1
|
Kojima T, Xie C, Sakaguchi H. On-Surface Fabrication toward Polar 2D Macromolecular Crystals. Chempluschem 2024; 89:e202300775. [PMID: 38439510 DOI: 10.1002/cplu.202300775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
Polar 2D macromolecular structures have attracted significant attention because of their ferroelectricity and ferro-magnetism. However, it is challenging to synthesize them experimentally because dipoles or spins of these macromolecules tend to cancel each other. So far, there has been no successful strategy for assembling macromolecules in a unidirectional manner, achieving stereoregular polymerization on metal surfaces, and creating polar 2D polymer crystals. Recent progress in molecular assembly, on-surface polymer synthesis, and direct control of molecules using electric field applications provides an opportunity to develop such strategies. In this regard, we first review past studies on chiral and achiral molecular assembly, on-surface polymer synthesis, and orientation control of polar molecules. Then, we discuss our newly developed approach called "vectorial on-surface synthesis", which is based on "dynamic chirality" of compass precursors, stereoselective polymerization, and favorable interchain interactions originating from CH-π interactions. Finally, we conclude with a prospective outlook.
Collapse
Affiliation(s)
- Takahiro Kojima
- Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
| | - Cong Xie
- Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
| | - Hiroshi Sakaguchi
- Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
2
|
Karner C, Bianchi E. Anisotropic functionalized platelets: percolation, porosity and network properties. NANOSCALE ADVANCES 2024; 6:443-457. [PMID: 38235098 PMCID: PMC10790971 DOI: 10.1039/d3na00621b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024]
Abstract
Anisotropic functionalized platelets are able to model the assembly behaviour of molecular systems in two dimensions thanks to the unique combination of steric and bonding constraints. The assembly scenarios can vary from open to close-packed crystals, finite clusters and chains, according to the features of the imposed constraints. In this work, we focus on the assembly of equilibrium networks. These networks can be seen as disordered, porous monolayers and can be of interest for instance in nano-filtration and optical applications. We investigate the formation and properties of two dimensional networks from shape anisotropic colloids functionalized with four patches. We characterize the connectivity properties, the typical local bonding motives, as well as the geometric features of the emerging networks for a large variety of different systems. Our results show that networks of shape anisotropic colloids assemble into highly versatile network topologies, that may be utilized for applications at the nanoscale.
Collapse
Affiliation(s)
- Carina Karner
- Institut für Theoretische Physik, TU Wien Wiedner Hauptstraße 8-10 A-1040 Wien Austria
| | - Emanuela Bianchi
- Institut für Theoretische Physik, TU Wien Wiedner Hauptstraße 8-10 A-1040 Wien Austria
- CNR-ISC, Uos Sapienza Piazzale A. Moro 2 00185 Roma Italy
| |
Collapse
|
3
|
Nam S, Riegel E, Hörmann L, Hofmann OT, Gretz O, Weymouth AJ, Giessibl FJ. Exploring in-plane interactions beside an adsorbed molecule with lateral force microscopy. Proc Natl Acad Sci U S A 2024; 121:e2311059120. [PMID: 38170747 PMCID: PMC10786270 DOI: 10.1073/pnas.2311059120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Atomic force microscopy with a CO-functionalized tip can be used to directly image the internal structure of a planar molecule and to characterize chemical bonds. However, hydrogen atoms usually cannot be directly observed due to their small size. At the same time, these atoms are highly important, since they can direct on-surface chemical reactions. Measuring in-plane interactions at the sides of PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) molecules with lateral force microscopy allowed us to directly identify hydrogen atoms via their repulsive signature, which we confirmed with a model incorporating radially symmetric atomic interactions. Additional features were observed in the force data and could not be explained by H-bonding of the CO tip with the PTCDA sides. Instead, they are caused by electrostatic interaction of the large dipole of the metal apex, which we verified with density functional theory. This calculation allowed us to estimate the strength of the dipole at the metal tip apex. To further confirm that this dipole generally affects measurements on weakly polarized systems, we investigated the archetypical surface adsorbate of a single CO molecule. We determined the radially symmetric atomic interaction to be valid over a large solid angle of 5.4 sr, corresponding to 82°. We therefore find that in both the PTCDA and CO systems, the underlying interaction preventing direct observations of H-bonding and causing a collapse of the radially symmetric model is the dipole at the metal apex, which plays a significant role when approaching closer than standard imaging heights.
Collapse
Affiliation(s)
- Shinjae Nam
- Chair of Quantum Nanoscience, Faculty of Physics, University of Regensburg, 93053Regensburg, Germany
| | - Elisabeth Riegel
- Chair of Quantum Nanoscience, Faculty of Physics, University of Regensburg, 93053Regensburg, Germany
| | - Lukas Hörmann
- Simulation-Driven Material Discovery Group, Institute of Solid State Physics, Graz University of Technology, 8010Graz, Austria
| | - Oliver T. Hofmann
- Simulation-Driven Material Discovery Group, Institute of Solid State Physics, Graz University of Technology, 8010Graz, Austria
| | - Oliver Gretz
- Chair of Quantum Nanoscience, Faculty of Physics, University of Regensburg, 93053Regensburg, Germany
| | - Alfred J. Weymouth
- Chair of Quantum Nanoscience, Faculty of Physics, University of Regensburg, 93053Regensburg, Germany
| | - Franz J. Giessibl
- Chair of Quantum Nanoscience, Faculty of Physics, University of Regensburg, 93053Regensburg, Germany
| |
Collapse
|
4
|
Song Y, Li Z, Tang R, Zhou K, Zhang L, Lin T, Fan J, Shi Z, Ma YQ. Size Control of On-Surface Self-Assembled Nanochains Using Soft Building Blocks. J Phys Chem Lett 2023; 14:11324-11332. [PMID: 38064362 DOI: 10.1021/acs.jpclett.3c02858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Owing to their conformational flexibility, soft molecules with side chains play a crucial role in molecular self-assembly or self-organization processes toward bottom-up building of supramolecular nanostructures. However, the influence of the rotating side chains in the confined space and subsequent surface-confined supramolecular self-assembly remains rarely explored. Herein, using the spatial confinement effect between soft building blocks, we realized size control on surface-confined supramolecular coordination self-assembly through the synergy between the repulsive steric hindrance and the attractive chemical interactions. Combining scanning tunneling microscopy with density functional theory calculations and Monte Carlo simulations, we elucidated the effective repulsive force generated by the thermal wiggling motions of the soft building blocks, allowing length tuning of the self-assembled chain structures. Through a delicate balance between the repulsive interaction induced by the spatial confinement effect and the coordinate chemical interaction, we provide a new strategy for controlling the geometry of the on-surface supramolecular nanostructures.
