1
|
Wang SY, Lin LT, Rani A, Lee GS, Chan YT. Stepwise construction of a metallocatenane based on non-labile bis(terpyridine)-Cd II complexes. Chem Commun (Camb) 2024; 60:7914-7917. [PMID: 38980122 DOI: 10.1039/d4cc02919d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
A series of metalloligands bearing homoleptic 2,2':6',2''-terpyridine (tpy)-CdII complexes has been successfully synthesized. The formation of ML1 was accomplished through a sequence of Suzuki-Miyaura coupling and complexation reactions, offering an alternative method to produce tpy-based metalloligands under relatively mild conditions. Moreover, the metallomacrocycle C1 and metallocatenane C2 were self-assembled from heteroleptic complexation reactions involving ML1 and suitable counterparts.
Collapse
Affiliation(s)
- Shih-Yu Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Lin-Ting Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Alisha Rani
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Guan-Sian Lee
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
2
|
Ackroyd AJ, Gajecki L, Gogoulis AT, Smart JF, Oliver AG, McIndoe JS, Berg DJ. Mausolates: Large-Cavity Chelates with Potential as Delivery Vehicles in Nuclear Medicine. Chemistry 2024:e202401987. [PMID: 38820179 DOI: 10.1002/chem.202401987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
A new type of diborate clathrochelate (cage) ligand featuring nine inwardly pointing nitrogen donors that form a large, rigid cavity, termed a mausolate, is presented. The cavity size and high denticity make this an attractive delivery vehicle for large radionuclides in nuclear medicine. Metal mausolate complexes are stable to air and water (neutral pH) and display extremely high thermal stability (>400 °C). Lanthanide uptake by the mausolate ligand occurs rapidly in solution at room temperature and once complexed, the lanthanide ions are not displaced by a 250-fold excess of a competitive lanthanide salt over more than one week.
Collapse
Affiliation(s)
- Amanda J Ackroyd
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Leah Gajecki
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Athan T Gogoulis
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Jack F Smart
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - J Scott McIndoe
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - David J Berg
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
3
|
Chuprin AS, Belova SA, Vologzhanina AV, Dorovatovskii PV, Voloshin YZ. Preparation, X-ray Characterization, and Reactivity of the Rod-like and Angular Germanium- and Titanium(IV)-Capped Iron(II) Bis-Clathrochelates and Their Mono- and Bis-Capped (Semi)clathrochelate Precursors. Inorg Chem 2024; 63:4299-4311. [PMID: 38364313 DOI: 10.1021/acs.inorgchem.3c04319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Transmetalation of the bis{triethylantimony(V)}-capped iron(II) tris-α-dioximate with n-butylboronic acid afforded the mixed antimony, boron cross-linked clathrochelate with single reactive antimony(V)-based apical fragment. This macrobicyclic precursor easily underwent the transmetalation reactions with germanium and titanium(IV) alkoxides to give the rod-like and angular FeII2MIV-trinuclear bis-clathrochelates. Those of the aforementioned diantimony(V)-capped complex with 3- and 4-carboxyphenylboronic acids afforded the monoboron-capped iron(II) semiclathrochelates, undergoing a double-cyclization (macrobicyclization) with germanium- and titanium(IV)-based capping agents. The reactions in the low-temperature range unexpectedly gave the stable 2:1 associates, formed by the bridging of two carboxyl-terminated macrobicyclic molecules of the mixed carboxylboron, triethylantimony-capped iron(II) clathrochelate with a triethylantimony(V)-based linker fragment. The obtained complexes were characterized using elemental analysis, MALDI-TOF, 1H and 13C{1H} NMR and UV-vis spectra, and single-crystal XRD experiments. The encapsulated iron(II) ion in their 3D-molecules is situated almost in the center of its FeN6-coordination polyhedron possessing a truncated trigonal-pyramidal geometry. Fe-N distances fall in the range 1.887(7)-1.945(4) Å characteristic of the low-spin iron(II) complexes. The cross-linking titanium and germanium(IV) ions in the corresponding bis-clathrochelate molecules form the octahedral MIVO6-coordination polyhedra, the MIV-O distances of which vary from 1.946(2) to 1.964(2) Å and from 1.879(7) to 1.907(6) Å, respectively.
Collapse
Affiliation(s)
- Alexander S Chuprin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Prosp., 119991 Moscow, Russia
| | - Svetlana A Belova
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Prosp., 119991 Moscow, Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
| | - Pavel V Dorovatovskii
- National Research Center Kurchatov Institute, 1 Kurchatova pl., 123098 Moscow, Russia
| | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova St., 119334 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Prosp., 119991 Moscow, Russia
| |
Collapse
|
4
|
Zhu L, Du W, Li Y, Li D, Wei W, Zhao J, Wang X. Chiral SPINOL-Based Pt(II) Metallacycles For Immunogenic Cell Death. Inorg Chem 2023; 62:14922-14930. [PMID: 37674254 DOI: 10.1021/acs.inorgchem.3c01635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The incorporation of chirality endows Pt(II)-based metal-organic complexes (MOCs) with unique potentials in several fields such as nonlinear optics and chiral catalysis. However, the exploration of chiral Pt(II) metallacycles in biological responses remains underdeveloped. Herein, we designed and synthesized two chiral Pt(II) metallacycles 1 and 2 via the coordination-driven self-assembly of chiral 1,1'-spirobiindane-7,7'-diol (SPINOL)-derived ligands and cis-Pt(PEt3)2(OTf)2 (90°Pt). Their structures were well characterized by 1H NMR, 31P{1H} NMR, ESI-TOF-MS, and X-ray crystallography, and their photophysical properties were investigated by UV-vis absorption, fluorescence, and circular dichroism (CD) spectroscopies. Then, the antitumor activity of the two chiral metallacycles in vitro was further tested. Complexes 1 and 2 exhibited strong cytotoxicity, especially toward the A549 cells. The destruction of the mitochondrial function, the inhibition of the glutathione (GSH)/glutathione disulfide (GSSG) level, and the inactivation of superoxide dismutase (SOD) induced by complexes 1 and 2 led to the massive accumulation of reactive oxygen species (ROS). The overloaded ROS then triggered apoptotic cell death, and the release of damage-associated molecular patterns (DAMPs) further induced immunogenic cell death (ICD). To the best of our knowledge, this is the first example of Pt(II)-based metallacycles that can induce immunogenic cell death, providing a new strategy for the future design and construction of immune-modulating platinum agents in cancer therapy.
Collapse
Affiliation(s)
- Lu Zhu
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wenjing Du
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanrong Li
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Ding Li
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wei
- School of Life Sciences, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Sino-Danish Ecolife Science Industrial Incubator, Nanchuang (Jiangsu) Institute of Chemistry and Health, Jiangbei New Area, Nanjing 210000, China
| | - Jing Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Sino-Danish Ecolife Science Industrial Incubator, Nanchuang (Jiangsu) Institute of Chemistry and Health, Jiangbei New Area, Nanjing 210000, China
| | - Xiuxiu Wang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Rezaie F, Noorizadeh S. Theoretical investigation of tube-like supramolecular structures formed through bifurcated lithium bonds. Sci Rep 2023; 13:15260. [PMID: 37709798 PMCID: PMC10502010 DOI: 10.1038/s41598-023-41979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
The stability of three supramolecular naostructures, which are formed through the aggregation of identical belts of [12] arene containing p-nitrophenyllithium, 1,4-dilithiatedbenzene and 1,4-dinitrobenzene units, is investigated by density functional theory. The electrostatic potential calculations indicate the ability of these belts in forming bifurcated lithium bonds (BLBs) between the Li atoms of one belt and the oxygen atoms of the NO2 groups in the other belt, which is also confirmed by deformation density maps and quantum theory of atoms in molecules (QTAIM) analysis. Topological analysis and natural bond analysis (NBO) imply to ionic character for these BLBs with binding energies up to approximately - 60 kcal mol-1. The many-body interaction energy analysis shows the strong cooperativity belongs to the configuration with the highest symmetry (C4v) containing p-nitrophenyllithium fragments as the building unit. Therefore, it seems that this configuration could be a good candidate for designing a BLB-based supramolecular nanotube with infinite size in this study.
