1
|
Illien P, Golestanian R. Chemotactic particles as strong electrolytes: Debye-Hückel approximation and effective mobility law. J Chem Phys 2024; 160:154901. [PMID: 38624127 DOI: 10.1063/5.0203593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
We consider a binary mixture of chemically active particles that produce or consume solute molecules and that interact with each other through the long-range concentration fields they generate. We analytically calculate the effective phoretic mobility of these particles when the mixture is submitted to a constant, external concentration gradient, at leading order in the overall concentration. Relying on an analogy with the modeling of strong electrolytes, we show that the effective phoretic mobility decays with the square root of the concentration: our result is, therefore, a nonequilibrium counterpart to the celebrated Kohlrausch and Debye-Hückel-Onsager conductivity laws for electrolytes, which are extended here to particles with long-range nonreciprocal interactions. The effective mobility law we derive reveals the existence of a regime of maximal mobility and could find applications in the description of nanoscale transport phenomena in living cells.
Collapse
Affiliation(s)
- Pierre Illien
- Laboratoire PHENIX (Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux), CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Ramin Golestanian
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OX1 3PU Oxford, United Kingdom
| |
Collapse
|
2
|
McNeill J, Mallouk TE. Acoustically Powered Nano- and Microswimmers: From Individual to Collective Behavior. ACS NANOSCIENCE AU 2023; 3:424-440. [PMID: 38144701 PMCID: PMC10740144 DOI: 10.1021/acsnanoscienceau.3c00038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023]
Abstract
Micro- and nanoscopic particles that swim autonomously and self-assemble under the influence of chemical fuels and external fields show promise for realizing systems capable of carrying out large-scale, predetermined tasks. Different behaviors can be realized by tuning swimmer interactions at the individual level in a manner analogous to the emergent collective behavior of bacteria and mammalian cells. However, the limited toolbox of weak forces with which to drive these systems has made it difficult to achieve useful collective functions. Here, we review recent research on driving swimming and particle self-organization using acoustic fields, which offers capabilities complementary to those of the other methods used to power microswimmers. With either chemical or acoustic propulsion (or a combination of the two), understanding individual swimming mechanisms and the forces that arise between individual particles is a prerequisite to harnessing their interactions to realize collective phenomena and macroscopic functionality. We discuss here the ingredients necessary to drive the motion of microscopic particles using ultrasound, the theory that describes that behavior, and the gaps in our understanding. We then cover the combination of acoustically powered systems with other cross-compatible driving forces and the use of ultrasound in generating collective behavior. Finally, we highlight the demonstrated applications of acoustically powered microswimmers, and we offer a perspective on the state of the field, open questions, and opportunities. We hope that this review will serve as a guide to students beginning their work in this area and motivate others to consider research in microswimmers and acoustic fields.
Collapse
Affiliation(s)
- Jeffrey
M. McNeill
- Department of Chemistry, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Thomas E. Mallouk
- Department of Chemistry, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Wang W. Open Questions of Chemically Powered Nano- and Micromotors. J Am Chem Soc 2023; 145:27185-27197. [PMID: 38063192 DOI: 10.1021/jacs.3c09223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Chemically powered nano- and micromotors are microscopic devices that convert chemical energy into motion. Interest in these motors has grown over the past 20 years because they exhibit interesting collective behaviors and have found potential uses in biomedical and environmental applications. Understanding how these motors operate both individually and collectively and how environments affect their operation is of both fundamental and applied significance. However, there are still significant gaps in our knowledge. This Perspective highlights several open questions regarding the propulsion mechanisms of, interactions among, and impact of confinements on nano- and micromotors driven by self-generated chemical gradients. These questions are based on my own experience as an experimentalist. For each open question, I describe the problem and its significance, analyze the status-quo, identify the bottleneck problem, and propose potential solutions. An underlying theme for these questions is the interplay among reaction kinetics, physicochemical distributions, and fluid flows. Unraveling this interplay requires careful measurements as well as a close collaboration between experimentalists and theoreticians/numerical experts. The interdisciplinary nature of these challenges suggests that their solutions could bring new revelations and opportunities across disciplines such as colloidal sciences, material sciences, soft matter physics, robotics, and beyond.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China, 518055
| |
Collapse
|
4
|
Ouazan-Reboul V, Golestanian R, Agudo-Canalejo J. Network Effects Lead to Self-Organization in Metabolic Cycles of Self-Repelling Catalysts. PHYSICAL REVIEW LETTERS 2023; 131:128301. [PMID: 37802958 DOI: 10.1103/physrevlett.131.128301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/27/2023] [Indexed: 10/08/2023]
Abstract
Mixtures of particles that interact through phoretic effects are known to aggregate if they belong to species that exhibit attractive self-interactions. We study self-organization in a model metabolic cycle composed of three species of catalytically active particles that are chemotactic toward the chemicals that define their connectivity network. We find that the self-organization can be controlled by the network properties, as exemplified by a case where a collapse instability is achieved by design for self-repelling species. Our findings highlight a possibility for controlling the intricate functions of metabolic networks by taking advantage of the physics of phoretic active matter.
Collapse
Affiliation(s)
- Vincent Ouazan-Reboul
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Jaime Agudo-Canalejo
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany
| |
Collapse
|
5
|
Ouazan-Reboul V, Agudo-Canalejo J, Golestanian R. Self-organization of primitive metabolic cycles due to non-reciprocal interactions. Nat Commun 2023; 14:4496. [PMID: 37495589 PMCID: PMC10372013 DOI: 10.1038/s41467-023-40241-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
One of the greatest mysteries concerning the origin of life is how it has emerged so quickly after the formation of the earth. In particular, it is not understood how metabolic cycles, which power the non-equilibrium activity of cells, have come into existence in the first instances. While it is generally expected that non-equilibrium conditions would have been necessary for the formation of primitive metabolic structures, the focus has so far been on externally imposed non-equilibrium conditions, such as temperature or proton gradients. Here, we propose an alternative paradigm in which naturally occurring non-reciprocal interactions between catalysts that can partner together in a cyclic reaction lead to their recruitment into self-organized functional structures. We uncover different classes of self-organized cycles that form through exponentially rapid coarsening processes, depending on the parity of the cycle and the nature of the interaction motifs, which are all generic but have readily tuneable features.
Collapse
Affiliation(s)
- Vincent Ouazan-Reboul
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany
| | - Jaime Agudo-Canalejo
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany.
