1
|
Li Z, Liu H, Zhang XB. Reactive oxygen species-mediated organic long-persistent luminophores light up biomedicine: from two-component separated nano-systems to integrated uni-luminophores. Chem Soc Rev 2024. [PMID: 39363873 DOI: 10.1039/d4cs00443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Organic luminophores have been widely utilized in cells and in vivo fluorescence imaging but face extreme challenges, including a low signal-to-noise ratio (SNR) and even false signals, due to non-negligible background signals derived from real-time excitation lasers. To overcome these challenges, in the last decade, functionalized organic long-persistent luminophores have gained much attention. Such luminophores could not only overcome the biological toxicity of inorganic long-persistent luminescent materials (metabolic toxicity and leakage risk of inorganic heavy metals), but also continue to emit long-persistent luminescence after removing the excitation source, thus effectively improving imaging quality. More importantly, organic long-persistent luminophores have good structure tailorability for the construction of activable probes, which is favorable for biosensing. Recently, the development of reactive oxygen species (ROS)-mediated long-persistent (ROSLP) luminophores (especially organic small-molecule ROSLP luminophores) is still in the rising stage. Notably, ROSLP luminophores for in vivo imaging have experienced from two-component separated nano-systems to integrated uni-luminophores, which obtained gradually better designability and biocompatibility. In this review, we summarize the progress and challenges of organic long-persistent luminophores, focusing on their development history, long-persistent luminescence working mechanisms, and biomedical applications. We hope that these insights will help scientists further develop functionalized organic long-persistent luminophores for the biomedical field.
Collapse
Affiliation(s)
- Zhe Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China.
| |
Collapse
|
2
|
Gao L, Dalapati R, Gao B, Huang X, Zhao D, Wang F, Zang L. Mitochondrial STED Imaging and Membrane Potential Monitoring with a Cationic Molecular Probe. SMALL METHODS 2024:e2400525. [PMID: 39268793 DOI: 10.1002/smtd.202400525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria are essential organelles that not only undergo dynamic morphological changes but also exhibit functional activities such as mitochondrial membrane potential (MMP). While super-resolution techniques such as stimulated emission depletion (STED) nanoscopy can visualize the ultrastructure of mitochondria and the MMP probe can monitor mitochondria function, few dyes meet both demands. Here, a small molecule (MitoPDI-90) based on perylene diimide with cationic groups is reported and used for mitochondrial STED imaging and MMP indication. Characterized by excellent photostability, biocompatibility, and high quantum yield, MitoPDI-90 exhibits STED imaging compatibility, facilitating visualization of mitochondrial cristae and time-lapse imaging of highly dynamic mitochondria in living cells. Besides, MitoPDI-90 targets the mitochondria through electrical potential, also enabling live-cell MMP monitoring. MitoPDI-90 allows for super-resolution visualization and time-lapse imaging of mitochondria, and more importantly, indication of changes in MMP, providing insight into the functional activity of live-cell mitochondria.