Collapse
Affiliation(s)
- Forough Rezaie
- Chemistry Department, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Siamak Noorizadeh
- Chemistry Department, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
6
|
Thaler R, Kopacka H, Wurst K, Müller T, Neururer FR, Hohloch S, Lippmann P, Ott I, Bildstein B. Clathrochelate Complexes Containing Axial Cymantrene and Tromancenium Moieties. Eur J Inorg Chem 2023; 26:e202300368. [PMID: 38505780 PMCID: PMC10947045 DOI: 10.1002/ejic.202300368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/28/2023] [Indexed: 03/21/2024]
Abstract
New clathrochelate complexes of manganese, iron and cobalt containing peripheral organometallic manganese moieties cymantrene or tromancenium were synthesized via self-assembly from di/tri-topic dioximes, metal templates and cymantrene/tromancenium boronic acid pinacol esters. These air-stable, highly colored, oligometallic complexes are composed of various combinations of MnIFeIIMnI, MnICoIIMnI, MnIMnIIMnIIMnI and MnICoIICoIIMnI metal assemblies with corresponding complicated magnetic and electrochemical properties. Full spectroscopic and structural characterization by 1H/11B/13C NMR, HRMS, IR, UV-vis, single crystal XRD and CV (cyclic voltammetry) is provided. Tetrametallic complexes containing tromanceniumyl substituents with two CoII or MnII central metals exhibit promising anticancer properties against different tumor cell lines.
Collapse
Affiliation(s)
- Reinhard Thaler
- Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Holger Kopacka
- Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Klaus Wurst
- Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Thomas Müller
- Institut für Organische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Florian R. Neururer
- Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Stephan Hohloch
- Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBeethovenstr. 5538106BraunschweigGermany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBeethovenstr. 5538106BraunschweigGermany
| | - Benno Bildstein
- Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
7
|
Baig N, Shetty S, Bargakshatriya R, Pramanik SK, Alameddine B. Efficient Removal of Carcinogenic Azo Dyes from Water Using Iron(II) Clathrochelate Derived Metalorganic Copolymers Made from a Copper-Catalyzed [4 + 2] Cyclobenzannulation Reaction. Polymers (Basel) 2023; 15:2948. [PMID: 37447593 DOI: 10.3390/polym15132948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
A novel synthetic strategy is disclosed to prepare a new class of metalorganic copolymers that contain iron(II) clathrochelate building blocks by employing a mild and cost-effective copper-catalyzed [4 + 2] cyclobenzannulation reaction, using three specially designed diethynyl iron(II) clathrochelate synthons. The target copolymers CBP1-3 were isolated in high purity and excellent yields as proven by their structural and photophysical characterization, namely, Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and UV-VIS absorption and emission spectroscopies. The thermogravimetric analysis (TGA) of CBP1-3 revealed an excellent chemical stability. Investigation of the adsorption properties of the target copolymers towards the carcinogenic methyl red dye from aqueous solution revealed a quantitative uptake in 30 min. Isothermal adsorption studies disclosed that methyl red uptake from aqueous solution followed the Langmuir model for all of the target copolymers, reaching a maximum adsorption capacity (qm) of 431 mg g-. Kinetic investigation revealed that the adsorption followed pseudo-first-order with an equilibrium adsorption capacity (qe,cal) of 79.35 mg g- and whose sorption property was sustained even after its reuse several times.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Rupa Bargakshatriya
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| |
Collapse
|
8
|
Chuprin AS, Pavlov AA, Vologzhanina AV, Dorovatovskii PV, Makarenkov AV, Ol'shevskaya VA, Dudkin SV, Voloshin YZ. Multistep synthesis and X-ray structures of carboxyl-terminated hybrid iron(II) phthalocyaninatoclathrochelates and their postsynthetic transformation into polytopic carboranyl-containing derivatives. Dalton Trans 2023; 52:3884-3895. [PMID: 36877091 DOI: 10.1039/d3dt00076a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A multistep general synthetic strategy towards polytopic carboranyl-containing (semi)clathrochelate metal complexes, based on the template synthesis, transmetallation, amide condensation and 1,3-dipolar cycloaddition reactions, is developed. Their mono(semi)clathrochelate precursors with a single reactive group were obtained using a transmetallation of the triethylantimony-capped macrobicyclic precursor. The thus obtained carboxyl-terminated iron(II) semiclathrochelate underwent a macrobicyclization with zirconium(IV) phthalocyaninate to form the corresponding phthalocyaninatoclathrochelate. The direct one-pot template condensation of the suitable chelating and cross-linking ligand synthons on the Fe2+ ion as a matrix was also used for its preparation. Further amide condensation of the aforementioned semiclathrochelate and hybrid complexes with propargylamine in the presence of carbonyldiimidazole gave the (pseudo)cage derivatives with a terminal CC bond. Their "click" reaction with an appropriate carboranylmethyl azide afforded the ditopic carboranosemiclathrochelates and the tritopic carboranyl-containing phthalocyaninatoclathrochelates with a flexible spacer fragment between their polyhedral entities. The obtained new complexes were characterized using elemental analysis, MALDI-TOF mass spectrometry, multinuclear NMR, and UV-vis spectroscopy, and by single crystal X-ray diffraction experiments. Their FeN6-coordination polyhedra show a truncated trigonal-pyramidal geometry, while the cross-linking heptacoordinate Zr4+ or Hf4+ cations in the hybrid compounds form the MIVN4O3-coordination polyhedra with the geometry of a capped trigonal prism.
Collapse
Affiliation(s)
- Alexander S Chuprin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Alexander A Pavlov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
- BMSTU Center of National Technological Initiative "Digital Material Science: New Material and Substances", Bauman Moscow State Technical University, 2nd Baumanskaya st. 5, 105005, Moscow, Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Pavel V Dorovatovskii
- National Research Center Kurchatov Institute, 1 Kurchatova pl., 123098, Moscow, Russia
| | - Anton V Makarenkov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Valentina A Ol'shevskaya
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Semyon V Dudkin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| |
Collapse
|
9
|
Xia M, Li S, Xie Z. Self-assembly of guanosine into carbon-based multilayer materials. Chem Commun (Camb) 2023; 59:2783-2786. [PMID: 36786684 DOI: 10.1039/d2cc05793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
We report the utilization of guanosine as a supramolecular precursor that unprecedentedly renders the formation of carbon-based multilayer materials with naturally high-level nitrogen doping. As a proof-of-concept, the porous carbon multilayers after anchoring 0.5 wt% Rh electrocatalysts displayed an excellent hydrogen evolution reaction activity.
