the Charge Mobilities and Functionalities of Semiconducting Conjugated Polymers beyond Solubilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903104. [PMID: 31483542 DOI: 10.1002/adma.201903104] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/05/2019] [Indexed: 05/13/2023]
Abstract
Recent decades have witnessed the rapid development of semiconducting polymers in terms of high charge mobilities and applications in transistors. Significant efforts have been made to develop various conjugated frameworks and linkers. However, studies are increasingly demonstrating that the side chains of semiconducting polymers can significantly affect interchain packing, thin film crystallinity, and thus semiconducting performance. Ways to modify the side alkyl chains to improve the interchain packing order and charge mobilities for conjugated polymers are first discussed. It is shown that modifying the branching chains by moving the branching points away from the backbones can boost the charge mobilities, which can also be improved through partially replacing branching chains with linear ones. Second, the effects of side chains with heteroatoms and functional groups are discussed. The siloxane-terminated side chains are utilized to enhance the semiconducting properties. The fluorinated alkyl chains are beneficial for improving both charge mobility and air stability. Incorporating H bonding group side chains can improve thin film crystallinities and boost charge mobilities. Notably, incorporating functional groups (e.g., glycol, tetrathiafulvalene, and thymine) into side chains can improve the selectivity of field-effect transistor (FET)-based sensors, while photochromic group containing side chains in conjugated polymers result in photoresponsive semiconductors and optically tunable FETs.
Collapse
Affiliation(s)
- Yizhou Yang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xisha Zhang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
25
|
Anderson CL, Dai N, Teat SJ, He B, Wang S, Liu Y. Electronic Tuning of Mixed Quinoidal‐Aromatic Conjugated Polyelectrolytes: Direct Ionic Substitution on Polymer Main‐Chains. Angew Chem Int Ed Engl 2019; 58:17978-17985. [DOI: 10.1002/anie.201908609] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/05/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Christopher L. Anderson
- The Molecular Foundry Lawrence Berkeley National Laboratory One Cyclotron Road Berkeley CA 94720 USA
- Department of Chemistry University of California Berkeley Berkeley CA 94720 USA
| | - Nan Dai
- Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Simon J. Teat
- Advanced Light Source Lawrence Berkeley National Laboratory One Cyclotron Road Berkeley CA 94720 USA
| | - Bo He
- The Molecular Foundry Lawrence Berkeley National Laboratory One Cyclotron Road Berkeley CA 94720 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory One Cyclotron Road Berkeley CA 94720 USA
| | - Shu Wang
- Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yi Liu
- The Molecular Foundry Lawrence Berkeley National Laboratory One Cyclotron Road Berkeley CA 94720 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory One Cyclotron Road Berkeley CA 94720 USA
| |
Collapse
|
26
|
Takagi K, Yano H, Ito H, Kishi N. Charge-neutral and self-doped cyclopentadithiophene-based conjugated polymers: Influence of side chain on optical, electrical, and thermoelectric properties. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Hu Z, Wang Z, Zhang X, Tang H, Liu X, Huang F, Cao Y. Conjugated Polymers with Oligoethylene Glycol Side Chains for Improved Photocatalytic Hydrogen Evolution. iScience 2019; 13:33-42. [PMID: 30818223 PMCID: PMC6393733 DOI: 10.1016/j.isci.2019.02.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 12/30/2022] Open
Abstract
Conjugated polymers are emerging as promising organic photocatalysts for hydrogen evolution from water. However, it is still very challenging for conjugated polymers to realize highly efficient photocatalytic hydrogen evolution. Herein, we demonstrate an efficient strategy of hydrophilic side chain functionalization to boost the hydrogen evolution rates of conjugated polymers. By functionalizing conjugated polymers with hydrophilic oligo (ethylene glycol) monomethyl ether (OEG) side chains, a 90-fold improvement in hydrogen evolution rate has been achieved than that of alkyl-functionalized conjugated polymer. It is found that the OEG side chains interact robustly with Pt co-catalysts, resulting in more efficient charge transfer. Moreover, OEG side chains in conjugated polymers can adsorb H+ from water, resulting in significantly lowered energy levels on the surfaces of conjugated polymers, which enables cascade energy levels and enhances charge separation and photocatalytic performance. Our results indicate that rational side-chain engineering could facilitate the design of improved organic photocatalysts for hydrogen evolution. Conjugated polymers with oligoethylene glycol side chains are prepared Oligoethylene glycol side chains improve photocatalytic hydrogen evolution rates Oligoethylene glycol side chains interact robustly with Pt co-catalysts Oligoethylene glycol side chains enable cascade energy levels
Collapse
Affiliation(s)
- Zhicheng Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China; South China Institute of Collaborative Innovation, Dongguan 523808, PR China
| | - Zhenfeng Wang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xi Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Haoran Tang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaocheng Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China; South China Institute of Collaborative Innovation, Dongguan 523808, PR China.
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
28
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
29
|
Wu YF, Zhao S, Na HX, Yang PY, Xu H, Zhang Y, Chen Y, Zeng MH. Tuning Semiconductor Performance of Nickel Complexes through Crystal Transformation. Inorg Chem 2018; 57:12683-12689. [PMID: 30251537 DOI: 10.1021/acs.inorgchem.8b01841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crystal transformation between two polymorphs (green, 1-G, and red, 1-R) of the square-planar nickel complex NiL2 (L = 2-ethoxy-6-( N-methyliminomethyl)phenolate) and their tuning effect to semiconductor properties were studied both experimentally and theoretically. When 1-G is heated to 413 K, it converts to 1-R, whereas soaking 1-R in several kinds of solvents causes it to revert to 1-G. Crystallographic and PXRD studies reveal the dramatic changes in crystal dimensions due to the changes of packing models. Heating device made from 1-G (D-1-G(298)) at 413 K significantly increases the electrical conductivity from 6.55 × 10-4 S cm-1 for D-1-G(298) to 1.11 × 10-3 S cm-1 for D-1-G(413), showing significant crystal form dependence. Heat-treating D-1-G and D-1-R devices at different temperatures clearly reveals the reason for the conductivity tuning. Thus, the conductivity of NiL2-based devices could be well tuned through crystal transformation by heating or by soaking in solvent. Theoretical calculations clearly revealed the reason for such conductivity changes and also predicted that both polymorphs are good p-type semiconductors with hole mobilities of 1.63 × 10-2 (1-G) and 2.11 × 10-1 cm2 V-1 s-1 (1-R).
Collapse
Affiliation(s)
- Yan-Fang Wu
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Shuai Zhao
- School of Science , China University of Petroleum (East China) , Qingdao 266580 , People's Republic of China
| | - Hong-Xu Na
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Pei-Yu Yang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Haibing Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Yuexing Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , People's Republic of China
| | - Yanli Chen
- School of Science , China University of Petroleum (East China) , Qingdao 266580 , People's Republic of China
| | - Ming-Hua Zeng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , People's Republic of China.,Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin 541004 , People's Republic of China
| |
Collapse
|
30
|
Kang S, Todd AD, Paul A, Lee SY, Bielawski CW. Controlled Syntheses of Poly(phenylene ethynylene)s with Regiochemically-Tuned Optical Band Gaps and Ordered Morphologies. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Songsu Kang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Alexander D. Todd
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Abhijit Paul
- EEStor Inc., 715 Discovery Boulevard #107, Cedar Park, Texas 78613, United States
| | - Stanfield Y. Lee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| |
Collapse
|