Collapse
Affiliation(s)
- Lu Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rana Dalapati
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Beibei Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyu Huang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dan Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fu Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Zang
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
3
|
Wu C, Feng D, Xu H, He Z, Hou J. Optimized Bionic Drug-Delivery-Inducing Immunogenic Cell Death and cGAS-STING Pathway Activation for Enhanced Photodynamic-Chemotherapy-Driven Immunotherapy in Prostate Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43257-43271. [PMID: 39119624 DOI: 10.1021/acsami.4c07072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Prostate cancer presents as a challenging disease, as it is often characterized as an immunologically "cold" tumor, leading to suboptimal outcomes with current immunotherapeutic approaches in clinical settings. Photodynamic therapy (PDT) harnesses reactive oxygen species generated by photosensitizers (PSs) to disrupt the intracellular redox equilibrium. This process induces DNA damage in both the mitochondria and nucleus, activating the process of immunogenic cell death (ICD) and the cGAS-STING pathway. Ultimately, this cascade of events leads to the initiation of antitumor immune responses. Nevertheless, existing PSs face challenges, including suboptimal tumor targeting, aggregation-induced quenching, and insufficient oxygen levels in the tumor regions. To this end, a versatile bionic nanoplatform has been designed for the simultaneous delivery of the aggregation-induced emission PS TPAQ-Py-PF6 and paclitaxel (PTX). The cell membrane camouflage of the nanoplatform leads to its remarkable abilities in tumor targeting and cellular internalization. Upon laser irradiation, the utilization of TPAQ-Py-PF6 in conjunction with PTX showcases a notable and enhanced synergistic antitumor impact. Additionally, the nanoplatform has the capability of initiating the cGAS-STING pathway, leading to the generation of cytokines. The presence of damage-associated molecular patterns induced by ICD collaborates with these aforementioned cytokines lead to the recruitment and facilitation of dendritic cell maturation. Consequently, this elicits a systemic immune response against tumors. In summary, this promising strategy highlights the use of a multifunctional biomimetic nanoplatform, combining chemotherapy, PDT, and immunotherapy to enhance the effectiveness of antitumor treatment.
Collapse
Affiliation(s)
- Chunchen Wu
- Department of Urology, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Dexiang Feng
- Department of Urology, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Hongbo Xu
- Department of Urology, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Zhangxin He
- Department of Urology, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Jianquan Hou
- Department of Urology, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
4
|
Li XL, Niu KK, Yu S, Liu H, Xing LB. A supramolecular naphthalenediimide radical anion through host-guest interactions for photooxidation of alkylarenes to carbonyls. Chem Commun (Camb) 2024; 60:8924-8927. [PMID: 39092786 DOI: 10.1039/d4cc02374a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
A supramolecular naphthalenediimide radical anion was developed through host-guest interactions between NDI and cucurbit[7]uril (CB[7]), which can be greatly promoted in the presence of chloride ions to obtain Cl˙ and NDI-2CB[7]˙-. Under the synergistic action of Cl˙ as a hydrogen atom transfer (HAT) agent and NDI-2CB[7]˙- transferring electrons to O2 to produce O2˙-, the photocatalytic oxidation reactions of alkylarenes to carbonyls can be realized with universal applicability.
Collapse
Affiliation(s)
- Xin-Long Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| |
Collapse
|
5
|
Zheng X, Li H, Gao S, Müllen K, Zhang J, Ji C, Yin M. "One-Stone-Three-Birds" H 2S-Photothermal Therapy for Enhanced Thrombolysis and Vascular Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403284. [PMID: 39037367 DOI: 10.1002/smll.202403284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Thrombus causes a serious condition characterized by the formation of blood clots in blood vessels or heart, potentially leading to life-threatening emergencies. Photothermal therapy (PTT) serves as a treatment for thrombosis that provides noninvasive thrombus dissolution and fewer bleeding side effects. However, the high temperatures generated by PTT can exacerbate vascular inflammation and promote thrombus recurrence. In this study, a photothermal hydrogen sulfide (H2S) nanogenerator (PSA@ADT-OH) is constructed using a perylene-cored photothermal agent (PSA) coassembled with a H2S donor ADT-OH. The system PSA@ADT-OH demonstrates outstanding targeting and accumulation efficiency against blood flow shear forces. It also provides sustained H2S release at thrombus sites, contributing to antiplatelet aggregation, reactive oxygen species clearance, and vascular healing. This approach opens up new possibilities for advanced thrombus treatment.
Collapse
Affiliation(s)
- Xian Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hanyang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuwei Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Jin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Upadhaya PG, Nabar SJ. Direct radiolabeling of methotrexate and methotrexate micelles with Tc-99m using QbD approach. Appl Radiat Isot 2024; 209:111313. [PMID: 38603864 DOI: 10.1016/j.apradiso.2024.111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
The aim of the work presented in this manuscript was to radiolabel methotrexate and prepare radiolabeled methotrexate micelles, an antifolate drug with Tc-99m using QbD approach. The radiolabeling was executed using the experimental design and the radiolabeled drug was further encapsulated in micelles. The authors are of the view that the radiolabeled MTX could be used to target the folate receptor overexpressing cancers such as the kidney, colorectal, breast, brain etc thereby opening newer possibilities to the theranostic applications of the formed conjugate.