Collapse
Affiliation(s)
- Miao Xia
- State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 2 Xueyuan Road, Fuzhou 350016, China. .,Changzhou Centers for Disease Control and Prevention, Changzhou, China
| | - Shuchun Li
- State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 2 Xueyuan Road, Fuzhou 350016, China.
| | - Zailai Xie
- State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 2 Xueyuan Road, Fuzhou 350016, China.
| |
Collapse
|
10
|
Vasdev RAS, Preston D, Casey-Stevens CA, Martí-Centelles V, Lusby PJ, Garden AL, Crowley JD. Exploiting Supramolecular Interactions to Control Isomer Distributions in Reduced-Symmetry [Pd 2L 4] 4+ Cages. Inorg Chem 2023; 62:1833-1844. [PMID: 35604785 DOI: 10.1021/acs.inorgchem.2c00937] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
High-symmetry metallosupramolecular architectures (MSAs) have been exploited for a range of applications including molecular recognition, catalysis, and drug delivery. Recently, there have been increasing efforts to enhance those applications by generating reduced-symmetry MSAs. Here we report our attempts to use supramolecular (dispersion and hydrogen-bonding) forces and solvophobic effects to generate isomerically pure [Pd2(L)4]4+ cage architectures from a family of new reduced-symmetry ditopic tripyridyl ligands. The reduced-symmetry tripyridyl ligands featured either solvophilic polyether chains, solvophobic alkyl chains, or amino substituents. We show using NMR spectroscopy, high-performance liquid chromatography, X-ray diffraction data, and density functional theory calculations that the combination of dispersion forces and solvophobic effects does not provide any control of the [Pd2(L)4]4+ isomer distribution with mixtures of all four cage isomers (HHHH, HHHT, cis-HHTT, or trans-HTHT, where H = head and T = tail) obtained in each case. More control was obtained by exploiting hydrogen-bonding interactions between amino units. While the cage assembly with a 3-amino-substituted tripyridyl ligand leads to a mixture of all four possible isomers, the related 2-amino-substituted tripyridyl ligand generated a cis-HHTT cage architecture. Formation of the cis-HHTT [Pd2(L)4]4+ cage was confirmed using NMR studies and X-ray crystallography.
Collapse
Affiliation(s)
- Roan A S Vasdev
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - Dan Preston
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - Caitlin A Casey-Stevens
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - Vicente Martí-Centelles
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland
| | - Paul J Lusby
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland
| | - Anna L Garden
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| |
Collapse
|
11
|
Belov AS, Novikov VV, Vologzhanina AV, Pavlov AA, Bogomyakov AS, Zubavichus YV, Svetogorov RD, Zelinskii GE, Voloshin YZ. Synthesis, crystal polymorphism and spin crossover behavior of adamantylboron-capped cobalt(II) hexachloroclathrochelate and its transformation into the Co IIICo IICo III-bis-macrobicyclic derivative. Dalton Trans 2023; 52:347-359. [PMID: 36511081 DOI: 10.1039/d2dt03300c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Fast crystallization of the monoclathrochelate cobalt(II) intracomplex [Co(Cl2Gm)3(BAd)2] (where Cl2Gm2- is a dichloroglyoxime dianion and BAd is an adamantylboron capping group, 1), initially obtained by the direct template condensation of the corresponding chelating α-dioximate and cross-linking ligand synthons on the Co2+ ion as a matrix, from benzene or dichloromethane afforded its structural triclinic and hexagonal polymorphs. Its prolonged recrystallization from dichloromethane under air atmosphere and sunlight irradiation unexpectedly gave the crystals of the CoIIICoIICoIII-trinuclear dodecachloro-bis-clathrochelate intracomplex [[CoIII(Cl2Gm)3(BAd)]2CoII] (2), the molecule of which consists of two macrobicyclic frameworks with encapsulated low-spin (LS) Co3+ ions, which are cross-linked by a μ3-bridging Co2+ ion as a bifunctional Lewis-acidic center. The most plausible pathway of such a 1 → 2 transformation is based on the photoinitiated radical oxidation of dichloromethane with air oxygen giving the reactive species. Cobalt(II) monoclathrochelate 1 was found to undergo a temperature-induced spin crossover (SCO) both in its solutions and in the solid state. In spite of the conformational rigidity of the corresponding quasiaromatic diboron-capped tris-α-dioximate framework, the main parameters of this SCO transition (i.e., its completeness and gradual character) are strongly affected by the nature of the used solvent (in the case of its solutions) and by the structural polymorphism of its crystals (in the solid state). In the latter case, the LS state (S = 1/2) of this complex is more thermally stable and, therefore, the cobalt(II)-centered 1/2 → 3/2 SCO is more gradual than that in solutions.
Collapse
Affiliation(s)
- Alexander S Belov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia. .,Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Valentin V Novikov
- Moscow Institute of Physics and Technology, 141700 Moscow Region, Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Alexander A Pavlov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.,National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Artem S Bogomyakov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Yan V Zubavichus
- Synchrotron Radiation Facility SKIF, G.K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, 1 Nikolskii pr., 630559 Koltsovo, Russia
| | | | - Genrikh E Zelinskii
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia. .,Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| | - Yan Z Voloshin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia. .,Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia
| |
Collapse
|
12
|
Synthesis and Iodine Adsorption Properties of Organometallic Copolymers with Propeller-Shaped Fe(II) Clathrochelates Bridged by Different Diaryl Thioether and Their Oxidized Sulfone Derivatives. Polymers (Basel) 2022; 14:polym14224818. [PMID: 36432945 PMCID: PMC9697507 DOI: 10.3390/polym14224818] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Three organometallic copolymers, ICP1-3, containing iron(II) clathrochelate units with cyclohexyl lateral groups and interconnected by various thioether derivatives were synthesized. The reaction of the latter into their corresponding OICP1-3 sulfone derivatives was achieved quantitatively using mild oxidation reaction conditions. The target copolymers, ICP1-3 and OICP1-3, were characterized by various instrumental analysis techniques, and their iodine uptake studies disclosed excellent iodine properties, reaching a maximum of 360 wt.% (qe = 3600 mg g-1). The adsorption mechanisms of the copolymers were explored using pseudo-first-order and pseudo-second-order kinetic models. Furthermore, regeneration tests confirmed the efficiency of the target copolymers for their iodine adsorption even after several adsorption-desorption cycles.
Collapse
|
13
|
Complementarity and Preorganisation in the Assembly of Heterometallic–Organic Cages via the Metalloligand Approach—Recent Advances. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The design of new metallocage polyhedra towards pre-determined structures can offer both practical as well as intellectual challenges. In this mini-review we discuss a selection of recent examples in which the use of the metalloligand approach has been employed to overcome such challenges. An attractive feature of this approach is its stepwise nature that lends itself to the design and rational synthesis of heterometallic metal–organic cages, with the latter often associated with enhanced functionality.
Collapse
|
14
|
Synthesis of Metalorganic Copolymers Containing Various Contorted Units and Iron(II) Clathrochelates with Lateral Butyl Chains: Conspicuous Adsorbents of Lithium Ions and Methylene Blue. Polymers (Basel) 2022; 14:polym14163394. [PMID: 36015650 PMCID: PMC9412635 DOI: 10.3390/polym14163394] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
We report the synthesis of three highly soluble metalorganic copolymers, TCP1-3, that were made from a one-pot complexation of iron(II) clathrochelate units that are interconnected by various thioether-containing contorted groups. TCP1-3 were converted into their poly(vinyl sulfone) derivatives OTCP1-3 quantitatively via the selective oxidation of the thioether moieties into their respective sulfones. All of the copolymers, TCP1-3 and OTCP1-3, underwent structural analysis by various techniques; namely, 1H- and 13C-nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC). The copolymers were tested as potent lithium ions adsorbents revealing a maximum adsorption (qm) value of 2.31 mg g-1 for OTCP2. Furthermore, this same copolymer was found to be a promising adsorbent of methylene blue (MEB); an isothermal adsorption study divulged that OTCP2's uptake of MEB from an aqueous solution (following the Langmuir model) was, at maximum adsorption capacity, (qm) of 480.77 mg g-1; whereas the kinetic study divulged that the adsorption follows pseudo second-order kinetics with an equilibrium adsorption capacity (qe,cal) of 45.40 mg g-1.