Collapse
Affiliation(s)
- Yang Song
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Zhanbo Li
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Rongyu Tang
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Kun Zhou
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Lizhi Zhang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Tao Lin
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Jian Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Ziliang Shi
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Akimenko SS, Gorbunov VA, Ustinov EA. Equilibrium structure of a dense trimesic acid monolayer on a homogeneous solid surface: from atomistic simulation to thermodynamics. Phys Chem Chem Phys 2023; 25:31352-31362. [PMID: 37961824 DOI: 10.1039/d3cp03955b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A general methodology for determining the thermodynamic characteristics of rigid organic crystals on the atomistic level is presented. The proposed approach is based on a combination of grid interpolation of the precalculated intermolecular potential and kinetic Monte Carlo simulation of the gas-crystal system with an explicit interphase. The two-phase system is stabilized in a wide range of external parameters with an imposed external potential and damping field. The damping field reduces the intermolecular potential at the edges of the crystals and turns it off in the gas phase. To determine the thermodynamic characteristics of a crystal the conditions of equality of chemical potentials in coexisting phases are used. The intermolecular pairwise potential can be calculated on the atomistic or quantum level. In the kinetic Monte Carlo simulations, a grid interpolation of the precalculated potential is performed on each iteration of the algorithm. We have applied the approach to the thermodynamic analysis of a dense monolayer of trimesic acid on a homogeneous surface. The calculated free energy and entropy for the dense "superflower" and filled chicken-wire phases obey the Gibbs-Duhem equation, which confirms the thermodynamic consistency of our approach. Using the proposed approach, we have revealed that the dense "superflower" phase becomes metastable at zero pressure and 470-500 K. Under these conditions, the filled chicken-wire structure with partially released hexagonal cages is thermodynamically favourable. The proposed approach is a potentially universal tool for the thermodynamic analysis of crystals formed by "rigid" organic molecules of any complexity on the atomistic level.
Collapse
Affiliation(s)
- Sergey S Akimenko
- Ioffe Institute, 26 Polytechnicheskaya, St. Petersburg, 194021, Russian Federation.
- Omsk State Technical University, 11 Pr. Mira, Omsk, 644050, Russian Federation
| | - Vitaly A Gorbunov
- Ioffe Institute, 26 Polytechnicheskaya, St. Petersburg, 194021, Russian Federation.
- Omsk State Technical University, 11 Pr. Mira, Omsk, 644050, Russian Federation
| | - Eugene A Ustinov
- Ioffe Institute, 26 Polytechnicheskaya, St. Petersburg, 194021, Russian Federation.
| |
Collapse
|
6
|
Chen J, Huang L, Wu L, Zhang Y, Zhang R, Li Y, Zhao Y, Wang L, Feng D, Kira M, Lin Z, Li Z. Isolable Tetragold(0) Clusters with Polarity-Tunable exo-Au-Au Bond via Intramolecular σ-Aromatization. Angew Chem Int Ed Engl 2023; 62:e202311230. [PMID: 37596803 DOI: 10.1002/anie.202311230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/20/2023]
Abstract
Intramolecular π-aromatization is a trait of many organic compounds that enhances the stability of their structures and polarizes related C-C π bonds. In contrast, rare study is focused on this phenomenon in metal clusters. Many existing homometallic clusters exhibit aromaticity, often characterized by nonpolar metal-metal bonds and a high degree of symmetry. However, synthesizing low-symmetric homometallic clusters with high-polar metal-metal bonds is challenging due to their limited thermodynamic stability. Herein, we report a facile strategy for the synthesis of [Au(μ2 -ER2 )]3 -AuPMe3 (E=Ge, Sn; R2 =1,1,4,4-tetrakis(trimethylsilyl)butane-1,4-diyl) clusters and reveal a novel stabilization mode, intramolecular σ-aromatization. Our electronic structure analyses show that these low-symmetric clusters possess a ten-electron σ-aromatic system, which is achieved via intramolecular σ-aromatization. Moreover, the strength of σ-aromaticity gives rise to a polarity-tunable exo-Au-Au bond.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Lu Huang
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Lifang Wu
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yichi Zhang
- Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Rong Zhang
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yinhuan Li
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yunqing Zhao
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Liliang Wang
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Dewei Feng
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Mitsuo Kira
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhifang Li
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
7
|
Tang R, Song Y, Zhang L, Shi Z. Engineering Two-Dimensional Multilevel Supramolecular Assemblies from a Bifunctional Ligand on Au(111). Molecules 2023; 28:5116. [PMID: 37446778 DOI: 10.3390/molecules28135116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Herein, we demonstrate the supramolecular assemblies from a bifunctional ligand on Au(111), towards engineering two-dimensional (metal-) organic multilevel nanostructures. The bifunctional ligand employed, including two Br atoms and one carboxylic terminal, offers multiple bonding motifs with different configurations and binding energies. These bonding motifs are highly self-selective and self-recognizable, and thus afford the formation of subunits that contribute to engineering multilevel self-assemblies. Our scanning tunneling microscopy experiments, in combination with the density functional theory calculations, revealed various hydrogen, halogen and alkali-carboxylate bonding motifs dictating the different levels of the assemblies. The multilevel assembly protocol based on a judicious choice of multiple bonding motifs guarantees a deliberate control of surface-confined (metal-) organic nanostructures. Our findings may present new opportunities for the fabrication of complex two-dimensional (metal-) organic nanostructures with potential in applications of functionally diverse nanomaterials.
Collapse
Affiliation(s)
- Rongyu Tang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yang Song
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Lizhi Zhang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ziliang Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
8
|
Dai J, Zhao X, Peng Z, Li J, Lin Y, Wen X, Xing L, Zhao W, Shang J, Wang Y, Liu J, Wu K. Assembling Surface Molecular Sierpiński Triangle Fractals via K +-Invoked Electrostatic Interaction. J Am Chem Soc 2023. [PMID: 37314227 DOI: 10.1021/jacs.3c03691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular Sierpiński triangles (STs), a family of elegant and well-known fractals, can be prepared on surfaces with atomic precision. Up to date, several kinds of intermolecular interactions such as hydrogen bond, halogen bond, coordination, and even covalent bond have been employed to construct molecular STs on metal surfaces. Herein a series of defect-free molecular STs have been fabricated via electrostatic attraction between potassium cations and electronically polarized chlorine atoms in 4,4″-dichloro-1,1':3',1″-terphenyl (DCTP) molecules on Cu(111) and Ag(111). The electrostatic interaction is confirmed both experimentally by scanning tunneling microscopy and theoretically by density functional theory calculations. These findings illustrate that electrostatic interaction can serve as an efficient driving force to construct molecular fractals, which enriches our toolbox for the bottom-up fabrication of complex functional supramolecular nanostructures.
Collapse
Affiliation(s)
- Jingxin Dai
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinwei Zhao
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhantao Peng
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jie Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Yuxuan Lin
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaojie Wen
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lingbo Xing
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenhui Zhao
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jian Shang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yongfeng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Jing Liu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Liu JW, Wang Y, Kang LX, Zhao Y, Xing GY, Huang ZY, Zhu YC, Li DY, Liu PN. Two-Dimensional Crystal Transition from Radialene to Cumulene on Ag(111) via Retro-[2 + 1] Cycloaddition. J Am Chem Soc 2023. [PMID: 37289993 DOI: 10.1021/jacs.3c00962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) crystal-to-crystal transition is an important method in crystal engineering because of its ability to directly create diverse crystal materials from one crystal. However, steering a 2D single-layer crystal-to-crystal transition on surfaces with high chemo- and stereoselectivity under ultra-high vacuum conditions is a great challenge because the transition is a complex dynamic process. Here, we report a highly chemoselective 2D crystal transition from radialene to cumulene with retention of stereoselectivity on Ag(111) via retro-[2 + 1] cycloaddition of three-membered carbon rings and directly visualize the transition process involving a stepwise epitaxial growth mechanism by the combination of scanning tunneling microscopy and non-contact atomic force microscopy. Using progression annealing, we found that isocyanides on Ag(111) at a low annealing temperature underwent sequential [1 + 1 + 1] cycloaddition and enantioselective molecular recognition based on C-H···Cl hydrogen bonding interactions to form 2D triaza[3]radialene crystals. In contrast, a higher annealing temperature induced the transformation of triaza[3]radialenes to generate trans-diaza[3]cumulenes, which were further assembled into 2D cumulene-based crystals through twofold N-Ag-N coordination and C-H···Cl hydrogen bonding interactions. By combining the observed distinct transient intermediates and density functional theory calculations, we demonstrate that the retro-[2 + 1] cycloaddition reaction proceeds via the ring opening of a three-membered carbon ring, sequential dechlorination/hydrogen passivation, and deisocyanation. Our findings provide new insights into the growth mechanism and dynamics of 2D crystals and have implications for controllable crystal engineering.