Collapse
Affiliation(s)
- Prashant G Upadhaya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Swapna J Nabar
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Annex Building, Tata Memorial Hospital Campus, JerbaiWadia Road, Dadar East, Mumbai, 400012, India.
| |
Collapse
|
7
|
Xu R, Shen Q, Zhang P, Wang Z, Xu Y, Meng L, Dang D. Less is More: Asymmetric D-A Type Agent to Achieve Dynamic Self-Assembled Nanoaggregates for Long-Acting Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402434. [PMID: 38684233 DOI: 10.1002/adma.202402434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/24/2024] [Indexed: 05/02/2024]
Abstract
To enhance the phototheranostic performance, agents with high reactive oxygen species (ROS) generation, good tumor-targeting ability, and prolonged retention are urgently needed. However, symmetric donor-acceptor (D-A) type agents usually produce spherical nanoaggregates, leading to good tumor targeting but inferior retention. Rod-like nanoaggregates are desired to extend their retention in tumors; however, this remains a challenge. In particular, agents with dynamically changeable shapes that integrate merits of different morphologies are seldomly reported. Therefore, self-assembled organic nanoaggregates with smart shape tunability are designed here using an asymmetric D-A type TIBT. The photoluminescence quantum yield in solids is up to 52.24% for TIBT. TIBT also exhibits high ROS generation in corresponding nanoaggregates (TIBT-NCs). Moreover, dynamic self-assembly in shape changing from nanospheres to nanorods occurrs in TIBT-NCs, contributing to the enhancement of ROS quantum yield from 0.55 to 0.72. In addition, dynamic self-assembly can be observed for both in vitro and in vivo, conferring TIBT-NCs with strong tumor targeting and prolonged retention. Finally, efficient photodynamic therapy to inhibit tumor growth is achieved in TIBT-NCs, with an inhibition rate of 90%. This work demonstrates that asymmetric D-A type agents can play significant roles in forming self-assembled organic nanoaggregates, thus showing great potential in long-acting cancer therapy.
Collapse
Affiliation(s)
- Ruohan Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Qifei Shen
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Peijuan Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Zhi Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Yanzi Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Lingjie Meng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Dongfeng Dang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| |
Collapse
|
8
|
Wei K, Wu Y, Zheng X, Ouyang L, Ma G, Ji C, Yin M. A Light-Triggered J-Aggregation-Regulated Therapy Conversion: from Photodynamic/Photothermal Therapy to Long-Lasting Chemodynamic Therapy for Effective Tumor Ablation. Angew Chem Int Ed Engl 2024; 63:e202404395. [PMID: 38577995 DOI: 10.1002/anie.202404395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Reactive oxygen species (ROS) have become an effective tool for tumor treatment. The combination of photodynamic therapy (PDT) and chemodynamic therapy (CDT) takes advantage of various ROS and enhances therapeutic effects. However, the activation of CDT usually occurs before PDT, which hinders the sustained maintenance of hydroxyl radicals (⋅OH) and reduces the treatment efficiency. Herein, we present a light-triggered nano-system based on molecular aggregation regulation for converting cancer therapy from PDT/photothermal therapy (PTT) to a long-lasting CDT. The ordered J-aggregation enhances the photodynamic properties of the cyanine moiety while simultaneously suppressing the chemodynamic capabilities of the copper-porphyrin moiety. Upon light irradiation, Cu-PCy JNPs demonstrate strong photodynamic and photothermal effects. Meanwhile, light triggers a rapid degradation of the cyanine backbone, leading to the destruction of the J-aggregation. As a result, a long-lasting CDT is sequentially activated, and the sustained generation of ⋅OH is observed for up to 48 hours, causing potent cellular oxidative stress and apoptosis. Due to their excellent tumor accumulation, Cu-PCy JNPs exhibit effective in vivo tumor ablation through the converting therapy. This work provides a new approach for effectively prolonging the chemodynamic activity in ROS-based cancer therapy.