Collapse
|
15
|
Shetty S, Baig N, Al‐Mousawi S, Alameddine B. Removal of anionic and cationic dyes using porous copolymer networks made from a
S
onogashira cross‐coupling reaction of diethynyl iron (
II
) clathrochelate with various arylamines. J Appl Polym Sci 2022. [DOI: 10.1002/app.52966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Suchetha Shetty
- Department of Mathematics and Natural Sciences Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
- Functional Materials Group Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
| | - Noorullah Baig
- Department of Mathematics and Natural Sciences Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
- Functional Materials Group Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
- Functional Materials Group Gulf University for Science and Technology Mubarak Al‐Abdullah Kuwait
| |
Collapse
|
16
|
Pachisia S, Gupta R. Tailored Inorganic-Organic Architectures via Metalloligands. CHEM REC 2022; 22:e202200121. [PMID: 35758543 DOI: 10.1002/tcr.202200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Indexed: 11/08/2022]
Abstract
This article discusses the design principles and strategies and the structural outcome of various supramolecular architectures constructed by utilizing well-defined coordination complexes as the metalloligands. We have included selected examples of metalloligands, offering either pyridyl or arylcarboxylic acid groups as the appended functional groups, for illustrating the construction of their supramolecular architectures. Both geometrical position and the number of the appended functional groups emerging from a metalloligand were found to critically regulate the structural aspects and dimensionality of the resultant material. The article concludes by delineating the structure-directing lessions as well as the potential applications of the metalloligand-based supramolecular architectures for the generation of next-level materials.
Collapse
Affiliation(s)
- Sanya Pachisia
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
17
|
Self-assembly of a photoluminescent metal-organic cage and its spontaneous aggregation in dilute solutions enabling time-dependent emission enhancement. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1245-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Nguyen T, Tran NM, Park IH, Yoo H. Heteroleptic Triple-Stranded Metallosupramolecules with Hydrophobic Inner Voids. ACS OMEGA 2022; 7:13067-13074. [PMID: 35474782 PMCID: PMC9026104 DOI: 10.1021/acsomega.2c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The systematic combination of well-defined coordination spheres and multiple types of ligands (heteroleptic) can lead to the generation of hierarchical metallosupramolecules with a high level of complexity and functionality. In particular, a specific multilevel coordination-driven assembly through the initiate generation of multinuclear clusters can form unique heteroleptic multiple-stranded supramolecular complexes. Herein, we report novel triple-stranded nickel-based supramolecules constructed from two different ditopic ligands ([1,1':3',1''-terphenyl]-4,4''-dicarboxylate (TP) and 2,6-pyridinedicarboxylate (PDA)) and a nickel precursor. The solid-state structures of the as-synthesized supramolecules revealed that three PDA ligands are employed to fabricate a tetranuclear ({Ni4}) cluster, and two {Ni4} clusters are assembled to form the final triple-stranded metallosupramolecules by three TP ligands. The bridging TP ligands also provide large inner voids with highly hydrophobic environments. Structural investigation of the generated complexes provided a deeper understanding of the aspects driving the formation of heteroleptic supramolecules, which is crucial for the design of multiple-strands with desired morphologies and functionalities.
Collapse
Affiliation(s)
- Thanh
Nhan Nguyen
- Department
of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Ngoc Minh Tran
- Department
of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - In-Hyeok Park
- Graduate
School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyojong Yoo
- Department
of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
19
|
Dudkin SV, Chuprin AS, Belova SA, Vologzhanina AV, Zubavichus YV, Kaletina PM, Shundrina IK, Bagryanskaya EG, Voloshin YZ. Hybrid iron(II) phthalocyaninatoclathrochelates with a terminal reactive vinyl group and their organo-inorganic polymeric derivatives: synthetic approaches, X-ray structures and copolymerization with styrene. Dalton Trans 2022; 51:5645-5659. [PMID: 35322826 DOI: 10.1039/d1dt04187h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hybrid metallo(IV)phthalocyaninate-capped tris-dioximate iron(II) complexes (termed as "phthalocyaninatoclathrochelates") with non-equivalent apical fragments and functionalized with one terminal reactive vinyl group were prepared for the first time using three different synthetic approaches: (i) transmetallation (capping group exchange) of the appropriate labile boron,antimony-capped cage precursors, (ii) capping of the initially isolated reactive semiclathrochelate intermediate, and (iii) direct one-pot template condensation of their ligand synthons on the iron(II) ion as a matrix. The obtained polytopic cage complexes were characterized using elemental analysis, 1H NMR, MALDI-TOF MS and UV-vis spectra, and the single-crystal X-ray diffraction experiments. One of the obtained vinyl-terminated iron(II) phthalocyaninatoclathrochelates and its semiclathrochelate precursor were tested as monomers in a copolymerization reaction with styrene as the main component. These vinyl-terminated (semi)clathrochelate iron(II) complexes were found to be successfully copolymerized with this industrially important monomer, affording the intensely colored copolymer products. Because of a low solubility of the tested zirconium(IV) phthalocyaninate-capped tris-nioximate monomer in styrene as a solvent, a molar ratio of 1 : 500 was used. The obtained copolymer products and the kinetics of their formation were studied using GPC, FTIR, UV-vis, TGA and DSC methods. Even at such a low concentration of the Fe,Zr-binuclear metallocomplex component, an increase in the rate of the UV-light degradation of the organo-inorganic products, as well as in their thermal stability, was observed.
Collapse
Affiliation(s)
- Semyon V Dudkin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia.
| | - Alexander S Chuprin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia.
| | - Svetlana A Belova
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia.
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia.