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OX1 3PU, Oxford, UK.
| |
Collapse
|
6
|
Dahmani I, Qin K, Zhang Y, Fernie AR. The formation and function of plant metabolons. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1080-1092. [PMID: 36906885 DOI: 10.1111/tpj.16179] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
Metabolons are temporary structural-functional complexes of sequential enzymes of a metabolic pathway that are distinct from stable multi-enzyme complexes. Here we provide a brief history of the study of enzyme-enzyme assemblies with a particular focus on those that mediate substrate channeling in plants. Large numbers of protein complexes have been proposed for both primary and secondary metabolic pathways in plants. However, to date only four substrate channels have been demonstrated. We provide an overview of current knowledge concerning these four metabolons and explain the methodologies that are currently being applied to unravel their functions. Although the assembly of metabolons has been documented to arise through diverse mechanisms, the physical interaction within the characterized plant metabolons all appear to be driven by interaction with structural elements of the cell. We therefore pose the question as to what methodologies could be brought to bear to enhance our knowledge of plant metabolons that assemble via different mechanisms? In addressing this question, we review recent findings in non-plant systems concerning liquid droplet phase separation and enzyme chemotaxis and propose strategies via which such metabolons could be identified in plants. We additionally discuss the possibilities that could be opened up by novel approaches based on: (i) subcellular-level mass spectral imaging, (ii) proteomics, and (iii) emergent methods in structural and computational biology.
Collapse
Affiliation(s)
- Ismail Dahmani
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Kezhen Qin
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| |
Collapse
|
7
|
Zheng Y, Gibb AA, Xu H, Liu S, Hill BG. The metabolic state of the heart regulates mitochondrial supercomplex abundance in mice. Redox Biol 2023; 63:102740. [PMID: 37210780 DOI: 10.1016/j.redox.2023.102740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023] Open
Abstract
Mitochondrial supercomplexes are observed in mammalian tissues with high energy demand and may influence metabolism and redox signaling. Nevertheless, the mechanisms that regulate supercomplex abundance remain unclear. In this study, we examined the composition of supercomplexes derived from murine cardiac mitochondria and determined how their abundance changes with substrate provision or by genetically induced changes to the cardiac glucose-fatty acid cycle. Protein complexes from digitonin-solubilized cardiac mitochondria were resolved by blue-native polyacrylamide gel electrophoresis and were identified by mass spectrometry and immunoblotting to contain constituents of Complexes I, III, IV, and V as well as accessory proteins involved in supercomplex assembly and stability, cristae architecture, carbohydrate and fat oxidation, and oxidant detoxification. Respiratory analysis of high molecular mass supercomplexes confirmed the presence of intact respirasomes, capable of transferring electrons from NADH to O2. Provision of respiratory substrates to isolated mitochondria augmented supercomplex abundance, with fatty acyl substrate (octanoylcarnitine) promoting higher supercomplex abundance than carbohydrate-derived substrate (pyruvate). Mitochondria isolated from transgenic hearts that express kinase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (GlycoLo), which decreases glucose utilization and increases reliance on fatty acid oxidation for energy, had higher mitochondrial supercomplex abundance and activity compared with mitochondria from wild-type or phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-expressing hearts (GlycoHi), the latter of which encourages reliance on glucose catabolism for energy. These findings indicate that high energetic reliance on fatty acid catabolism bolsters levels of mitochondrial supercomplexes, supporting the idea that the energetic state of the heart is regulatory factor in supercomplex assembly or stability.
Collapse
Affiliation(s)
- Yuting Zheng
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Andrew A Gibb
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Hongkai Xu
- Center of Proteomic Analysis, Beijing Genomics Institute (BGI-Shenzhen), Shenzhen, 518000, China
| | - Siqi Liu
- Center of Proteomic Analysis, Beijing Genomics Institute (BGI-Shenzhen), Shenzhen, 518000, China
| | - Bradford G Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
8
|
Shandilya E, Maiti S. Self-Regulatory Micro- and Macroscale Patterning of ATP-Mediated Nanobioconjugate. ACS NANO 2023; 17:5108-5120. [PMID: 36827433 DOI: 10.1021/acsnano.3c00431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Directional interactions and the assembly of a nanobioconjugate in clusters at a specific location are important for patterning and microarrays in biomedical research. Herein, we report that self-assembly and spatial control in surface patterning of the surfactant-functionalized nanoparticles can be governed in micro- and macroscale environments by two factors, synergistic enzyme-substrate-nanoparticle affinity and the phoretic effect. First, we show that aggregation of cationic gold nanoparticles (GNP) can be modulated by multivalent anionic nanoparticle binding of an adenosine-based nucleotide and enzyme, alkaline phosphatase. We further demonstrate two different types of their autonomous aggregation pattern: (i) by introducing an enzyme gradient that modulates the synergistic nonequilibrium interactivity of the nanoparticle, nucleotide, and enzyme both in microfluidic conditions and at the macroscale; and (ii) the surface deposition pattern from evaporating droplets via the coffee ring effect. Here, temporal control over the width and site of the patterning area inside the microfluidic channel under catalytic and noncatalytic conditions has also been demonstrated. Finally, we show a change in capillary phoresis parameters responsible for the coffee ring due to introduction of ATP-loaded GNP in the blood serum, showing applicability in low-cost disease diagnostics. Overall, an enzyme-actuated surface nanobiopatterning method has been demonstrated that has potential application in controlled micro- and macroscale area patterning with a diverse cascade catalytic surface and spatiotemporal multisensory-based application.
Collapse
Affiliation(s)
- Ekta Shandilya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| |
Collapse
|
9
|
Liu K, Liu Q, Yang J, Xie C, Wang S, Tong F, Gao J, Liu L, Ye Y, Chen B, Cai X, Liu Z, Li Z, Peng F, Tu Y. Micromotor Based Mini-Tablet for Oral Delivery of Insulin. ACS NANO 2023; 17:300-311. [PMID: 36546656 DOI: 10.1021/acsnano.2c07953] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Diabetes is a metabolic disorder characterized by hyperglycemia due to defective insulin secretion or its biological dysfunction. However, frequent subcutaneous injection of insulin often results in discomfort and local tissue infection. Herein, we demonstrate the successful fabrication of a mini-tablet system based on self-propelled micromotors with biocompatibility and biodegradability for oral colon administration of insulin. The insulin layer is first constructed onto the surface of a magnesium based micromotor via electrostatic interactions, followed by a tableting process. The resulting mini-tablets are then coated with esterified starch with colonic degradation capability, thus achieving controlled release of the embedded micromotors in the colon region. In the meantime, autonomous movement of the released micromotors with a speed up to 76.22 μm·s-1 further results in enhanced colonic uptake and absorption of insulin, realizing long-term control of blood glucose for more than 5 h. Our micromotor based mini-tablet system can not only broaden the biomedical applications of emerging self-propelled micromotors but also offer an appealing strategy for oral administration of biomacromolecular drugs represented by insulin.