Collapse
Affiliation(s)
- Kai Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Yanxin Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Xian Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Li Ouyang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Guiping Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| |
Collapse
|
9
|
Chen K, Liu Y, Wang Z, Hu S, Zhao Y, Wang W, Liu G, Wang Z, Jiang W. Longitudinal Extension of Double π-Helix Enables Near-Infrared Amplified Dissymmetry and Chiroptical Response. J Am Chem Soc 2024; 146:13499-13508. [PMID: 38696816 DOI: 10.1021/jacs.4c02914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Near-infrared (NIR) circularly polarized light absorbing or emitting holds great promise for highly sensitive and precise bioimaging, biosensing, and photodetectors. Aiming at designing NIR chiral molecular systems with amplified dissymmetry and robust chiroptical response, herein, we present a series of double π-helical dimers with longitudinally extended π-entwined substructures via Ullmann or Yamamoto homocoupling reactions. Circular dichroism (CD) spectra revealed an approximate linear bathochromic shift with the rising number of naphthalene subunits, indicating a red to NIR chiroptical response. Particularly, the terrylene diimide-entwined dimers exhibited the strongest CD intensities, with the maximal |Δε| reaching up to 393 M-1 cm-1 at 666 nm for th-TDI[2]; and a record-high chiroptical response (|ΔΔε|) between the neutral and dianionic species of 520 M-1 cm-1 at 833 nm for th-TDI[2]Cl was achieved upon further reduction to its dianionic state. Time-dependent density functional theory (TDDFT) calculations suggested that the pronounced intensification of the CD spectra originated from a simultaneous enhancement of both electric (μ) and magnetic (m) transition dipole moments, ultimately leading to an overall increase in the rotatory strength (R). Notably, the circularly polarized luminescence (CPL) brightness (BCPL) reached 77 M-1 cm-1 for th-TDI[2]Cl, among the highest values reported for NIR-CPL emitters. Furthermore, all chiral dianions exhibited excellent air stability under ambient conditions with half-life times of up to 10 days in N-methylpyrrolidone (NMP), which is significant for future biological applications and chiroptic switches.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhaolong Wang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shunlong Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yilun Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guogang Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaohui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Li J, Wang L, Zhang C, Wang H, Pan Y, Li S, Chen XK, Jia T, Wang K. Manipulation of the Self-Assembly Morphology by Side-Chain Engineering of Quinoxaline-Substituted Organic Photothermal Molecules for Highly Efficient Solar-Thermal Conversion and Applications. Angew Chem Int Ed Engl 2024; 63:e202402726. [PMID: 38494458 DOI: 10.1002/anie.202402726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Organic photothermal materials have attracted increasing attention because of their structural diversity, flexibility, and compatibility. However, their energy conversion efficiency is limited owing to the narrow absorption spectrum, strong reflection/transmittance, and insufficient nonradiative decay. In this study, two quinoxaline-based D-A-D-A-D-type molecules with ethyl (BQE) or carboxylate (BQC) substituents were synthesized. Strong intramolecular charge transfer provided both molecules with a broad absorption range of 350-1000 nm. In addition, the high reorganization energy and weak molecular packing of BQE resulted in efficient nonradiative decay. More importantly, the self-assembly of BQE leads to a textured surface and enhances the light-trapping efficiency with significantly reduced light reflection/transmittance. Consequently, BQE achieved an impressive solar-thermal conversion efficiency of 18.16 % under 1.0 kW m-2 irradiation with good photobleaching resistance. Based on this knowledge, the water evaporation rate of 1.2 kg m-2 h-1 was attained for the BQE-based interfacial evaporation device with an efficiency of 83 % under 1.0 kW m-2 simulated sunlight. Finally, the synergetic integration of solar-steam and thermoelectric co-generation devices based on BQE was realized without significantly sacrificing solar-steam efficiency. This underscores the practical applications of BQE-based technology in effectively harnessing photothermal energy. This study provides new insights into the molecular design for enhancing light-trapping management by molecular self-assembly, paving the way for photothermal-driven applications of organic photothermal materials.