| | - Yan V Zubavichus
- Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, 1 Nikolskii pr., 6305590 Koltsovo, Russia
| | - Polina M Kaletina
- Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of Russian Academy of Sciences, 9 Lavrentiev pr., 630090 Novosibirsk, Russia
| | - Inna K Shundrina
- Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of Russian Academy of Sciences, 9 Lavrentiev pr., 630090 Novosibirsk, Russia
| | - Elena G Bagryanskaya
- Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of Russian Academy of Sciences, 9 Lavrentiev pr., 630090 Novosibirsk, Russia
| | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia. .,Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| |
Collapse
|
20
|
Li S, Liu C, Chen Q, Jiang F, Yuan D, Sun QF, Hong M. Adaptive coordination assemblies based on a flexible tetraazacyclododecane ligand for promoting carbon dioxide fixation. Chem Sci 2022; 13:9016-9022. [PMID: 36091216 PMCID: PMC9365242 DOI: 10.1039/d2sc03093d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Coordination hosts based on flexible ligands have received increasing attention due to their inherent adaptive cavities that often show induced-fit guest binding and catalysis like enzymes. Herein, we report the controlled self-assembly of a series of homo/heterometallic coordination hosts (Me4enPd)2n(ML)n [n = 2/3; M = Zn(ii)/Co(ii)/Ni(ii)/Cu(ii)/Pd(ii)/Ag(i); Me4en: N,N,N′,N′-tetramethylethylenediamine] with different shapes (tube/cage) from a flexible tetraazacyclododecane-based pyridinyl ligand (L) and cis-blocking Me4enPd(ii) units. While the Ag(i)-metalated ligand (AgL) gave rise to the formation of a (Me4enPd)4(ML)2-type cage, all other M(ii) ions led to isostructural (Me4enPd)6(ML)3-type tubular complexes. Structural transformations between cages and tubes could be realized through transmetalation of the ligand. The buffering effect on the ML panels endows the coordination tubes with remarkable acid–base resistance, which makes the (Me4enPd)6(ZnL)3 host an effective catalyst for the CO2 to CO32− conversion. Control experiments suggested that the integration of multiple active Zn(ii) sites on the tubular host and the perfect geometry match between CO32− and the cavity synergistically promoted such a conversion. Our results provide an important strategy for the design of adaptive coordination hosts to achieve efficient carbon fixation. A series of coordination hosts were prepared and their applications in CO2 fixation were studied.![]()
Collapse
Affiliation(s)
- Shaochuan Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Caiping Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Qing-Fu Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. Fuzhou, Fujian, 350002, China
| |
Collapse
|
21
|
Du M, Xu S, Li G, Xu H, Lin Y, Liu W, Long L, Zheng L, Kong X. Modification of Multi‐Component Building Blocks for Assembling Giant Chiral Lanthanide‐Titanium Molecular Rings. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202116296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ming‐Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Su‐Hui Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Guan‐Jun Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Han Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yang Lin
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Wei‐Dong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - La‐Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Lan‐Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiang‐Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
22
|
Du MH, Xu SH, Li GJ, Xu H, Lin Y, Liu WD, Long LS, Zheng LS, Kong XJ. Modification of Multi-Component Building Blocks for Assembling Giant Chiral Lanthanide-Titanium Molecular Rings. Angew Chem Int Ed Engl 2021; 61:e202116296. [PMID: 34921501 DOI: 10.1002/anie.202116296] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 01/15/2023]
Abstract
Building blocks with multiple components are promising for the synthesis of complex molecular assemblies, but are rarely available. Herein, we report a modification procedure for a multi-component building block [Ln3 Ti(HSA)6 (SA)4 (H2 O)]- ({Ln3 Ti-SA}, H2 SA=salicylic acid, Ln=Eu/Gd) to form new building blocks {Ln3 Tix -MSA} (H2 MSA=5-methoxysalicylic acid, x=1, 2, 3) by constructing [Ti(MSA)3 ]2- units. The obtained {Ln3 Tix -MSA} can further assemble into a chiral Ln22 Ti14 ring with the formulae [Eu22 Ti14 (MSA)48 (HMSA)22 (CH3 COO)4 (H2 O)10 (iPrOH)] and [Gd22 Ti14 (MSA)46 (HMSA)26 (CH3 COO)4 (H2 O)8 ]. Parallel experiments without Ti4+ result in linear Ln chains. Detailed analysis shows that the [Ti(MSA)4 ]4- unit makes the originally variable Ln chains become available building blocks and the modified [Ti(MSA)3 ]2- further triggers interesting chiral-sorting behavior. Finally, the electronic adsorption and magneto-optic responses of these molecular rings are investigated.
Collapse
Affiliation(s)
- Ming-Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Su-Hui Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guan-Jun Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Han Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yang Lin
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei-Dong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
23
|
Virovets AV, Peresypkina E, Scheer M. Structural Chemistry of Giant Metal Based Supramolecules. Chem Rev 2021; 121:14485-14554. [PMID: 34705437 DOI: 10.1021/acs.chemrev.1c00503] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review presents a bird-eye view on the state of research in the field of giant nonbiological discrete metal complexes and ions of nanometer size, which are structurally characterized by means of single-crystal X-ray diffraction, using the crystal structure as a common key feature. The discussion is focused on the main structural features of the metal clusters, the clusters containing compact metal oxide/hydroxide/chalcogenide core, ligand-based metal-organic cages, and supramolecules as well as on the aspects related to the packing of the molecules or ions in the crystal and the methodological aspects of the single-crystal neutron and X-ray diffraction of these compounds.
Collapse
Affiliation(s)
- Alexander V Virovets
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Eugenia Peresypkina
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
24
|
Taylor LLK, Vitorica-Yrezabal IJ, Borilović I, Tuna F, Riddell IA. Self-assembly of a trigonal bipyramidal architecture with stabilisation of iron in three spin states. Chem Commun (Camb) 2021; 57:11252-11255. [PMID: 34632988 DOI: 10.1039/d1cc04413c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly and characterisation of a supramolecular trigonal bipyramidal iron cage containing an [FeIII(μ2-F)6(FeII)3]3+ star motif at its core is reported. The complex can be formed in a one step reaction using an heterotopic ligand that supports site-specific incorporation of iron in three distinct electronic configurations: low-spin FeII, high-spin FeII and high-spin FeIII, with iron(II) tetrafluoroborate as the source of the bridging fluorides. Formation of a μ2-F bridged mixed-valence FeII-FeIII star is unprecedented. The peripheral high-spin FeII centres of the mixed-valence tetranuclear star incorporated in the iron cage are highly anisotropic and engage in F-mediated antiferromagnetic exchange with the central FeIII ion.
Collapse
Affiliation(s)
- Lauren L K Taylor
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | | | - Ivana Borilović
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. .,Photon Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Floriana Tuna
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. .,Photon Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Imogen A Riddell
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
25
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
26
|
Giraldi E, Scopelliti R, Fadaei-Tirani F, Severin K. Metal-Stabilized Boronate Ester Cages. Inorg Chem 2021; 60:10873-10879. [PMID: 34291934 DOI: 10.1021/acs.inorgchem.1c01719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular cages with arylboronate ester caps at the vertices are described. The cages were obtained by metal-templated polycondensation reactions of a tris(2-formylpyridine oxime) ligand with arylboronic acids. Suited templates are triflate or triflimide salts of ZnII, FeII, CoII, or MnII. In the products, the metal ions are coordinated internally to the pyridyl and oximato N atoms adjacent to the boronate ester, resulting in an improved hydrolytic stability of the latter. It is possible to decorate the cages with cyano or aldehyde groups using functionalized arylboronic acids. The aldehyde groups allow for a postsynthetic modification of the cages via an imine bond formation.
Collapse
Affiliation(s)
- Erica Giraldi
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Li RJ, Fadaei-Tirani F, Scopelliti R, Severin K. Tuning the Size and Geometry of Heteroleptic Coordination Cages by Varying the Ligand Bent Angle. Chemistry 2021; 27:9439-9445. [PMID: 33998736 DOI: 10.1002/chem.202101057] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Spherical assemblies of the type [Pdn L2n ]2n+ can be obtained from PdII salts and curved N-donor ligands, L. It is well established that the bent angle, α, of the ligand is a decisive factor in the self-assembly process, with larger angles leading to complexes with a higher nuclearity, n. Herein, we report heteroleptic coordination cages of the type [Pdn Ln L'n ]2n+ , for which a similar correlation between the ligand bent angle and the nuclearity is observed. Tetranuclear cages were obtained by combining [Pd(CH3 CN)4 ](BF4 )2 with 1,3-di(pyridin-3-yl)benzene and ligands featuring a bent angle of α=120°. The use of a dipyridyl ligand with α=149° led to the formation of a hexanuclear complex with a trigonal prismatic geometry; for linear ligands, octanuclear assemblies of the type [Pd8 L8 L'8 ]16+ were obtained. The predictable formation of heteroleptic PdII cages from 1,3-di(pyridin-3-yl)benzene and different dipyridyl ligands is evidence that there are entire classes of heteroleptic cage structures that are privileged from a thermodynamic point of view.