Collapse
Affiliation(s)
- Jian-Wei Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ying Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Li-Xia Kang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guang-Yan Xing
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zheng-Yang Huang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ya-Cheng Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Deng-Yuan Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Pei-Nian Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
10
|
Lin Y, Diao M, Dai J, Xu Z, Zhao X, Wen X, Xing L, Zhou X, Chen Q, Liu J, Wu K. Molecular insight into on-surface chemistry of an organometallic polymer. Phys Chem Chem Phys 2023; 25:1006-1013. [PMID: 36533548 DOI: 10.1039/d2cp04858b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A molecular investigation of Cu-elimination and subsequent C-C coupling of DCTP (4,4''-dichloro-1,1':3',1''-terphenyl)-Cu organometallic (OM) polymers on Cu(111) is conducted by scanning tunneling microscopy and spectroscopy, revealing that the Cu adatoms embedded in the DCTP-Cu chains are located at the hollow and bridge sites on the Cu(111) surface. The difference in the catalytic activities of these surface sites leads to stepwise elimination of Cu adatoms in the OM chains. Moreover, the interchain interaction plays an important role in the Cu-elimination process of the DCTP-Cu chains as well. The interchain steric hindrance, on the one hand, induces the formation of Cu-eliminated intermediates that are scarcely observed in other Ullmann coupling systems, and on the other hand, promotes the cooperative Cu-elimination and C-C coupling of the OM segments in neighboring chains. These findings demonstrate the key role of the molecule-substrate and intermolecular interactions in mediating the reaction processes of the extended molecular systems on the surface.
Collapse
Affiliation(s)
- Yuxuan Lin
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Mengxiao Diao
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Jingxin Dai
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhen Xu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xinwei Zhao
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xiaojie Wen
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Lingbo Xing
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xiong Zhou
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Qiwei Chen
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Jing Liu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
11
|
Zhang L, Li M, Wang M, Li L, Guo M, Ke Y, Zhou P, Wang W. Tailored Cross-β Assemblies Establish Peptide "Dominos" Structures for Anchoring Undruggable Pharmacophores. Angew Chem Int Ed Engl 2022; 61:e202212527. [PMID: 36102014 DOI: 10.1002/anie.202212527] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 12/15/2022]
Abstract
β-sheets have the ability to hierarchically stack into assemblies, and much effort has been spent on designing different peptides to regulate their assembly behaviors. Although the progress is remarkable, it remains challenging to manipulate them in a controllable way for achieving both tailored structures and specific functions. In this study, we obtained bola-like peptides using de novo design and combinatorial chemical screening. By regulating the solvent-accessible surface area of the peptide chain, a series of assemblies with different tilt angles and active sites of the β-sheet were obtained, resembling collapsed dominos. The structure-activity relationship of the optimized peptide NQ40 system was established and its ability to target the PD-L1 was demonstrated. This study successfully established the structure-function relationship of β-sheets assemblies and has positive implications on the rational design of peptide assemblies that possess recognition abilities.
Collapse
Affiliation(s)
- Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Mengzhen Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lingyun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Mingmei Guo
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yubin Ke
- Spallation Neutron Source Science Center, Dongguan, 523803, P. R. China
| | - Peng Zhou
- College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, P. R. China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
12
|
Liu ZX, Yang L, Chen YG, Tian ZY, Yang ZY. Noncovalent wedging effect catalyzed the cis to syn transformation of a surface-adsorbed polymer backbone toward an unusual thermodynamically stable supramolecular product. Phys Chem Chem Phys 2022; 24:30010-30016. [PMID: 36472299 DOI: 10.1039/d2cp04184g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The significant influence of noncovalent interactions on catalytic processes has been recently appreciated but is still in its infancy. In this report, it is found that wedging Me-PTCDI (small-molecule) between the alkyl chains of PffBT4T-2OD (polymer) and a graphite substrate can reduce the energy barrier of flipping over the surface-adsorbed alkylthiophene group from the cis to syn conformation, revealing the catalytic role of Me-PTCDI via a noncovalent wedging effect. The wedging of Me-PTCDI brings the interactions between the alkyl chains and substrate to a very weak level by lifting up the alkyl chains, which eliminates the major hindrance of the flipping process to one main factor: the torsion of the dihedral angles of the thiophene group. The Me-PTCDI/syn PffBT4T-2OD arrangement shows unusual stability compared to the cis one because the syn conformation allows the alkyl chains to construct dense lamella and facilitates interactions between Me-PTCDI and the syn PffBT4T-2OD backbones. The results are helpful for boosting the development of noncovalent catalysis and bottom-up fabrications toward devices functionalized at a molecular level.
Collapse
Affiliation(s)
- Zhi-Xuan Liu
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P. R. China.
| | - Ling Yang
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P. R. China.
| | - Yong-Gang Chen
- Dalian University of Technology, No. 2 Linggong road, Dalian, 116024, Liaoning province, P. R. China
| | - Zhi-Yuan Tian
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P. R. China.
| | - Zhi-Yong Yang
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P. R. China.
| |
Collapse
|
13
|
Alić J, Biljan I, Štefanić Z, Šekutor M. Preparation and characterization of non-aromatic ether self-assemblies on a HOPG surface. NANOTECHNOLOGY 2022; 33:355603. [PMID: 35545006 DOI: 10.1088/1361-6528/ac6e72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
On-surface self-assemblies of aromatic organic molecules have been widely investigated, but the characterization of analogous self-assemblies consisting of fully sp3-hybridized molecules remains challenging. The possible on-surface orientations of alkyl molecules not exclusively comprised of long alkyl chains are difficult to distinguish because of their inherently low symmetry and non-planar nature. Here, we present a detailed study of diamondoid ethers, structurally rigid and fully saturated molecules, which form uniform 2D monolayers on a highly oriented pyrolytic graphite (HOPG) surface. Using scanning tunneling microscopy, various computational tools, and x-ray structural analysis, we identified the most favorable on-surface orientations of these rigid ethers and accounted for the forces driving the self-organization process. The influence of the oxygen atom and London dispersion interactions were found to be responsible for the formation of the observed highly ordered 2D ether assemblies. Our findings provide insight into the on-surface properties and behavior of non-aromatic organic compounds and broaden our understanding of the phenomena characteristic of monolayers consisting of non-planar molecules.