Collapse
Affiliation(s)
- Kun Liu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, China
- Experimental Education/Administration Center, National Demonstration Center for Experimental Education of Basic Medical Sciences, Key Laboratory of Functional Proteomics of Guangdong Province, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou510515, China
| | - Qiuyue Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, China
| | - Jiarong Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, China
| | - Chen Xie
- Experimental Education/Administration Center, National Demonstration Center for Experimental Education of Basic Medical Sciences, Key Laboratory of Functional Proteomics of Guangdong Province, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou510515, China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui323020, China
| | - Fei Tong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, China
| | - Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, China
| | - Lu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, China
| | - Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, China
| | - Bin Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, China
| | - Xiaoying Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan, Zhengzhou450003, China
| | - Zeqi Li
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou510515, China
| |
Collapse
|
10
|
Tripathi AK, Tlusty T. Gauging Nanoswimmer Dynamics via the Motion of Large Bodies. PHYSICAL REVIEW LETTERS 2022; 129:254502. [PMID: 36608228 DOI: 10.1103/physrevlett.129.254502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Nanoswimmers are ubiquitous in biotechnology and nanotechnology but are extremely challenging to measure due to their minute size and driving forces. A simple method is proposed for detecting the elusive physical features of nanoswimmers by observing how they affect the motion of much larger, easily traceable particles. Modeling the swimmers as hydrodynamic force dipoles, we find direct, easy-to-calibrate relations between the observable power spectrum and diffusivity of the tracers and the dynamic characteristics of the swimmers-their force dipole moment and correlation times.
Collapse
Affiliation(s)
- Ashwani Kr Tripathi
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
11
|
Cotton MW, Golestanian R, Agudo-Canalejo J. Catalysis-Induced Phase Separation and Autoregulation of Enzymatic Activity. PHYSICAL REVIEW LETTERS 2022; 129:158101. [PMID: 36269959 DOI: 10.1103/physrevlett.129.158101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
We present a thermodynamically consistent model describing the dynamics of a multicomponent mixture where one enzyme component catalyzes a reaction between other components. We find that the catalytic activity alone can induce phase separation for sufficiently active systems and large enzymes, without any equilibrium interactions between components. In the limit of fast reaction rates, binodal lines can be calculated using a mapping to an effective free energy. We also explain how this catalysis-induced phase separation can act to autoregulate the enzymatic activity, which points at the biological relevance of this phenomenon.
Collapse
Affiliation(s)
- Matthew W Cotton
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG United Kingdom
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany
| | - Ramin Golestanian
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Jaime Agudo-Canalejo
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany
| |
Collapse
|
12
|
Ryabov A, Tasinkevych M. Diffusion coefficient and power spectrum of active particles with a microscopically reversible mechanism of self-propelling. J Chem Phys 2022; 157:104108. [DOI: 10.1063/5.0101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Catalytically active macromolecules are envisioned as key building blocks in development of artificial nanomotors. However, theory and experiments report conflicting findings regarding their dynamics. The lack of consensus is mostly caused by a limited understanding of specifics of self-propulsion mechanisms at the nanoscale. Here, we study a generic model of a self-propelled nanoparticle that does not rely on a particular mechanism. Instead, its main assumption is the fundamental symmetry of microscopic dynamics of chemical reactions: the principle of microscopic reversibility. Significant consequences of this assumption arise if we subject the particle to an action of an external time-periodic force. The particle diffusion coefficient is then enhanced compared to the unbiased dynamics. The enhancement can be controlled by the force amplitude and frequency. We also derive the power spectrum of particle trajectories. Among new effects stemming from the microscopic reversibility are the enhancement of the spectrum at all frequencies and sigmoid-shaped transitions and a peak at characteristic frequencies of rotational diffusion and external forcing. The microscopic reversibility is a generic property of a broad class of chemical reactions, therefore we expect that the presented results will motivate new experimental studies aimed at testing of our predictions. This could provide new insights into dynamics of catalytic macromolecules.
Collapse
Affiliation(s)
- Artem Ryabov
- Faculty of Mathematics and Physics, Department of Macromolecular Physics, Charles University, Czech Republic
| | | |
Collapse
|
13
|
Rezaei-Ghaleh N, Agudo-Canalejo J, Griesinger C, Golestanian R. Response to Comment on "Following Molecular Mobility during Chemical Reactions: No Evidence for Active Propulsion" and "Molecular Diffusivity of Click Reaction Components: The Diffusion Enhancement Question". J Am Chem Soc 2022; 144:13441-13445. [PMID: 35919985 PMCID: PMC9354245 DOI: 10.1021/jacs.2c02850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In their Comment
(DOI: 10.1021/jacs.2c02965) on two related publications by our
group (J. Am. Chem.
Soc.2022, 144, 1380–1388;
DOI: 10.1021/jacs.1c11754) and another (J. Am. Chem.
Soc.2021, 143, 20884–20890;
DOI: 10.1021/jacs.1c09455), Huang and Granick refer to the
diffusion NMR measurements of molecules during a copper-catalyzed
azide–alkyne cycloaddition (CuAAC) “click” reaction.
Here we respond to their comments and maintain that no measurable
diffusion enhancement was observed during the reaction. We expand
on the physical arguments presented in our original JACS Article regarding the appropriate reference state for the diffusion
coefficient and present new data showing that the use of other reference
states, as suggested by Huang and Granick, will still support our
conclusion that the two reactants and one product of the CuAAC reaction
do not exhibit boosted mobility during the reaction.
Collapse
Affiliation(s)
- Nasrollah Rezaei-Ghaleh
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Jaime Agudo-Canalejo
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, D-37077 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Ramin Golestanian
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, D-37077 Göttingen, Germany.,Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
14
|
Reid KM, Leitner DM. Enhanced Mobility during Diels-Alder Reaction: Results of Molecular Simulations. J Phys Chem Lett 2022; 13:3763-3769. [PMID: 35446035 DOI: 10.1021/acs.jpclett.2c00886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent measurements indicate enhanced mobility of solvent molecules during Diels-Alder (DA) and other common chemical reactions. We present results of molecular dynamics simulations of the last stages of the DA cycloaddition reaction, from the transition state configuration to product, of furfurylamine and maleimide in acetonitrile at reactant concentrations studied experimentally. We find enhanced mobility of solvent and reactant molecules up to at least a nanometer from the DA product over hundreds of picoseconds. Local heating is ruled out as a factor in the enhanced mobility observed in the simulations, which is instead found to be due to solvent relaxation following the formation of the DA product.