Collapse
Affiliation(s)
- Ru-Jin Li
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
28
|
Tran NM, Yoo H. Recent advances in heteroleptic multiple-stranded metallosupramolecules. Dalton Trans 2021; 49:11819-11827. [PMID: 32797124 DOI: 10.1039/d0dt02243h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Well-ordered combination of defined coordination spheres and multiple types of ligands (heteroleptic) in a given structure can expand the structural complexity and functional diversity of the resulting metallosupramolecules. Such heteroleptic metallosupramolecular architectures are expected to afford advanced utility in a variety of applications. In this concise review article, recent advances in the development of multi-nuclear-cluster-based heteroleptic multiple-stranded (HLMS) metallosupramolecules are summarized and demonstrated. To construct HLMS metallosupramolecules, one type of multitopic ligands can be employed for building up multiple strands, while another type of ligands can be utilized to construct multi-nuclear clusters. Most HLMS metallosupramolecules adopt helical geometries and have high molecular symmetry, which can be key factors for the structural completion. HLMS metallosupramolecules can be used as basic building blocks for the fabrication of higher-order polymeric or discrete assembly architectures with well-defined geometries.
Collapse
Affiliation(s)
- Ngoc Minh Tran
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| | - Hyojong Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
29
|
Xia Q, Zhang J, Chen X, Cheng C, Chu D, Tang X, Li H, Cui Y. Synthesis, structure and property of boron-based metal–organic materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213783] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Shetty S, Baig N, Hassan A, Al-Mousawi S, Das N, Alameddine B. Fluorinated Iron(ii) clathrochelate units in metalorganic based copolymers: improved porosity, iodine uptake, and dye adsorption properties. RSC Adv 2021; 11:14986-14995. [PMID: 35424059 PMCID: PMC8697800 DOI: 10.1039/d1ra02357h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 01/15/2023] Open
Abstract
We report the synthesis of metalorganic copolymers made from the palladium catalyzed Sonogashira cross-coupling reaction between various iron(ii) clathrochelate building blocks with diethynyl-triptycene and fluorene derivatives. The target copolymers CCP1-5 were isolated in excellent yield and characterized by various instrumental analysis techniques. Interestingly, investigation of the copolymers' porosity properties discloses BET surface areas up to 337 m2 g-1 for the target compounds bearing fluorinated iron(ii) clathrochelate units CCP2,5. Moreover, the fluorinated copolymers display an outstanding uptake capacity of iodine with a maximum adsorption of 200 wt%. The target metalorganic copolymers CCP1-5 reveal very good adsorption of organic dyes, namely, methyl blue and methylene blue, from aqueous media.
Collapse
Affiliation(s)
- Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology Kuwait
- Functional Materials Group - CAMB, GUST Kuwait
| | - Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology Kuwait
- Functional Materials Group - CAMB, GUST Kuwait
| | - Atikur Hassan
- Department of Chemistry, Indian Institute of Technology Patna Patna 801106 Bihar India
| | | | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna Patna 801106 Bihar India
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology Kuwait
- Functional Materials Group - CAMB, GUST Kuwait
| |
Collapse
|
31
|
Regeni I, Chen B, Frank M, Baksi A, Holstein JJ, Clever GH. Coal-Tar Dye-based Coordination Cages and Helicates. Angew Chem Int Ed Engl 2021; 60:5673-5678. [PMID: 33245206 PMCID: PMC7986857 DOI: 10.1002/anie.202015246] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Indexed: 02/07/2023]
Abstract
A strategy to implement four members of the classic coal-tar dye family, Michler's ketone, methylene blue, rhodamine B, and crystal violet, into [Pd2 L4 ] self-assemblies is introduced. Chromophores were incorporated into bis-monodentate ligands using piperazine linkers that allow to retain the auxochromic dialkyl amine functionalities required for intense colors deep in the visible spectrum. Upon palladium coordination, ligands with pyridine donors form lantern-shaped dinuclear cages while quinoline donors lead to strongly twisted [Pd2 L4 ] helicates in solution. In one case, single crystal X-ray diffraction revealed rearrangement to a [Pd3 L6 ] ring structure in the solid state. For nine examined derivatives, showing colors from yellow to deep violet, CD spectroscopy discloses different degrees of chiral induction by an enantiomerically pure guest. Ion mobility mass spectrometry allows to distinguish two binding modes. Self-assemblies based on this new ligand class promise application in chiroptical recognition, photo-redox catalysis and optical materials.
Collapse
Affiliation(s)
- Irene Regeni
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Bin Chen
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
- Current Address: State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD-X)Soochow UniversitySuzhou215123China
| | - Marina Frank
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Ananya Baksi
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Julian J. Holstein
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Guido H. Clever
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| |
Collapse
|
32
|
Li Y, Rajasree SS, Lee GY, Yu J, Tang JH, Ni R, Li G, Houk KN, Deria P, Stang PJ. Anthracene–Triphenylamine-Based Platinum(II) Metallacages as Synthetic Light-Harvesting Assembly. J Am Chem Soc 2021; 143:2908-2919. [DOI: 10.1021/jacs.0c12853] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yanrong Li
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Sreehari Surendran Rajasree
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Ga Young Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jierui Yu
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Jian-Hong Tang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Ruidong Ni
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Kendall. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Pravas Deria
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
33
|
Golovanov IS, Sukhorukov AY. Merging Boron with Nitrogen-Oxygen Bonds: A Review on BON Heterocycles. Top Curr Chem (Cham) 2021; 379:8. [PMID: 33544252 DOI: 10.1007/s41061-020-00317-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/20/2020] [Indexed: 11/25/2022]
Abstract
Cyclic boronate esters play important roles in organic synthesis, pharmacology, supramolecular chemistry and materials science owing to their stability in air and versatile reactivity. Most of these compounds contain a B-O-C linkage with an alkoxy- or carboxylate group bound to the boron atom (e.g. boronate-diol esters, MIDA boronates). Boron chelates comprising a B-O-N motif (BON heterocycles) are much less explored, although first representatives of this class were prepared in the early 1960s. In recent years, there has been a growing interest in BON heterocycles as new chemotypes for drug design. The exocyclic B-O-N linkage, which is readily formed under mild conditions, shows surprising hydrolytic and thermal resistance. This allows the formation of BON heterocycles to be used as click-type reactions for the preparation of bioconjugates and functionally modified polymers. We believe that BON heterocycles are promising yet underrated organoboron derivatives. This review summarizes the scattered information about known types of BON heterocycles, including their synthesis, reactivity and structural data. Available applications of BON heterocycles in materials science and medicinal chemistry, along with their prospects, are also discussed. The bibliography contains 289 references.
Collapse
Affiliation(s)
- Ivan S Golovanov
- Laboratory of Organic and Metal-Organic Nitrogen-Oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect, 47, 119991, Moscow, Russia.
| | - Alexey Yu Sukhorukov
- Laboratory of Organic and Metal-Organic Nitrogen-Oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect, 47, 119991, Moscow, Russia.
- Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, Stremyanny lane, 36, 117997, Moscow, Russia.
| |
Collapse
|
34
|
Evariste S, Xu C, Calvez G, Lescop C. Straightforward coordination-driven supramolecular chemistry preparation of a discrete solid-state luminescent Cu4 polymetallic compact assembly based on conformationally flexible building blocks. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Sudan S, Li RJ, Jansze SM, Platzek A, Rudolf R, Clever GH, Fadaei-Tirani F, Scopelliti R, Severin K. Identification of a Heteroleptic Pd 6L 6L' 6 Coordination Cage by Screening of a Virtual Combinatorial Library. J Am Chem Soc 2021; 143:1773-1778. [PMID: 33476512 DOI: 10.1021/jacs.0c12793] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The design of structurally defined heteroleptic coordination cages is a challenging task, and only few examples are known to date. Here we describe a selection approach that allowed the identification of a novel hexanuclear Pd cage containing two types of dipyridyl ligands. A virtual combinatorial library of [PdnL2n](BF4)2n complexes was prepared by mixing six different dipyridyl ligands with substoichiometric amounts of [Pd(CH3CN)4](BF4)2. Analysis of the equilibrated reaction mixture revealed the preferential formation of a heteroleptic [Pd6L6L'6](BF4)12 assembly. The complex was prepared on a preparative scale by a targeted synthesis, and its structure was elucidated by single-crystal X-ray diffraction. It features an unprecedented trigonal-antiprismatic cage structure with two triangular Pd3L3 macrocycles bridged by six L' ligands. A related but significantly larger [Pd6L6L'6](BF4)12 cage was obtained by using metalloligands instead of organic dipyridyl ligands.