Collapse
Affiliation(s)
- Jasna Alić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10 000 Zagreb, Croatia
| | - Ivana Biljan
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Zoran Štefanić
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10 000 Zagreb, Croatia
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10 000 Zagreb, Croatia
| |
Collapse
|
14
|
Guo J, Wang Y, Zhang H, Zhao Y. Conductive Materials with Elaborate Micro/Nanostructures for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110024. [PMID: 35081264 DOI: 10.1002/adma.202110024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Bioelectronics, an emerging field with the mutual penetration of biological systems and electronic sciences, allows the quantitative analysis of complicated biosignals together with the dynamic regulation of fateful biological functions. In this area, the development of conductive materials with elaborate micro/nanostructures has been of great significance to the improvement of high-performance bioelectronic devices. Thus, here, a comprehensive and up-to-date summary of relevant research studies on the fabrication and properties of conductive materials with micro/nanostructures and their promising applications and future opportunities in bioelectronic applications is presented. In addition, a critical analysis of the current opportunities and challenges regarding the future developments of conductive materials with elaborate micro/nanostructures for bioelectronic applications is also presented.
Collapse
Affiliation(s)
- Jiahui Guo
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100101, China
| |
Collapse
|
15
|
[2+2] Cyclo-Addition Reactions for Efficient Polymerization on a HOPG Surface at Ambient Conditions. NANOMATERIALS 2022; 12:nano12081334. [PMID: 35458042 PMCID: PMC9031210 DOI: 10.3390/nano12081334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 12/31/2022]
Abstract
Polymers obtained by on-surface chemistry have emerged as a class of promising materials. Here, we propose a new strategy to obtain self-assembled 1D polymers by using photochemical [2+2] cyclo-addition or by using a mild thermal annealing. All nanostructures are fully characterized by using scanning tunneling microscopy at ambient conditions on a graphite surface. We demonstrated that nature of the stimulus strongly alters the overall quality of the resulting polymers in terms of length and number of defects. This new way is an efficient method to elaborate on-surface self-assembled 1D polymers.
Collapse
|
16
|
Dong J, Liu L, Tan C, Xu Q, Zhang J, Qiao Z, Chu D, Liu Y, Zhang Q, Jiang J, Han Y, Davis AP, Cui Y. Free-standing homochiral 2D monolayers by exfoliation of molecular crystals. Nature 2022; 602:606-611. [PMID: 35197620 DOI: 10.1038/s41586-022-04407-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/04/2022] [Indexed: 12/21/2022]
Abstract
Two-dimensional materials with monolayer thickness and extreme aspect ratios are sought for their high surface areas and unusual physicochemical properties1. Liquid exfoliation is a straightforward and scalable means of accessing such materials2, but has been restricted to sheets maintained by strong covalent, coordination or ionic interactions3-10. The exfoliation of molecular crystals, in which repeat units are held together by weak non-covalent bonding, could generate a greatly expanded range of two-dimensional crystalline materials with diverse surfaces and structural features. However, at first sight, these weak forces would seem incapable of supporting such intrinsically fragile morphologies. Against this expectation, we show here that crystals composed of discrete supramolecular coordination complexes can be exfoliated by sonication to give free-standing monolayers approximately 2.3 nanometres thick with aspect ratios up to approximately 2,500:1, sustained purely by apolar intermolecular interactions. These nanosheets are characterized by atomic force microscopy and high-resolution transmission electron microscopy, confirming their crystallinity. The monolayers possess complex chiral surfaces derived partly from individual supramolecular coordination complex components but also from interactions with neighbours. In this respect, they represent a distinct type of material in which molecular components are all equally exposed to their environment, as if in solution, yet with properties arising from cooperation between molecules, because of crystallinity. This unusual nature is reflected in the molecular recognition properties of the materials, which bind carbohydrates with strongly enhanced enantiodiscrimination relative to individual molecules or bulk three-dimensional crystals.
Collapse
Affiliation(s)
- Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China.,School of Chemistry, University of Bristol, Bristol, UK
| | - Lingmei Liu
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Chunxia Tan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Qisong Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Jiachen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, Department of Chemical Physics, University of Science and Technology of China, Hefei, P. R. China
| | - Zhiwei Qiao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Dandan Chu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, Department of Chemical Physics, University of Science and Technology of China, Hefei, P. R. China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | | | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China.
| |
Collapse
|
17
|
Drweesh EA, Kuchárová V, Volarevic V, Miloradovic D, Ilic A, Radojević ID, Raković IR, Smolková R, Vilková M, Sabolová D, Elnagar MM, Potočňák I. Low-dimensional compounds containing bioactive ligands. Part XVII: Synthesis, structural, spectral and biological properties of hybrid organic-inorganic complexes based on [PdCl 4] 2- with derivatives of 8-hydroxyquinolinium. J Inorg Biochem 2021; 228:111697. [PMID: 34999425 DOI: 10.1016/j.jinorgbio.2021.111697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022]
Abstract
In this study, four hybrid organic-inorganic compounds (8-H2Q)2[PdCl4] (1), (H2ClQ)2[PdCl4] (2), (H2NQ)2[PdCl4] (3) and (H2MeQ)2[PdCl4]·2H2O (4) (where 8-H2Q = 8-hydroxyquinolinium, H2ClQ = 5-chloro-8-hydroxyquinolinium, H2NQ = 5-nitro-8-hydroxyquinolinium and H2MeQ = 2-methyl-8-hydroxyquinolinium) were synthesized through organic cation modulation. Single-crystal X-ray structure analysis of compounds 1 and 3 indicates that their structures are planar and consist of [PdCl4]2- anions and 8-H2Q or H2NQ cations, respectively. Both ionic components are held together through ionic interactions and hydrogen bonds forming infinite chains linked through π-π interactions to form 2D structures. Furthermore, NMR spectroscopy, UV-Vis spectroscopy, elemental analysis, and FT-IR spectroscopy were used to explore the synthesized compounds. The DNA interaction, antimicrobial activity, antiproliferative activity, and radical scavenging effect of the compounds were evaluated. The hybrid compounds and their free ligands can interact with the calf thymus DNA via an intercalation mode involving the insertion of the aromatic chromophore between the base pairs of DNA; compound 1 has the highest binding affinity. Moreover, they have high antimicrobial efficacy against the tested 14 strains of microorganisms with minimum inhibitory concentration values ranging from <1.95 to 250 μg/mL. The antiproliferative activity of the compounds was investigated against three different cancer cell lines, and their selectivity was verified on mesenchymal stem cells. Compounds 1 and 2 displayed selective and high cytotoxicity against human lung and breast cancer cells and showed moderate cytotoxicity against colon cancer cells. Accordingly, they might be auspicious candidates for future pharmacological investigations in lung and breast cancer research.