Collapse
Affiliation(s)
- Korey M Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
15
|
Choi AA, Park HH, Chen K, Yan R, Li W, Xu K. Displacement Statistics of Unhindered Single Molecules Show no Enhanced Diffusion in Enzymatic Reactions. J Am Chem Soc 2022; 144:4839-4844. [PMID: 35258969 PMCID: PMC8975259 DOI: 10.1021/jacs.1c12328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent studies have sparked debate over whether catalytic reactions enhance the diffusion coefficients D of enzymes. Through high statistics of the transient (600 μs) displacements of unhindered single molecules freely diffusing in common buffers, we here quantify D for four enzymes under catalytic turnovers. We thus formulate how ∼ ±1% precisions may be achieved for D, and show no changes in diffusivity for catalase, urease, aldolase, and alkaline phosphatase under the application of wide concentration ranges of substrates. Our single-molecule approach thus overcomes potential limitations and artifacts underscored by recent studies to show no enhanced diffusion in enzymatic reactions.
Collapse
Affiliation(s)
- Alexander A. Choi
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Ha H. Park
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Kun Chen
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Rui Yan
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Wan Li
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, CA 94720
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
16
|
Agudo-Canalejo J, Illien P, Golestanian R. Comment on "Relative Diffusivities of Bound and Unbound Protein Can Control Chemotactic Directionality". LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2746-2747. [PMID: 35175778 PMCID: PMC8892952 DOI: 10.1021/acs.langmuir.1c02840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Jaime Agudo-Canalejo
- Department
of Living Matter Physics, Max Planck Institute
for Dynamics and Self-Organization, D-37077 Göttingen, Germany
| | - Pierre Illien
- Sorbonne
Université, CNRS, Laboratoire Physicochimie des Electrolytes
et Nanosystèmes Interfaciaux (PHENIX), UMR 8234, 4 place Jussieu, 75005 Paris, France
| | - Ramin Golestanian
- Department
of Living Matter Physics, Max Planck Institute
for Dynamics and Self-Organization, D-37077 Göttingen, Germany
- Rudolf
Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
17
|
Rezaei-Ghaleh N, Agudo-Canalejo J, Griesinger C, Golestanian R. Molecular Diffusivity of Click Reaction Components: The Diffusion Enhancement Question. J Am Chem Soc 2022; 144:1380-1388. [PMID: 35078321 PMCID: PMC8796239 DOI: 10.1021/jacs.1c11754] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Indexed: 02/06/2023]
Abstract
Micrometer-sized objects are widely known to exhibit chemically driven motility in systems away from equilibrium. Experimental observation of reaction-induced motility or enhancement in diffusivity at the much shorter length scale of small molecules is, however, still a matter of debate. Here, we investigate the molecular diffusivity of reactants, catalyst, and product of a model reaction, the copper-catalyzed azide-alkyne cycloaddition click reaction, and develop new NMR diffusion approaches that allow the probing of reaction-induced diffusion enhancement in nanosized molecular systems with higher accuracy than the state of the art. Following two different approaches that enable the accounting of time-dependent concentration changes during NMR experiments, we closely monitored the diffusion coefficient of reaction components during the reaction. The reaction components showed distinct changes in the diffusivity: while the two reactants underwent a time-dependent decrease in their diffusivity, the diffusion coefficient of the product gradually increased and the catalyst showed only slight diffusion enhancement within the range expected for reaction-induced sample heating. The decrease in diffusion coefficient of the alkyne, one of the two reactants of click reaction, was not reproduced during its copper coordination when the second reactant, azide, was absent. Our results do not support the catalysis-induced diffusion enhancement of the components of the click reaction and, instead, point to the role of a relatively large intermediate species within the reaction cycle with diffusivity lower than that of both the reactants and product molecule.
Collapse
Affiliation(s)
- Nasrollah Rezaei-Ghaleh
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Biophysical Chemistry, Am Faßberg 11, D-37077 Göttingen, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität
Düsseldorf, Universitätsstraße
1, D-40225 Düsseldorf, Germany
| | - Jaime Agudo-Canalejo
- Department
of Living Matter Physics, Max Planck Institute
for Dynamics and Self-Organization, Am Faßberg 17, D-37077 Göttingen, Germany
| | - Christian Griesinger
- Department
of NMR-Based Structural Biology, Max Planck
Institute for Biophysical Chemistry, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Ramin Golestanian
- Department
of Living Matter Physics, Max Planck Institute
for Dynamics and Self-Organization, Am Faßberg 17, D-37077 Göttingen, Germany
- Rudolf
Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
18
|
Deshwal A, Shikha, Maiti S. Trade-off between carbohydrates and metal ions regulates the chemotactic directionality of alkaline phosphatase. Chem Commun (Camb) 2022; 58:12851-12854. [DOI: 10.1039/d2cc04360b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of the Hofmeister interaction in governing the chemotactic behavior of alkaline phosphatase in the presence of carbohydrate and metal ion gradients has been established.
Collapse
Affiliation(s)
- Akshi Deshwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Shikha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| |
Collapse
|
19
|
Bellotto N, Agudo-Canalejo J, Colin R, Golestanian R, Malengo G, Sourjik V. Dependence of diffusion in Escherichia coli cytoplasm on protein size, environmental conditions, and cell growth. eLife 2022; 11:82654. [PMID: 36468683 PMCID: PMC9810338 DOI: 10.7554/elife.82654] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Inside prokaryotic cells, passive translational diffusion typically limits the rates with which cytoplasmic proteins can reach their locations. Diffusion is thus fundamental to most cellular processes, but the understanding of protein mobility in the highly crowded and non-homogeneous environment of a bacterial cell is still limited. Here, we investigated the mobility of a large set of proteins in the cytoplasm of Escherichia coli, by employing fluorescence correlation spectroscopy (FCS) combined with simulations and theoretical modeling. We conclude that cytoplasmic protein mobility could be well described by Brownian diffusion in the confined geometry of the bacterial cell and at the high viscosity imposed by macromolecular crowding. We observed similar size dependence of protein diffusion for the majority of tested proteins, whether native or foreign to E. coli. For the faster-diffusing proteins, this size dependence is well consistent with the Stokes-Einstein relation once taking into account the specific dumbbell shape of protein fusions. Pronounced subdiffusion and hindered mobility are only observed for proteins with extensive interactions within the cytoplasm. Finally, while protein diffusion becomes markedly faster in actively growing cells, at high temperature, or upon treatment with rifampicin, and slower at high osmolarity, all of these perturbations affect proteins of different sizes in the same proportions, which could thus be described as changes of a well-defined cytoplasmic viscosity.