Collapse
Affiliation(s)
- Sylvain Sudan
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ru-Jin Li
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Suzanne M Jansze
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - André Platzek
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Robin Rudolf
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Guido H Clever
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
36
|
Regeni I, Chen B, Frank M, Baksi A, Holstein JJ, Clever GH. Teerfarben‐basierte Koordinationskäfige und ‐helikate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015246] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Irene Regeni
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Bin Chen
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
- Derzeitige Adresse: State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Soochow University Suzhou 215123 China
| | - Marina Frank
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Ananya Baksi
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Julian J. Holstein
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Guido H. Clever
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| |
Collapse
|
37
|
Shi J, Li Y, Jiang X, Yu H, Li J, Zhang H, Trainer DJ, Hla SW, Wang H, Wang M, Li X. Self-Assembly of Metallo-Supramolecules with Dissymmetrical Ligands and Characterization by Scanning Tunneling Microscopy. J Am Chem Soc 2021; 143:1224-1234. [PMID: 33395279 DOI: 10.1021/jacs.0c12508] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asymmetrical and dissymmetrical structures are widespread and play a critical role in nature and life systems. In the field of metallo-supramolecular assemblies, it is still in its infancy for constructing artificial architectures using dissymmetrical building blocks. Herein, we report the self-assembly of supramolecular systems based on two dissymmetrical double-layered ligands. With the aid of ultra-high-vacuum, low-temperature scanning tunneling microscopy (UHV-LT-STM), we were able to investigate four isomeric structures corresponding to four types of binding modes of ligand LA with two major conformations complexes A. The distribution of isomers measured by STM and total binding energy of each isomer obtained by density functional theory (DFT) calculations suggested that the most abundant isomer could be the most stable one with highest total binding energy. Finally, through shortening the linker between inner and outer layers and the length of arms, the arrangement of dissymmetrical ligand LB could be controlled within one binding mode corresponding to the single conformation for complexes B.
Collapse
Affiliation(s)
- Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China.,College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Yiming Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China.,Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xin Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Jiaqi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Daniel J Trainer
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Saw Wai Hla
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China.,Shenzhen University General Hospital, Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
38
|
Moutier F, Schiller J, Calvez G, Lescop C. Self-assembled luminescent Cu( i) tetranuclear metallacycles based on 3,3′-bipyridine ligands. Org Chem Front 2021. [DOI: 10.1039/d1qo00538c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three luminescent tetranuclear macrocycles are obtained selectively, applying coordination-driven supramolecular processes to the reaction of 3,3′-bipyridine ligand with in situ formed Cu(i) bimetallic units bearing a coordination angle of ca. 120°.
Collapse
Affiliation(s)
- Florent Moutier
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Jana Schiller
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Guillaume Calvez
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Christophe Lescop
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| |
Collapse
|
39
|
Khalil AM, Xu C, Delmas V, Calvez G, Costuas K, Haouas M, Lescop C. Coordination-driven supramolecular syntheses of new homo- and hetero-polymetallic Cu( i) assemblies: solid-state and solution characterization. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00937k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New luminescent Cu(i) discrete assemblies D and FM and 1D coordination polymer E are reported. Deep insights of self-assembly processes based on flexible Cu(i) precursors are highlighted together with the preservation in solution of Cu(i) assemblies.
Collapse
Affiliation(s)
- Ali Moustafa Khalil
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Chendong Xu
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Vincent Delmas
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Guillaume Calvez
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Karine Costuas
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, UMR 8180 CNRS, UVSQ, Université Paris-Saclay, Versailles, France
| | - Christophe Lescop
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France
| |
Collapse
|
40
|
Li J, Tan Y, Cao C, Wang ZK, Niu Z, Song YL, Lang JP. One-dimensional and two-dimensional coordination polymers from cluster modular construction. CrystEngComm 2021. [DOI: 10.1039/d1ce00206f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cluster module construction of W/Cu/S cluster-based coordination polymers and their third-order NLO properties were investigated.
Collapse
Affiliation(s)
- Jie Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Yi Tan
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Chen Cao
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Zhi-Kang Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Zheng Niu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Ying-Lin Song
- School of Physical Science and Technology
- Soochow University
- Suzhou 215006
- P. R. China
| | - Jian-Ping Lang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| |
Collapse
|
41
|
Lescop C. Coordination‐Driven Supramolecular Synthesis Based on Bimetallic Cu(I) Precursors: Adaptive Behavior and Luminescence. CHEM REC 2020; 21:544-557. [DOI: 10.1002/tcr.202000144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/01/2023]
Affiliation(s)
- C. Lescop
- Univ Rennes INSA Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 F-35000 Rennes France
| |
Collapse
|
42
|
Losytskyy M, Chornenka N, Vakarov S, Meier-Menches SM, Gerner C, Potocki S, Arion VB, Gumienna-Kontecka E, Voloshin Y, Kovalska V. Sensing of Proteins by ICD Response of Iron(II) Clathrochelates Functionalized by Carboxyalkylsulfide Groups. Biomolecules 2020; 10:E1602. [PMID: 33256144 PMCID: PMC7759900 DOI: 10.3390/biom10121602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 01/19/2023] Open
Abstract
Recognition of elements of protein tertiary structure is crucial for biotechnological and biomedical tasks; this makes the development of optical sensors for certain protein surface elements important. Herein, we demonstrated the ability of iron(II) clathrochelates (1-3) functionalized with mono-, di- and hexa-carboxyalkylsulfide to induce selective circular dichroism (CD) response upon binding to globular proteins. Thus, inherently CD-silent clathrochelates revealed selective inducing of CD spectra when binding to human serum albumin (HSA) (1, 2), beta-lactoglobuline (2) and bovine serum albumin (BSA) (3). Hence, functionalization of iron(II) clathrochelates with the carboxyalkylsulfide group appears to be a promising tool for the design of CD-probes sensitive to certain surface elements of proteins tertiary structure. Additionally, interaction of 1-3 with proteins was also studied by isothermal titration calorimetry, protein fluorescence quenching, electrospray ionization mass spectrometry (ESI-MS) and computer simulations. Formation of both 1:1 and 1:2 assemblies of HSA with 1-3 was evidenced by ESI-MS. A protein fluorescence quenching study suggests that 3 binds with both BSA and HSA via the sites close to Trp residues. Molecular docking calculations indicate that for both BSA and HSA, binding of 3 to Site I and to an "additional site" is more favorable energetically than binding to Site II.