Collapse
Affiliation(s)
- Elsayed Ali Drweesh
- Department of Inorganic Chemistry, National Research Centre, 33 Elbohoth St. (former Eltahrir st.), P.O. 12622, Dokki, Giza, Egypt
| | - Veronika Kuchárová
- Institute of Experimental Physics SAS, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Vladislav Volarevic
- Faculty of Medical Sciences University of Kragujevac, 69 Svetozara Markovica, 34000 Kragujevac, Serbia
| | - Dragana Miloradovic
- Faculty of Medical Sciences University of Kragujevac, 69 Svetozara Markovica, 34000 Kragujevac, Serbia
| | - Aleksandar Ilic
- Faculty of Medical Sciences University of Kragujevac, 69 Svetozara Markovica, 34000 Kragujevac, Serbia
| | - Ivana D Radojević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Ivana R Raković
- Faculty of Medical Sciences University of Kragujevac, 69 Svetozara Markovica, 34000 Kragujevac, Serbia
| | - Romana Smolková
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, Ulica 17. novembra 1, 081 16 Prešov, Slovakia
| | - Mária Vilková
- Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia
| | - Danica Sabolová
- Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia
| | - Mohamed M Elnagar
- Department of Inorganic Chemistry, National Research Centre, 33 Elbohoth St. (former Eltahrir st.), P.O. 12622, Dokki, Giza, Egypt
| | - Ivan Potočňák
- Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia.
| |
Collapse
|
18
|
Tao L, Zhang Y, Du S. Structures and electronic properties of functional molecules on metal substrates: From single molecule to self‐assemblies. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lei Tao
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing China
| | - Yu‐yang Zhang
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing China
- CAS Center for Excellence in Topological Quantum Computation Beijing China
| | - Shixuan Du
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing China
- CAS Center for Excellence in Topological Quantum Computation Beijing China
- Beijing National Laboratory for Condensed Matter Physics Beijing China
- Songshan Lake Materials Laboratory Dongguan China
| |
Collapse
|
19
|
Li SW, Zhang RX, Kang LX, Li DY, Xie YL, Wang CX, Liu PN. Steering Metal-Organic Network Structures through Conformations and Configurations on Surfaces. ACS NANO 2021; 15:18014-18022. [PMID: 34677047 DOI: 10.1021/acsnano.1c06615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular adsorption conformations and arrangement configurations on surfaces are important structural aspects of surface stereochemistry, but their roles in steering the structures of metal-organic networks (MONs) remain vague and unexplored. In this study, we constructed MONs by the coordination self-assembly of isocyanides on Cu(111) and Ag(111) surfaces and demonstrated that the MON structures can be steered by surface stereochemistry, including the adsorption conformations of the isocyanide molecules and the arrangement configurations of the coordination nodes and subunits. The coordination self-assembly of 1,4-phenylene diisocyanobenzene afforded a honeycomb MON consisting of 3-fold (isocyano)3-Cu motifs on a Cu(111) surface. In contrast, geometrically different chevron-shaped 1,3-phenylene diisocyanobenzene (m-DICB) failed to generate a MON, which is ascribable to its standing conformation on the Cu(111) surface. However, m-DICB was adsorbed in a flat conformation on a Ag(111) surface, which has a larger lattice constant than a Cu(111) surface, and smoothly underwent coordination self-assembly to form a MON consisting of (isocyano)3-Ag motifs. Interestingly, only C3-Ag nodes with heterotactic configurations could grow into larger subunits; those subunits with heterotactic configurations further grew into Sierpiński triangle fractals (up to fourth order), while subunits with homotactic configurations afforded a triangular MON.
Collapse
Affiliation(s)
- Shi-Wen Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ruo-Xi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Li-Xia Kang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Deng-Yuan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yu-Li Xie
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Cheng-Xin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
20
|
On-Surface Synthesis of Ligands to Elaborate Coordination Polymers on an Au(111) Surface. NANOMATERIALS 2021; 11:nano11082102. [PMID: 34443932 PMCID: PMC8401198 DOI: 10.3390/nano11082102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022]
Abstract
On-surface metal-organic polymers have emerged as a class of promising 2D materials. Here, we propose a new strategy to obtain coordination polymers by transforming supramolecular networks into coordination polymers by surface-assisted cyclo-dehydrogenation of organic building blocks. All nanostructures are fully characterized by using scanning tunneling microscopy under ultra-high vacuum on a gold surface. We demonstrated that the balance between molecule-molecule interaction and molecule-substrate interaction can be drastically modified by a strong modification of the geometry of the molecules thanks to a thermal annealing. This new way is an efficient method to elaborate on-surface coordination polymers.
Collapse
|
21
|
Hannagan RT, Onyango I, Larson A, McEwen JS, Sykes ECH. Microscopic insights into long-range 1D ordering in a dense semi-disordered molecular overlayer. Chem Commun (Camb) 2021; 57:5937-5940. [PMID: 34014236 DOI: 10.1039/d1cc01574e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of a two-phase surface molecular overlayer that transitions from isolated propene molecules to a highly ordered 1D chain structure on Cu(111) is elucidated through combined high-resolution STM imaging and DFT-based calculations. These models reveal how disordered molecules present in-between the 1D chains stabilizes the system as a whole.
Collapse
Affiliation(s)
- Ryan T Hannagan
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| | - Isaac Onyango
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA.
| | - Amanda Larson
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| | - Jean-Sabin McEwen
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA. and Department of Chemistry, Washington State University, Pullman, WA 99164, USA and Department of Physics, Washington State University, Pullman, WA 99164, USA and Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA and Institute of Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | |
Collapse
|
22
|
Fan C, Sun B, Li Z, Shi J, Lin T, Fan J, Shi Z. On-Surface Synthesis of Giant Conjugated Macrocycles. Angew Chem Int Ed Engl 2021; 60:13896-13899. [PMID: 33851507 DOI: 10.1002/anie.202104090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 11/11/2022]
Abstract
We have achieved an on-surface synthesis of giant conjugated macrocycles having a diameter of ≈7 nm and consisting of up to 30 subunits. The synthesis started with a debrominative coupling of the molecular precursors on a hot Ag(111) surface, leading to the formation of arched oligomeric chains and macrocycles. These products were revealed by scanning tunneling microscopy in combination with density functional theory to be covalent oligomers. These intermediates also display C-Ag organometallic bonds between parallel molecular subunits due to site-selective debromination and the asymmetric molecular conformation. Subsequent cyclodehydrogenation at higher temperatures steered the final conjugation of the macrocycles. Our findings provide a novel design strategy toward π-conjugated macrocycles and open up new opportunities for the precise synthesis of organic nanostructures.
Collapse
Affiliation(s)
- Cunrui Fan
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physics and Technology, Soochow University, Suzhou, 215006, China
| | - Bangjin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Zhanbo Li
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jiwei Shi
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physics and Technology, Soochow University, Suzhou, 215006, China
| | - Tao Lin
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jian Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Ziliang Shi
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physics and Technology, Soochow University, Suzhou, 215006, China
| |
Collapse
|
23
|
Fan C, Sun B, Li Z, Shi J, Lin T, Fan J, Shi Z. On‐Surface Synthesis of Giant Conjugated Macrocycles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cunrui Fan
- Center for Soft Condensed Matter Physics & Interdisciplinary Research School of Physics and Technology Soochow University Suzhou 215006 China
| | - Bangjin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
| | - Zhanbo Li
- College of New Materials and New Energies Shenzhen Technology University Shenzhen 518118 China
| | - Jiwei Shi
- Center for Soft Condensed Matter Physics & Interdisciplinary Research School of Physics and Technology Soochow University Suzhou 215006 China
| | - Tao Lin
- College of New Materials and New Energies Shenzhen Technology University Shenzhen 518118 China
| | - Jian Fan
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
| | - Ziliang Shi
- Center for Soft Condensed Matter Physics & Interdisciplinary Research School of Physics and Technology Soochow University Suzhou 215006 China
| |
Collapse
|
24
|
Liu D, Di B, Peng Z, Yin C, Zhu H, Wen X, Chen Q, Zhu J, Wu K. Surface-mediated ordering of pristine Salen molecules on coinage metals. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conformational isomers of Salen molecules and their self-assembled structures on coinage metal surfaces.