Collapse
Affiliation(s)
- Nicola Bellotto
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | | | - Remy Colin
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany,Rudolf Peierls Centre for Theoretical Physics, University of OxfordOxfordUnited Kingdom
| | - Gabriele Malengo
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| |
Collapse
|
20
|
McGlasson A, Bradley LC. Investigating Time-Dependent Active Motion of Janus Micromotors using Dynamic Light Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104926. [PMID: 34655162 DOI: 10.1002/smll.202104926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Advances in fabrication methods have positioned Janus micromotors (JMs) as candidates for use as autonomous devices in applications across diverse fields, spanning drug delivery to environmental remediation. While the design of most micromotors is straightforward, the non-steady state active motion exhibited by these systems is complex and difficult to characterize. Traditionally, JM active motion is characterized using optical microscopy single particle tracking for systems confined in 2D. Dynamic light scattering (DLS) offers an alternative high-throughput method for characterizing the 3D active motion in bulk JM dispersions with additional capabilities to quantify time-dependent behavior for a broader range of JM sizes. Here, the active motion of spherical JMs is examined by DLS and it is demonstrated that the method enables decoupling of the translational and rotational diffusion. Systematic studies quantifying the time-dependent diffusive properties as a function of fuel concentration, JM concentration, and time after fuel addition are presented. The analyses presented in this work position DLS to facilitate future advances of JM systems by serving as a fast-screening characterization method for active motion.
Collapse
Affiliation(s)
- Alex McGlasson
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Laura C Bradley
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
21
|
Agudo-Canalejo J, Adeleke-Larodo T, Illien P, Golestanian R. Synchronization and Enhanced Catalysis of Mechanically Coupled Enzymes. PHYSICAL REVIEW LETTERS 2021; 127:208103. [PMID: 34860057 DOI: 10.1103/physrevlett.127.208103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
We examine the stochastic dynamics of two enzymes that are mechanically coupled to each other, e.g., through an elastic substrate or a fluid medium. The enzymes undergo conformational changes during their catalytic cycle, which itself is driven by stochastic steps along a biased chemical free energy landscape. We find conditions under which the enzymes can synchronize their catalytic steps, and discover that the coupling can lead to a significant enhancement in their overall catalytic rate. Both effects can be understood as arising from a global bifurcation in the underlying dynamical system at sufficiently strong coupling. Our findings suggest that, despite their molecular scale, enzymes can be cooperative and improve their performance in metabolic clusters.
Collapse
Affiliation(s)
- Jaime Agudo-Canalejo
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany
| | - Tunrayo Adeleke-Larodo
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Pierre Illien
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), UMR 8234, 4 place Jussieu, 75005 Paris, France
| | - Ramin Golestanian
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
22
|
Krist KT, Sen A, Noid WG. A simple theory for molecular chemotaxis driven by specific binding interactions. J Chem Phys 2021; 155:164902. [PMID: 34717356 DOI: 10.1063/5.0061376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent experiments have suggested that enzymes and other small molecules chemotax toward their substrates. However, the physical forces driving this chemotaxis are currently debated. In this work, we consider a simple thermodynamic theory for molecular chemotaxis that is based on the McMillan-Mayer theory of dilute solutions and Schellman's theory for macromolecular binding. Even in the absence of direct interactions, the chemical binding equilibrium introduces a coupling term into the relevant free energy, which then reduces the chemical potential of both enzymes and their substrates. Assuming a local thermodynamic equilibrium, this binding contribution to the chemical potential generates an effective thermodynamic force that promotes chemotaxis by driving each solute toward its binding partner. Our numerical simulations demonstrate that, although small, this thermodynamic force is qualitatively consistent with several experimental studies. Thus, our study may provide additional insight into the role of the thermodynamic binding free energy for molecular chemotaxis.
Collapse
Affiliation(s)
- Kathleen T Krist
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
23
|
Zhang Y, Fernie AR. Stable and Temporary Enzyme Complexes and Metabolons Involved in Energy and Redox Metabolism. Antioxid Redox Signal 2021; 35:788-807. [PMID: 32368925 DOI: 10.1089/ars.2019.7981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Alongside well-characterized permanent multimeric enzymes and multienzyme complexes, relatively unstable transient enzyme-enzyme assemblies, including metabolons, provide an important mechanism for the regulation of energy and redox metabolism. Critical Issues: Despite the fact that enzyme-enzyme assemblies have been proposed for many decades and experimentally analyzed for at least 40 years, there are very few pathways for which unequivocal evidence for the presence of metabolite channeling, the most frequently evoked reason for their formation, has been provided. Further, in contrast to the stronger, permanent interactions for which a deep understanding of the subunit interface exists, the mechanism(s) underlying transient enzyme-enzyme interactions remain poorly studied. Recent Advances: The widespread adoption of proteomic and cell biological approaches to characterize protein-protein interaction is defining an ever-increasing number of enzyme-enzyme assemblies as well as enzyme-protein interactions that likely identify factors which stabilize such complexes. Moreover, the use of microfluidic technologies provided compelling support of a role for substrate-specific chemotaxis in complex assemblies. Future Directions: Embracing current and developing technologies should render the delineation of metabolons from other enzyme-enzyme complexes more facile. In parallel, attempts to confirm that the findings reported in microfluidic systems are, indeed, representative of the cellular situation will be critical to understanding the physiological circumstances requiring and evoking dynamic changes in the levels of the various transient enzyme-enzyme assemblies of the cell. Antioxid. Redox Signal. 35, 788-807.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
24
|
Ouazan-Reboul V, Agudo-Canalejo J, Golestanian R. Non-equilibrium phase separation in mixtures of catalytically active particles: size dispersity and screening effects. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:113. [PMID: 34478002 PMCID: PMC8416889 DOI: 10.1140/epje/s10189-021-00118-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/24/2021] [Indexed: 05/27/2023]
Abstract
Biomolecular condensates in cells are often rich in catalytically active enzymes. This is particularly true in the case of the large enzymatic complexes known as metabolons, which contain different enzymes that participate in the same catalytic pathway. One possible explanation for this self-organization is the combination of the catalytic activity of the enzymes and a chemotactic response to gradients of their substrate, which leads to a substrate-mediated effective interaction between enzymes. These interactions constitute a purely non-equilibrium effect and show exotic features such as non-reciprocity. Here, we analytically study a model describing the phase separation of a mixture of such catalytically active particles. We show that a Michaelis-Menten-like dependence of the particles' activities manifests itself as a screening of the interactions, and that a mixture of two differently sized active species can exhibit phase separation with transient oscillations. We also derive a rich stability phase diagram for a mixture of two species with both concentration-dependent activity and size dispersity. This work highlights the variety of possible phase separation behaviours in mixtures of chemically active particles, which provides an alternative pathway to the passive interactions more commonly associated with phase separation in cells. Our results highlight non-equilibrium organizing principles that can be important for biologically relevant liquid-liquid phase separation.