Collapse
Affiliation(s)
- Mykhaylo Losytskyy
- Institute of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine;
| | - Nina Chornenka
- Vernadsky Institute of General and Inorganic Chemistry NASU, 32/34 Palladina Av., 03142 Kyiv, Ukraine; (N.C.); (S.V.)
| | - Serhii Vakarov
- Vernadsky Institute of General and Inorganic Chemistry NASU, 32/34 Palladina Av., 03142 Kyiv, Ukraine; (N.C.); (S.V.)
| | - Samuel M. Meier-Menches
- Department of Analytical Chemistry, University of Vienna, Währinger Strasse, 38, A-1090 Vienna, Austria; (S.M.M.-M.); (C.G.)
| | - Christopher Gerner
- Department of Analytical Chemistry, University of Vienna, Währinger Strasse, 38, A-1090 Vienna, Austria; (S.M.M.-M.); (C.G.)
| | - Slawomir Potocki
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie St., 50-383 Wroclaw, Poland; (S.P.); (E.G.-K.)
| | - Vladimir B. Arion
- Department of Inorganic Chemistry, University of Vienna, Währinger Strasse, 42, A-1090 Vienna, Austria;
| | - Elzbieta Gumienna-Kontecka
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie St., 50-383 Wroclaw, Poland; (S.P.); (E.G.-K.)
| | - Yan Voloshin
- Nesmeyanov Institute of Organoelement Compounds RAS, 28 Vavilova St., 119991 Moscow, Russia;
- Kurnakov Institute of General and Inorganic Chemistry RAS, 31 Leninsky prosp., 119991 Moscow, Russia
| | - Vladyslava Kovalska
- Institute of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine;
| |
Collapse
|
43
|
Hunt D, Oestreicher V, Mizrahi M, Requejo FG, Jobbágy M. Unveiling the Occurrence of Co(III) in NiCo Layered Electroactive Hydroxides: The Role of Distorted Environments. Chemistry 2020; 26:17081-17090. [PMID: 32721065 DOI: 10.1002/chem.202001944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Indexed: 11/06/2022]
Abstract
Co- and Ni-based layered hydroxides constitute a unique class of two-dimensional inorganic materials with exceptional chemical diversity, physicochemical properties and outstanding performance as supercapacitors and overall water splitting catalysts. Recently, the occurrence of Co(III) in these phases has been proposed as a key factor that enhance their electrochemical performance. However, the origin of this centers and control over its contents remains as an open question. We employed the Epoxide Route to synthesize a whole set of α-NiCo layered hydroxides. The PXRD and XAS characterization alert about the occurrence of Co(III) as a consequence of the increment in the Ni content. DFT+U simulation suggest that the shortening of the Co-O distance promotes a structural distortion in the Co environments, resulting in a double degeneration in the octahedral Co 3d orbitals. Hence, a strong modification of the electronic properties leaves the system prone to oxidation, by the appearance of Co localized electronic states on the Fermi level. This work combines a microscopic interpretation supported by a multiscale crystallochemical analysis, regarding the so-called synergistic redox behavior of Co and Ni, offering fundamental tools for the controllable design of highly efficient electroactive materials. To the best of our knowledge, this is the first computational-experimental investigation of the electronic and structural details of α-NiCo hydroxides, laying the foundation for the fine tuning of electronic properties in layered hydroxides.
Collapse
Affiliation(s)
- Diego Hunt
- Departamento de Física de la Materia Condensada, GIyA, CAC-CNEA, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, San Martin, Buenos Aires, B1650, Argentina
| | - Víctor Oestreicher
- INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina.,Current address: Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Betrán 2, 46980, Valencia, Spain
| | - Martín Mizrahi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata- CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina.,Facultad de Ingeniería, Universidad Nacional de La Plata, calle 1 esq. 47, 1900, La Plata, Argentina
| | - Félix G Requejo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata- CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| | - Matías Jobbágy
- INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
44
|
Pachisia S, Gupta R. Architectural and catalytic aspects of designer materials built using metalloligands of pyridine-2,6-dicarboxamide based ligands. Dalton Trans 2020; 49:14731-14748. [PMID: 33084678 DOI: 10.1039/d0dt03058a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This perspective presents the design, synthesis and crystal structures of a large number of architectures constructed using assorted metalloligands of pyridine-2,6-dicarboxamide based ligands. The metalloligands offered various appended functional groups, whereas design strategies included varying both their position and number. A combination of these parameters resulted in the development of assorted architectures including discrete trinuclear and tetranuclear complexes as well as 1D/2D/3D coordination polymers. The metalloligand strategy not only assisted in the construction of ordered crystalline materials with varied dimensionalities but also judiciously allowed the incorporation of Lewis acidic and redox-active secondary metals in the resultant architectures. As a result, such designer architectures illustrated their noteworthy role both as homogenous and heterogeneous catalysts in different organic transformation reactions.
Collapse
Affiliation(s)
- Sanya Pachisia
- Department of Chemistry, University of Delhi, Delhi - 110007, India.
| | | |
Collapse
|
45
|
Electrical, and Magnetic Characteristics of Homo- and Hetero-Bimetallic Macromolecular Complexes with π-Conjugated Imine-oxime Backbone. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
New boron-capped cage manganese(II) complex with terminal thiophene-2-carboxaldehyde groups: Crystal structure and density functional theory investigation for electron transfer. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Planes OM, Jansze SM, Scopelliti R, Fadaei-Tirani F, Severin K. Two-Step Synthesis of Linear and Bent Dicarboxylic Acid Metalloligands with Lengths of up to 3 nm. Inorg Chem 2020; 59:14544-14548. [PMID: 32962338 DOI: 10.1021/acs.inorgchem.0c02358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanometer-sized polycarboxylate ligands are interesting building blocks for metallasupramolecular chemistry, but access to these compounds is often limited by complicated synthetic pathways. Here, we describe a simple two-step protocol, which allows preparing linear and bent dicarboxylate ligands with lengths of up to 3 nm from commercially available compounds. The ligands are prepared by iron-templated polycondensation reactions involving arylboronic acids and nioxime. The final products contain two iron clathrochelate complexes and two terminal carboxyphenylene groups. To demonstrate that the new ligands are suitable for the construction of more complex molecular nanostructures, we have prepared a Cu-based metal-organic polyhedron, which represents the largest M4L4 cage described so far.
Collapse
Affiliation(s)
- Ophélie M Planes
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Suzanne M Jansze
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
48
|
Hardy M, Lützen A. Better Together: Functional Heterobimetallic Macrocyclic and Cage-like Assemblies. Chemistry 2020; 26:13332-13346. [PMID: 32297380 PMCID: PMC7693062 DOI: 10.1002/chem.202001602] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/14/2020] [Indexed: 12/18/2022]
Abstract
Metallosupramolecular chemistry has attracted the interest of generations of researches due to the versatile properties and functionalities of oligonuclear coordination complexes. Quite a number of different discrete cages were investigated, mostly consisting of only one type of ligand and one type of metal cation. Looking for ever more complex structures, heterobimetallic complexes became more and more attractive, as they give access to new structural motifs and functions. In the last years substantial success has been made in the design and synthesis of cages consisting of more than one type of metal cations, and a rapidly growing number of functional materials has appeared in the literature. This Minireview describes recent developments in the field of discrete heterometallic macrocycles and cages focusing on functional materials that have been used as host‐systems or as magnetic, photo‐active, redox‐active, and even catalytically active materials.
Collapse
Affiliation(s)
- Matthias Hardy
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str.1, 53111, Bonn, Germany
| | - Arne Lützen
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str.1, 53111, Bonn, Germany
| |
Collapse
|
49
|
Giraldi E, Depallens AB, Ortiz D, Fadaei‐Tirani F, Scopelliti R, Severin K. Boronate Ester‐Capped Helicates. Chemistry 2020; 26:7578-7582. [DOI: 10.1002/chem.202001392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Erica Giraldi
- Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Adrien B. Depallens
- Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Daniel Ortiz
- Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
50
|
Lewis JEM, Crowley JD. Metallo‐Supramolecular Self‐Assembly with Reduced‐Symmetry Ligands. Chempluschem 2020; 85:815-827. [DOI: 10.1002/cplu.202000153] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/10/2020] [Indexed: 12/20/2022]
Affiliation(s)
- James E. M. Lewis
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub 80 Wood Lane London W12 0BZ United Kingdom
| | - James. D. Crowley
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|