Collapse
Affiliation(s)
- Dan Liu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Bin Di
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Zhantao Peng
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Cen Yin
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Hao Zhu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Xiaojie Wen
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Qiwei Chen
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory
- University of Science and Technology of China
- Hefei 230029
- China
| | - Kai Wu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| |
Collapse
|
25
|
Lin Y, Huang Z, Wen X, Rong W, Peng Z, Diao M, Xing L, Dai J, Zhou X, Wu K. Steering Effect of Bromine on Intermolecular Dehydrogenation Coupling of Poly( p-phenylene) on Cu(111). ACS NANO 2020; 14:17134-17141. [PMID: 33237718 DOI: 10.1021/acsnano.0c06830] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Among the multitudinous methodologies to steer on-surface reactions, less attention has been paid to the effect of externally introduced halogen atoms. Herein, highly selective trans-dehydrogenation coupling at the specific meta-C-H site of two poly(p-phenylene) molecules, p-quaterphenyl (Ph4) and p-quinquephenyl (Ph5), is achieved on Cu(111) by externally introduced bromine atoms. Scanning tunneling microscopy/spectroscopy experiments reveal that the formed molecular assembly structure at a stoichiometric ratio of 4:1 for Br to Ph4 or 5:1 for Br to Ph5 can efficiently promote the reactive collision probability to trigger the trans-coupling reaction at the meta-C-H site between two neighboring Ph4 or Ph5 molecules, leading to an increase in the coupling selectivity. Such Br atoms can also affect the electronic structure and adsorption stability of the reacting molecules. It is conceptually demonstrated that externally introduced halogen atoms, which can provide an adjustable halogen-to-precursor stoichiometry, can be employed to efficiently steer on-surface reactions.
Collapse
Affiliation(s)
- Yuxuan Lin
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhichao Huang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaojie Wen
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenhui Rong
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhantao Peng
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengxiao Diao
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lingbo Xing
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jingxin Dai
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiong Zhou
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
26
|
Li RH, Ma J, Sun Y, Li H. Tailoring two-dimensional surfaces with pillararenes based host–guest chemistry. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.06.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Zhou DD, Wang J, Chen P, He Y, Wu JX, Gao S, Zhong Z, Du Y, Zhong D, Zhang JP. On-surface isostructural transformation from a hydrogen-bonded network to a coordination network for tuning the pore size and guest recognition. Chem Sci 2020; 12:1272-1277. [PMID: 34163889 PMCID: PMC8179111 DOI: 10.1039/d0sc05147k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022] Open
Abstract
Rational manipulation of supramolecular structures on surfaces is of great importance and challenging. We show that imidazole-based hydrogen-bonded networks on a metal surface can transform into an isostructural coordination network for facile tuning of the pore size and guest recognition behaviours. Deposition of triangular-shaped benzotrisimidazole (H3btim) molecules on Au(111)/Ag(111) surfaces gives honeycomb networks linked by double N-H⋯N hydrogen bonds. While the H3btim hydrogen-bonded networks on Au(111) evaporate above 453 K, those on Ag(111) transform into isostructural [Ag3(btim)] coordination networks based on double N-Ag-N bonds at 423 K, by virtue of the unconventional metal-acid replacement reaction (Ag reduces H+). The transformation expands the pore diameter of the honeycomb networks from 3.8 Å to 6.9 Å, giving remarkably different host-guest recognition behaviours for fullerene and ferrocene molecules based on the size compatibility mechanism.
Collapse
Affiliation(s)
- Dong-Dong Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Jun Wang
- School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University Guangzhou 510275 China
| | - Pin Chen
- National Supercomputer Center in Guangzhou, School of Data and Computer Science, Sun Yat-Sen University Guangzhou 510006 China
| | - Yangyong He
- School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University Guangzhou 510275 China
| | - Jun-Xi Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Sen Gao
- National Supercomputer Center in Guangzhou, School of Data and Computer Science, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhihao Zhong
- School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University Guangzhou 510275 China
| | - Yunfei Du
- National Supercomputer Center in Guangzhou, School of Data and Computer Science, Sun Yat-Sen University Guangzhou 510006 China
| | - Dingyong Zhong
- School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University Guangzhou 510275 China
| | - Jie-Peng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
28
|
Zhou J, Xu Z, Xu M, Zhou X, Wu K. A perspective on oxide-supported single-atom catalysts. NANOSCALE ADVANCES 2020; 2:3624-3631. [PMID: 36132800 PMCID: PMC9418980 DOI: 10.1039/d0na00393j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/14/2020] [Indexed: 06/16/2023]
Abstract
Single-atom catalysts (SACs) can not only maximize the metal atom utilization efficiency, but also show drastically improved catalytic performance for various important catalytic processes. Insights into the working principles of SACs provide rational guidance to design and prepare advanced catalysts. Many factors have been claimed to affect the performance of SACs, which makes it very challenging to clarify the correlation between the catalytic performance and physicochemical characteristics of SACs. Oxide-supported SACs are one of the most extensively explored systems. In this minireview, some latest developments on the determining factors of the stability, activity and selectivity of SACs on oxide supports are overviewed. Discussed also are the reaction mechanisms for different systems and methods that are employed to correlate the properties with the catalyst structures at the atomic level. In particular, a recently proposed surface free energy approach is introduced to fabricate well-defined modelled SACs that may help address some key issues in the development of SACs in the future.
Collapse
Affiliation(s)
- Junyi Zhou
- BNLMS, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Zhen Xu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Meijia Xu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Xiong Zhou
- BNLMS, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
29
|
Slot TK, Riley N, Shiju NR, Medlin JW, Rothenberg G. An experimental approach for controlling confinement effects at catalyst interfaces. Chem Sci 2020; 11:11024-11029. [PMID: 34123192 PMCID: PMC8162257 DOI: 10.1039/d0sc04118a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/04/2020] [Indexed: 01/12/2023] Open
Abstract
Catalysts are conventionally designed with a focus on enthalpic effects, manipulating the Arrhenius activation energy. This approach ignores the possibility of designing materials to control the entropic factors that determine the pre-exponential factor. Here we investigate a new method of designing supported Pt catalysts with varying degrees of molecular confinement at the active site. Combining these with fast and precise online measurements, we analyse the kinetics of a model reaction, the platinum-catalysed hydrolysis of ammonia borane. We control the environment around the Pt particles by erecting organophosphonic acid barriers of different heights and at different distances. This is done by first coating the particles with organothiols, then coating the surface with organophosphonic acids, and finally removing the thiols. The result is a set of catalysts with well-defined "empty areas" surrounding the active sites. Generating Arrhenius plots with >300 points each, we then compare the effects of each confinement scenario. We show experimentally that confining the reaction influences mainly the entropy part of the enthalpy/entropy trade-off, leaving the enthalpy unchanged. Furthermore, we find this entropy contribution is only relevant at very small distances (<3 Å for ammonia borane), where the "empty space" is of a similar size to the reactant molecule. This suggests that confinement effects observed over larger distances must be enthalpic in nature.