Collapse
Affiliation(s)
- Vincent Ouazan-Reboul
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany
| | - Jaime Agudo-Canalejo
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany.
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK.
| |
Collapse
|
25
|
Semenov SN, Schimpf ME. Thermophoretic Random Walks and Enhancement of Diffusion. J Phys Chem B 2021; 125:7427-7434. [PMID: 34228453 DOI: 10.1021/acs.jpcb.1c02262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The contribution of the stochastic thermodiffusion to the diffusion enhancement is studied. The thermodiffusion of particles suspended in a liquid may hold place when the spontaneous endo- or exothermal nanoscale events similar to elementary acts of enzymatic reactions occur as the random series in the space and time. In these events, the energy can be emitted or absorbed at nanoscale during few to hundreds of picoseconds. It may cause local spontaneous temperature spikes spreading quickly in the space and decaying with time. The random local temperature spikes create local transient temperature gradients, where thermodiffusion of the molecules and particles holds place as well as the change in the physical properties of the suspending medium due to heating. These thermodiffusion random walks may appear as the enhanced usual Stokes-Einstein diffusion when the energy absorption/generation is high enough. The evaluated relative contribution of the mentioned effect to the molecular mobility is shown to be in agreement with experimental data on enzymatic reactions from the literature.
Collapse
Affiliation(s)
- Semen N Semenov
- Institute of Biochemical Physics, RAS, Kosygin St. 4, 119334 Moscow, Russia
| | - Martin E Schimpf
- Boise State University, 1910 University Drive, Boise, Idaho 83725, United States
| |
Collapse
|
26
|
Acceleration of lipid reproduction by emergence of microscopic motion. Nat Commun 2021; 12:2959. [PMID: 34011926 PMCID: PMC8134444 DOI: 10.1038/s41467-021-23022-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/03/2021] [Indexed: 11/09/2022] Open
Abstract
Self-reproducing molecules abound in nature where they support growth and motion of living systems. In artificial settings, chemical reactions can also show complex kinetics of reproduction, however integrating self-reproducing molecules into larger chemical systems remains a challenge towards achieving higher order functionality. Here, we show that self-reproducing lipids can initiate, sustain and accelerate the movement of octanol droplets in water. Reciprocally, the chemotactic movement of the octanol droplets increases the rate of lipid reproduction substantially. Reciprocal coupling between bond-forming chemistry and droplet motility is thus established as an effect of the interplay between molecular-scale events (the self-reproduction of lipid molecules) and microscopic events (the chemotactic movement of the droplets). This coupling between molecular chemistry and microscopic motility offers alternative means of performing work and catalysis in micro-heterogeneous environments.
Collapse
|
27
|
Somasundar A, Sen A. Chemically Propelled Nano and Micromotors in the Body: Quo Vadis? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007102. [PMID: 33432722 DOI: 10.1002/smll.202007102] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/08/2020] [Indexed: 05/26/2023]
Abstract
The active delivery of drugs to disease sites in response to specific biomarkers is a holy grail in theranostics. If successful, it would greatly diminish the therapeutic dosage and reduce collateral cytotoxicity. In this context, the development of nano and micromotors that are able to harvest local energy to move directionally is an important breakthrough. However, serious hurdles remain before such active systems can be employed in vivo in therapeutic applications. Such motors and their energy sources must be safe and biocompatible, they should be able to move through complex body fluids, and have the ability to reach specific cellular targets. Given the complexity in the design and deployment of nano and micromotors, it is also critically important to show that they are significantly superior to inactive "smart" nanoparticles in theranostics. Furthermore, receiving regulatory approval requires the ability to scale-up the production of nano and micromotors with uniformity in structure, function, and activity. In this essay, the limitations of the current nano and micromotors and the issues that need to be resolved before such motors are likely to find theranostic applications are discussed.
Collapse
Affiliation(s)
- Ambika Somasundar
- Departments of Chemistry and Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ayusman Sen
- Departments of Chemistry and Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
28
|
Han K, Snezhko A. Programmable chiral states in flocks of active magnetic rollers. LAB ON A CHIP 2021; 21:215-222. [PMID: 33295921 DOI: 10.1039/d0lc00892c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inspired by nature, active matter exemplified by self-organization of motile units into macroscopic structures holds great promise for advanced tunable materials capable of flocking, shape-shifting, and self-healing. Active particles driven by external fields have repeatedly demonstrated potential for complex self-organization and collective behavior, yet how to guide the direction of their collective motion largely remains unexplored. Here, we report a system of microscopic ferromagnetic rollers driven by an alternating magnetic field that demonstrates programmable control of the direction of a self-organized coherent vortical motion (i.e., chirality). Facilitated by a droplet confinement, the rollers get synchronized and display either right- or left-handed spontaneous vortical motion, such that their moving direction determines the vortex chirality. We reveal that one can remotely command a flock of magnetic rollers to switch or maintain its chiral state by modulating a phase shift of the sinusoidal magnetic field powering the active rollers. Building on our findings, we realize a self-assembled remotely controlled micro-pump architecture capable of switching the fluid transport direction on demand. Our studies may stimulate new design strategies for directed transport and flocking robotics at the microscale based on active colloids.
Collapse
Affiliation(s)
- Koohee Han
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | | |
Collapse
|
29
|
Yang Q, Gao Y, Xu L, Hong W, She Y, Yang G. Enzyme-driven micro/nanomotors: Recent advances and biomedical applications. Int J Biol Macromol 2020; 167:457-469. [PMID: 33278445 DOI: 10.1016/j.ijbiomac.2020.11.215] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Micro/nanomotors (MNMs), both self-propelled actuators and external fields-promoted machines, have joined forces in the past decade to accomplish versatile tasks such as precise detection and targeted cargo delivery with adequate propulsion and desirable locomotion. Amongst, enzyme-driven MNMs have been able to differentiate themselves from others owing to their distinct characteristics, such as absence of chemical fuel, enhanced cellular uptake and the possibility to be easily conjugated with many therapeutics, including both small molecules and biologics, displaying superior efficacy, enhanced specificity and diminished side effects. In the present review, we aim to highlight and summarize recent advances in enzyme-driven MNMs, particularly to provide an in-depth discussion focusing on the enzyme linking approaches onto those MNMs and motion control strategies of such MNMs with advantages and limitations thereof. Conclusions and future perspectives are also provided in brief.
Collapse
Affiliation(s)
- Qingliang Yang
- Research Institute of Pharmaceutical Particle Technology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Gao
- Research Institute of Pharmaceutical Particle Technology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lei Xu
- Research Institute of Pharmaceutical Particle Technology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weiyong Hong
- Research Institute of Pharmaceutical Particle Technology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Taizhou Municipal Hospital of Zhejiang Province, Taizhou 318000, China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- Research Institute of Pharmaceutical Particle Technology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
30
|
MacDonald TC, Feringa BL, Price WS, Wezenberg SJ, Beves JE. Controlled Diffusion of Photoswitchable Receptors by Binding Anti-electrostatic Hydrogen-Bonded Phosphate Oligomers. J Am Chem Soc 2020; 142:20014-20020. [PMID: 33180496 PMCID: PMC7735709 DOI: 10.1021/jacs.0c09072] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Dihydrogen phosphate anions are found to spontaneously associate into anti-electrostatic oligomers via hydrogen bonding interactions at millimolar concentrations in DMSO. Diffusion NMR measurements supported formation of these oligomers, which can be bound by photoswitchable anion receptors to form large bridged assemblies of approximately three times the volume of the unbound receptor. Photoisomerization of the oligomer-bound receptor causes a decrease in diffusion coefficient of up to 16%, corresponding to a 70% increase in effective volume. This new approach to external control of diffusion opens prospects in controlling molecular transport using light.
Collapse
Affiliation(s)
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - William S. Price
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Sander J. Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jonathon E. Beves
- School of Chemistry, University of New South Wales Sydney, NSW 2052, Australia
| |
Collapse
|
31
|
|
32
|
Xu D, Wang Y, Liang C, You Y, Sanchez S, Ma X. Self-Propelled Micro/Nanomotors for On-Demand Biomedical Cargo Transportation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902464. [PMID: 31464072 DOI: 10.1002/smll.201902464] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Micro/nanomotors (MNMs) are miniaturized machines that can perform assigned tasks at the micro/nanoscale. Over the past decade, significant progress has been made in the design, preparation, and applications of MNMs that are powered by converting different sources of energy into mechanical force, to realize active movement and fulfill on-demand tasks. MNMs can be navigated to desired locations with precise controllability based on different guidance mechanisms. A considerable research effort has gone into demonstrating that MNMs possess the potential of biomedical cargo loading, transportation, and targeted release to achieve therapeutic functions. Herein, the recent advances of self-propelled MNMs for on-demand biomedical cargo transportation, including their self-propulsion mechanisms, guidance strategies, as well as proof-of-concept studies for biological applications are presented. In addition, some of the major challenges and possible opportunities of MNMs are identified for future biomedical applications in the hope that it may inspire future research.
Collapse
Affiliation(s)
- Dandan Xu
- State Key Laboratory of Advanced Welding and Joining, Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yong Wang
- State Key Laboratory of Advanced Welding and Joining, Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chunyan Liang
- State Key Laboratory of Advanced Welding and Joining, Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yongqiang You
- State Key Laboratory of Advanced Welding and Joining, Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Samuel Sanchez
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Xing Ma
- State Key Laboratory of Advanced Welding and Joining, Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
33
|
Agudo-Canalejo J, Illien P, Golestanian R. Cooperatively enhanced reactivity and "stabilitaxis" of dissociating oligomeric proteins. Proc Natl Acad Sci U S A 2020; 117:11894-11900. [PMID: 32414931 PMCID: PMC7275728 DOI: 10.1073/pnas.1919635117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many functional units in biology, such as enzymes or molecular motors, are composed of several subunits that can reversibly assemble and disassemble. This includes oligomeric proteins composed of several smaller monomers, as well as protein complexes assembled from a few proteins. By studying the generic spatial transport properties of such proteins, we investigate here whether their ability to reversibly associate and dissociate may confer on them a functional advantage with respect to nondissociating proteins. In uniform environments with position-independent association-dissociation, we find that enhanced diffusion in the monomeric state coupled to reassociation into the functional oligomeric form leads to enhanced reactivity with localized targets. In nonuniform environments with position-dependent association-dissociation, caused by, for example, spatial gradients of an inhibiting chemical, we find that dissociating proteins generically tend to accumulate in regions where they are most stable, a process that we term "stabilitaxis."
Collapse
Affiliation(s)
- Jaime Agudo-Canalejo
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Pierre Illien
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), UMR CNRS 8234, 75005 Paris, France
| | - Ramin Golestanian
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany;
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
34
|
Abstract
Many enzymes appear to diffuse faster in the presence of substrate and to drift either up or down a concentration gradient of their substrate. Observations of these phenomena, termed enhanced enzyme diffusion (EED) and enzyme chemotaxis, respectively, lead to a novel view of enzymes as active matter. Enzyme chemotaxis and EED may be important in biology and could have practical applications in biotechnology and nanotechnology. They are also of considerable biophysical interest; indeed, their physical mechanisms are still quite uncertain. This review provides an analytic summary of experimental studies of these phenomena and of the mechanisms that have been proposed to explain them and offers a perspective on future directions for the field.