Collapse
Affiliation(s)
- Thierry K Slot
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 Amsterdam 1098 XH The Netherlands
| | - Nathan Riley
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 Amsterdam 1098 XH The Netherlands
| | - N Raveendran Shiju
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 Amsterdam 1098 XH The Netherlands
| | - J Will Medlin
- Department of Chemical and Biological Engineering, University of Colorado Boulder Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Avenue Boulder Colorado 80303 USA
| | - Gadi Rothenberg
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 Amsterdam 1098 XH The Netherlands
| |
Collapse
|
30
|
del Árbol NR, Palacio I, Sánchez-Sánchez C, Otero-Irurueta G, Martínez JI, Rodríguez L, Serrate D, Cossaro A, Lacovig P, Lizzit S, Verdini A, Floreano L, Martín-Gago JA, López MF. Role of the metal surface on the room temperature activation of the alcohol and amino groups of p-aminophenol. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:19655-19665. [PMID: 33163138 PMCID: PMC7116303 DOI: 10.1021/acs.jpcc.0c06101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a comparative study of the room-temperature adsorption of p-aminophenol (p-AP) molecules on three metal surfaces, namely Cu(110), Cu(111) and Pt(111). We show that the chemical nature and the structural symmetry of the substrate control the activation of the terminal molecular groups, which result in different arrangements of the interfacial molecular layer. To this aim, we have used in-situ STM images combined with synchrotron radiation high resolution XPS and NEXAFS spectra, and the results were simulated by DFT calculations. On copper, the interaction between the molecules and the surface is weaker on the (111) surface crystal plane than on the (110) one, favouring molecular diffusion and leading to larger ordered domains. We demonstrate that the p-AP molecule undergoes spontaneous dehydrogenation of the alcohol group to form phenoxy species on all the studied surfaces, however, this process is not complete on the less reactive surface, Cu(111). The Pt(111) surface exhibits stronger molecule-surface interaction, inducing a short-range ordered molecular arrangement that increases overtime. In addition, on the highly reactive Pt(111) surface other chemical processes are evidenced, such as the dehydrogenation of the amine group.
Collapse
Affiliation(s)
- Nerea Ruiz del Árbol
- Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Irene Palacio
- Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Carlos Sánchez-Sánchez
- Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Gonzalo Otero-Irurueta
- Centre of Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - José I. Martínez
- Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Luis Rodríguez
- Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - David Serrate
- Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Albano Cossaro
- Laboratorio TASC, CNR-IOM, Basovizza SS-14,Km 163.5, I-34149 Trieste, Italy
- Department of Chemical and Pharmaceutical Sciences. Università degli Studi di Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Paolo Lacovig
- Elettra-Sinctrotrone Trieste S.C.p.A., S.S. 14 Km 163.5, I-34149 Trieste, Italy
| | - Silvano Lizzit
- Elettra-Sinctrotrone Trieste S.C.p.A., S.S. 14 Km 163.5, I-34149 Trieste, Italy
| | - Alberto Verdini
- Laboratorio TASC, CNR-IOM, Basovizza SS-14,Km 163.5, I-34149 Trieste, Italy
| | - Luca Floreano
- Laboratorio TASC, CNR-IOM, Basovizza SS-14,Km 163.5, I-34149 Trieste, Italy
| | - José A. Martín-Gago
- Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - María F. López
- Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
31
|
Nanofabrication Techniques in Large-Area Molecular Electronic Devices. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The societal impact of the electronics industry is enormous—not to mention how this industry impinges on the global economy. The foreseen limits of the current technology—technical, economic, and sustainability issues—open the door to the search for successor technologies. In this context, molecular electronics has emerged as a promising candidate that, at least in the short-term, will not likely replace our silicon-based electronics, but improve its performance through a nascent hybrid technology. Such technology will take advantage of both the small dimensions of the molecules and new functionalities resulting from the quantum effects that govern the properties at the molecular scale. An optimization of interface engineering and integration of molecules to form densely integrated individually addressable arrays of molecules are two crucial aspects in the molecular electronics field. These challenges should be met to establish the bridge between organic functional materials and hard electronics required for the incorporation of such hybrid technology in the market. In this review, the most advanced methods for fabricating large-area molecular electronic devices are presented, highlighting their advantages and limitations. Special emphasis is focused on bottom-up methodologies for the fabrication of well-ordered and tightly-packed monolayers onto the bottom electrode, followed by a description of the top-contact deposition methods so far used.
Collapse
|
32
|
Yin C, Peng Z, Liu D, Song H, Zhu H, Chen Q, Wu K. Selective Intramolecular Dehydrocyclization of Co-Porphyrin on Au(111). Molecules 2020; 25:molecules25173766. [PMID: 32824933 PMCID: PMC7503656 DOI: 10.3390/molecules25173766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/02/2022] Open
Abstract
The on-surface C–H bond activation and coupling reaction is a powerful approach to constructing fine-tuned surface nanostructures. It is quite challenging to control its regioselectivity due to the inertness of the C–H bond involved. With scanning tunneling microscopy/spectroscopy and theoretical calculations, the C–H activation and sequential intramolecular dehydrocyclization of meso-tetra(p-methoxyphenyl)porphyrinatocobalt(II) was explored on Au(111), showing that the methoxy groups in the molecule could kinetically mediate the selectivity of the intramolecular reaction over its intermolecular coupling counterpart. The experimental results demonstrate that the introduced protecting group could help augment the selectivity of such on-surface reaction, which can be applied to the precise fabrication of functional surface nanostructures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kai Wu
- Correspondence: (Q.C.); (K.W.)
| |
Collapse
|
33
|
Xing S, Zhang Z, Liang H, Sun B, Xu H, Fan J, Ma YQ, Shi Z. On-Surface Cascade Reaction Based on Successive Debromination via Metal-Organic Coordination Template. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6286-6291. [PMID: 32407120 DOI: 10.1021/acs.langmuir.0c00055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Precise control over on-surface covalent reaction pathways is crucial for engineering organic nanostructures with the single-atom precision. Herein, we demonstrate a step-by-step control of an on-surface cascade covalent reaction based on a successive debromination templated by noncovalent metal-organic coordination motifs. The molecular precursor is predesigned with different reactive sites and functional ligands, allowing for both chemical and structural tuning during on-surface reactions. Through the Fe-terpyridine template effect, we are able to direct the reaction to proceed in a three-step cascade pathway and finally to achieve a porous polyarylene nanoribbon structure. The approach opens new opportunities for construction of on-surface organic nanostructures in a predictable manner.
Collapse
Affiliation(s)
- Shuaipeng Xing
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Zhe Zhang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huifang Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Bangjin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Hu Xu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yu-Qiang Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Ziliang Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
34
|
Liu R, Kochovski Z, Li L, Yin Y, Yang J, Yang G, Tao G, Xu A, Zhang E, Ding H, Lu Y, Chen G, Jiang M. Fabrication of Pascal-triangle Lattice of Proteins by Inducing Ligand Strategy. Angew Chem Int Ed Engl 2020; 59:9617-9623. [PMID: 32147901 PMCID: PMC7318223 DOI: 10.1002/anie.202000771] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/26/2020] [Indexed: 01/26/2023]
Abstract
A protein Pascal triangle has been constructed as new type of supramolecular architecture by using the inducing ligand strategy that we previously developed for protein assemblies. Although mathematical studies on this famous geometry have a long history, no work on such Pascal triangles fabricated from native proteins has been reported so far due to their structural complexity. In this work, by carefully tuning the specific interactions between the native protein building block WGA and the inducing ligand R-SL, a 2D Pascal-triangle lattice with three types of triangular voids has been assembled. Moreover, a 3D crystal structure was obtained based on the 2D Pascal triangles. The distinctive carbohydrate binding sites of WGA and the intralayer as well as interlayer dimerization of RhB was the key to facilitate nanofabrication in solution. This strategy may be applied to prepare and explore various sophisticated assemblies based on native proteins.