Collapse
Affiliation(s)
- Mudong Feng
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA;
| | - Michael K Gilson
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA; .,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
35
|
Jee AY, Chen K, Tlusty T, Zhao J, Granick S. Enhanced Diffusion and Oligomeric Enzyme Dissociation. J Am Chem Soc 2019; 141:20062-20068. [DOI: 10.1021/jacs.9b06949] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ah-Young Jee
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - Kuo Chen
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, South Korea
- Department of Physics, UNIST, Ulsan 44919, South Korea
| | - Jiang Zhao
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steve Granick
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, South Korea
- Department of Physics, UNIST, Ulsan 44919, South Korea
- Department of Chemistry, UNIST, Ulsan 44919, South Korea
| |
Collapse
|
36
|
MacDonald TSC, Price WS, Astumian RD, Beves JE. Enhanced Diffusion of Molecular Catalysts is Due to Convection. Angew Chem Int Ed Engl 2019; 58:18864-18867. [DOI: 10.1002/anie.201910968] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/03/2019] [Indexed: 12/11/2022]
Affiliation(s)
| | - William S. Price
- Nanoscale Group School of Science and Health Western Sydney University Penrith NSW 2751 Australia
| | - R. Dean Astumian
- Department of Physics University of Maine Orono ME 04469-5709 USA
| | | |
Collapse
|
37
|
MacDonald TSC, Price WS, Astumian RD, Beves JE. Enhanced Diffusion of Molecular Catalysts is Due to Convection. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - William S. Price
- Nanoscale Group School of Science and Health Western Sydney University Penrith NSW 2751 Australia
| | - R. Dean Astumian
- Department of Physics University of Maine Orono ME 04469-5709 USA
| | | |
Collapse
|
38
|
Zhang L, Xiao Z, Chen X, Chen J, Wang W. Confined 1D Propulsion of Metallodielectric Janus Micromotors on Microelectrodes under Alternating Current Electric Fields. ACS NANO 2019; 13:8842-8853. [PMID: 31265246 DOI: 10.1021/acsnano.9b02100] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
There is mounting interest in synthetic microswimmers ("micromotors") as microrobots as well as a model system for the study of active matters, and spatial navigation is critical for their success. Current navigational technologies mostly rely on magnetic steering or guiding with physical boundaries, yet limitations with these strategies are plenty. Inspired by an earlier work with magnetic domains on a garnet film as predefined tracks, we present an interdigitated microelectrodes (IDE) system where, upon the application of AC electric fields, metallodielectric (e.g., SiO2-Ti) Janus particles are hydrodynamically confined and electrokinetically propelled in one dimension along the electrode center lines with tunable speeds. In addition, comoving micromotors moved in single files, while those moving in opposite directions primarily reoriented and moved past each other. At high particle densities, turbulence-like aggregates formed as many-body interactions became complicated. Furthermore, a micromotor made U-turns when approaching an electrode closure, while it gradually slowed down at the electrode opening and was collected in large piles. Labyrinth patterns made of serpentine chains of Janus particles emerged by modifying the electrode configuration. Most of these observations can be qualitatively understood by a combination of electroosmotic flows pointing inward to the electrodes, and asymmetric electrical polarization of the Janus particles under an AC electric field. Emerging from these observations is a strategy that not only powers and confines micromotors on prefabricated tracks in a contactless, on-demand manner, but is also capable of concentrating active particles at predefined locations. These features could prove useful for designing tunable tracks that steer synthetic microrobots, as well as to enable the study of single file diffusion, active turbulence, and other collective behaviors of active matters.
Collapse
Affiliation(s)
- Liangliang Zhang
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Zuyao Xiao
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Xi Chen
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Jingyuan Chen
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Wei Wang
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
- IBS Center for Soft and Living Matter , Institute of Basic Science , Ulsan 44919 , Republic of Korea
| |
Collapse
|
39
|
Chen X, Zhou C, Wang W. Colloidal Motors 101: A Beginner's Guide to Colloidal Motor Research. Chem Asian J 2019; 14:2388-2405. [DOI: 10.1002/asia.201900377] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/09/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Xi Chen
- School of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen) G 908, HIT Campus, Xili University Town Shenzhen Guangdong China
| | - Chao Zhou
- School of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen) G 908, HIT Campus, Xili University Town Shenzhen Guangdong China
| | - Wei Wang
- School of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen) G 908, HIT Campus, Xili University Town Shenzhen Guangdong China
| |
Collapse
|
40
|
Adeleke-Larodo T, Agudo-Canalejo J, Golestanian R. Chemical and hydrodynamic alignment of an enzyme. J Chem Phys 2019; 150:115102. [PMID: 30901991 DOI: 10.1063/1.5081717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Motivated by the implications of the complex and dynamic modular geometry of an enzyme on its motion, we investigate the effect of combining long-range internal and external hydrodynamic interactions due to thermal fluctuations with short-range surface interactions. An asymmetric dumbbell consisting of two unequal subunits, in a nonuniform suspension of a solute with which it interacts via hydrodynamic interactions as well as non-contact surface interactions, is shown to have two alignment mechanisms due to the two types of interactions. In addition to alignment, the chemical gradient results in a drift velocity that is modified by hydrodynamic interactions between the constituents of the enzyme.
Collapse
Affiliation(s)
- T Adeleke-Larodo
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - J Agudo-Canalejo
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - R Golestanian
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
41
|
MacDonald TSC, Price WS, Beves JE. Time‐Resolved Diffusion NMR Measurements for Transient Processes. Chemphyschem 2019; 20:926-930. [DOI: 10.1002/cphc.201900150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Indexed: 11/06/2022]
Affiliation(s)
| | - William S. Price
- Nanoscale Organisation and Dynamics Group School of Science and Health Western Sydney University Penrith NSW 2751 Australia
| | | |
Collapse
|
42
|
Marbach S, Bocquet L. Osmosis, from molecular insights to large-scale applications. Chem Soc Rev 2019; 48:3102-3144. [PMID: 31114820 DOI: 10.1039/c8cs00420j] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osmosis is a universal phenomenon occurring in a broad variety of processes and fields. It is the archetype of entropic forces, both trivial in its fundamental expression - the van 't Hoff perfect gas law - and highly subtle in its physical roots. While osmosis is intimately linked with transport across membranes, it also manifests itself as an interfacial transport phenomenon: the so-called diffusio-osmosis and -phoresis, whose consequences are presently actively explored for example for the manipulation of colloidal suspensions or the development of active colloidal swimmers. Here we give a global and unifying view of the phenomenon of osmosis and its consequences with a multi-disciplinary perspective. Pushing the fundamental understanding of osmosis allows one to propose new perspectives for different fields and we highlight a number of examples along these lines, for example introducing the concepts of osmotic diodes, active separation and far from equilibrium osmosis, raising in turn fundamental questions in the thermodynamics of separation. The applications of osmosis are also obviously considerable and span very diverse fields. Here we discuss a selection of phenomena and applications where osmosis shows great promises: osmotic phenomena in membrane science (with recent developments in separation, desalination, reverse osmosis for water purification thanks in particular to the emergence of new nanomaterials); applications in biology and health (in particular discussing the kidney filtration process); osmosis and energy harvesting (in particular, osmotic power and blue energy as well as capacitive mixing); applications in detergency and cleaning, as well as for oil recovery in porous media.
Collapse
Affiliation(s)
- Sophie Marbach
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
| | | |
Collapse
|