Collapse
Affiliation(s)
- Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan UniversityShanghai200433China
| | - Zdravko Kochovski
- Institute of Electrochemical Energy StorageHelmholtz-Zentrum Berlin für Materialien und Energie14109BerlinGermany
| | - Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan UniversityShanghai200433China
| | - Yue‐wen Yin
- Center for Soft Condensed Matter Physics and Interdisciplinary ResearchSchool of Physical Science and TechnologySoochow UniversitySuzhou215006China
| | - Jing Yang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan UniversityShanghai200433China
| | - Guang Yang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan UniversityShanghai200433China
| | - Guoqing Tao
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan UniversityShanghai200433China
| | - Anqiu Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan UniversityShanghai200433China
| | - Ensong Zhang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan UniversityShanghai200433China
| | - Hong‐ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary ResearchSchool of Physical Science and TechnologySoochow UniversitySuzhou215006China
| | - Yan Lu
- Institute of Electrochemical Energy StorageHelmholtz-Zentrum Berlin für Materialien und Energie14109BerlinGermany
- Institute of ChemistryUniversity of Potsdam14476PotsdamGermany
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan UniversityShanghai200433China
- Multiscale Research Institute of Complex SystemsFudan UniversityShanghai200433China
| | - Ming Jiang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan UniversityShanghai200433China
| |
Collapse
|
35
|
Liu R, Kochovski Z, Li L, Yin Y, Yang J, Yang G, Tao G, Xu A, Zhang E, Ding H, Lu Y, Chen G, Jiang M. Fabrication of Pascal‐triangle Lattice of Proteins by Inducing Ligand Strategy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Zdravko Kochovski
- Institute of Electrochemical Energy StorageHelmholtz-Zentrum Berlin für Materialien und Energie 14109 Berlin Germany
| | - Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Yue‐wen Yin
- Center for Soft Condensed Matter Physics and Interdisciplinary ResearchSchool of Physical Science and TechnologySoochow University Suzhou 215006 China
| | - Jing Yang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Guang Yang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Guoqing Tao
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Anqiu Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Ensong Zhang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan University Shanghai 200433 China
| | - Hong‐ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary ResearchSchool of Physical Science and TechnologySoochow University Suzhou 215006 China
| | - Yan Lu
- Institute of Electrochemical Energy StorageHelmholtz-Zentrum Berlin für Materialien und Energie 14109 Berlin Germany
- Institute of ChemistryUniversity of Potsdam 14476 Potsdam Germany
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan University Shanghai 200433 China
- Multiscale Research Institute of Complex SystemsFudan University Shanghai 200433 China
| | - Ming Jiang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular ScienceFudan University Shanghai 200433 China
| |
Collapse
|
36
|
Kunitake M, Uemura S. Construction and Scanning Probe Microscopy Imaging of Two-dimensional Nanomaterials. CHEM LETT 2020. [DOI: 10.1246/cl.200080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masashi Kunitake
- Faculty of Advanced Science & Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinobu Uemura
- Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| |
Collapse
|
37
|
Yang XQ, Yi ZY, Wang SF, Chen T, Wang D. Construction of 2D extended cocrystals on the Au(111) surface via IO aldehyde halogen bonds. Chem Commun (Camb) 2020; 56:3539-3542. [PMID: 32103215 DOI: 10.1039/d0cc00199f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2D extended organic cocrystals were constructed using 1,4-diiodotetrafluorobenzene and aromatic aldehydes via IOaldehyde halogen bonds on an Au(111) surface. The competition and synergy of halogen bonds and hydrogen bonds in 2D co-crystallization were revealed by scanning tunneling microscopy.
Collapse
Affiliation(s)
- Xue-Qing Yang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China. and Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.
| | - Zhen-Yu Yi
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Sheng-Fu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China.
| | - Ting Chen
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
38
|
Kandrnálová M, Kokan Z, Havel V, Nečas M, Šindelář V. Hypervalent Iodine Based Reversible Covalent Bond in Rotaxane Synthesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Markéta Kandrnálová
- Department of Chemistry and RECETOXFaculty of ScienceMasaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Zoran Kokan
- Department of Chemistry and RECETOXFaculty of ScienceMasaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Václav Havel
- Department of Chemistry and RECETOXFaculty of ScienceMasaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Marek Nečas
- Department of Chemistry and RECETOXFaculty of ScienceMasaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Vladimír Šindelář
- Department of Chemistry and RECETOXFaculty of ScienceMasaryk University Kamenice 5 625 00 Brno Czech Republic
| |
Collapse
|
39
|
Kandrnálová M, Kokan Z, Havel V, Nečas M, Šindelář V. Hypervalent Iodine Based Reversible Covalent Bond in Rotaxane Synthesis. Angew Chem Int Ed Engl 2019; 58:18182-18185. [PMID: 31587433 DOI: 10.1002/anie.201908953] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 12/20/2022]
Abstract
Reversible covalent bonds play a significant role in achieving the high-yielding synthesis of mechanically interlocked molecules. Still, only a handful of such bonds have been successfully employed in synthetic procedures. Herein, we introduce a novel approach for the fast and simple preparation of interlocked molecules, combining the dynamic bond character of bis(acyloxy)iodate(I) anions with macrocyclic bambusuril anion receptors. The proof of principle was demonstrated on rotaxane synthesis, with near-quantitative yields observed in both the classical and "in situ" approach. The rotaxane formation was confirmed in the solid-state and solution by the X-ray and NMR studies. Our novel approach could be utilized in the fields of dynamic combinatorial chemistry, supramolecular polymers, or molecular machines, as well inspire further research on molecules that exhibit dynamic behavior, but owing to their high reactivity, have not been considered as constituents of more elaborate supramolecular structures.
Collapse
Affiliation(s)
- Markéta Kandrnálová
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zoran Kokan
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Václav Havel
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Marek Nečas
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Vladimír Šindelář
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
40
|
Wen X, Lin Y, Huang Z, Diao M, Zhao W, Dai J, Xing L, Zhu H, Peng Z, Liu D, Wu K. Long-Range Ordered Structures of Corannulene Governed by Electrostatic Repulsion and Surface-State Mediation. J Phys Chem Lett 2019; 10:6800-6806. [PMID: 31618041 DOI: 10.1021/acs.jpclett.9b02442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The adsorption and assembly of sub-monolayered bowl-shaped corannulene (COR) on Cu(111) and Ag(111) are investigated by scanning tunneling microscopy (STM). Three COR configurations, namely, up, down, and tilted ones, are formed on Cu(111), as unraveled by high-resolution STM images. It is also experimentally revealed that monodispersed, hexagonal, and evenly spaced stripe patterns develop on both Cu(111) and Ag(111). A quantitative evaluation of the long-range intermolecular interaction on Cu(111) mediated by electrostatic repulsion and surface-state mediation is presented. At 0.05 monolayer (ML), the long-range monodispersed pattern is mainly induced by electrostatic interaction. At 0.24 and 0.47 ML, however, surface-state mediation plays a dominant role, and the electrostatic interaction is leveled due to the identical static environment for each molecule.
Collapse
Affiliation(s)
- Xiaojie Wen
- BNLMS, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Yuxuan Lin
- BNLMS, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zhichao Huang
- BNLMS, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Mengxiao Diao
- BNLMS, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Wenhui Zhao
- BNLMS, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Jingxin Dai
- BNLMS, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Lingbo Xing
- BNLMS, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Hao Zhu
- BNLMS, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zhantao Peng
- BNLMS, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Dan Liu
- BNLMS, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|