Collapse
Affiliation(s)
- Jing Li
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Luoqing Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Chenyang Zhang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Han Wang
- School of Management, Xián Polytechnic University, Xián, 710600, China
| | - Yuyu Pan
- School of Petrochemical Engineering, Shenyang University of Technology, 30 Guanghua Street, Liaoyang, 111003, P. R. China
| | - Shizhang Li
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Xian-Kai Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, China
| | - Tao Jia
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Kai Wang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| |
Collapse
|
11
|
Yang M, Ji C, Yin M. Aggregation-enhanced photothermal therapy of organic dyes. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1960. [PMID: 38695260 DOI: 10.1002/wnan.1960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/10/2024] [Accepted: 04/06/2024] [Indexed: 05/12/2024]
Abstract
Photothermal therapy (PTT) represents a groundbreaking approach to targeted disease treatment by harnessing the conversion of light into heat. The efficacy of PTT heavily relies on the capabilities of photothermal agents (PTAs). Among PTAs, those based on organic dyes exhibit notable characteristics such as adjustable light absorption wavelengths, high extinction coefficients, and high compatibility in biological systems. However, a challenge associated with organic dye-based PTAs lies in their efficiency in converting light into heat while maintaining stability. Manipulating dye aggregation is a key aspect in modulating non-radiative decay pathways, aiming to augment heat generation. This review delves into various strategies aimed at improving photothermal performance through constructing aggregation. These strategies including protecting dyes from photodegradation, inhibiting non-photothermal pathways, maintaining space within molecular aggregates, and introducing intermolecular photophysical processes. Overall, this review highlights the precision-driven assembly of organic dyes as a promising frontier in enhancing PTT-related applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Mengyun Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
12
|
Wang X, Yu H, Yang R, Li B, Wang M, Xu B, Tian W. Fluorescence Switching and Photoisomerization of a Spiropyran Molecular Photoswitch through Confined Spaces Regulation in Crystals. J Phys Chem Lett 2024; 15:4224-4228. [PMID: 38602419 DOI: 10.1021/acs.jpclett.4c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Spiropyran (SP) and its derivatives are highly attractive owing to their distinctive merits in high contrast and fast response read-out systems. However, the realization of photoswitching properties of SP is hindered in the aggregate state, particularly in crystals owing to the dense packing of molecules leading to insufficient study of the relationship between the molecular structure/stacking mode and photoswitching behavior. Herein, we report three SP derivatives: different flexible chains (carboxyl group for SP-0 and ester group for SP-1) are attached to the indoline moiety, while the ester group is attached to the chromene moiety for SP-2. SP-1 exhibits fluorescent photoswitching properties in crystals due to the weak intermolecular interactions resulting in enough free space for the photoisomerization. The presence of hydrogen bonds in SP-0 enhances the molecular interactions to restrict the photoisomerization, and the ester group of SP-2 impacts the thermodynamic properties, thereby limiting the realization of photoswitching of SP-2.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Runqing Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| |
Collapse
|
13
|
Zhang J, Ma W, Luo H, Zhang K, Lv J, Jiang L, Huang Y, Song J, Yang Z, Huang W. Toward Type I/II ROS Generation Photoimmunotherapy by Molecular Engineering of Semiconducting Perylene Diimide. Adv Healthc Mater 2024; 13:e2303175. [PMID: 37985358 DOI: 10.1002/adhm.202303175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/10/2023] [Indexed: 11/22/2023]
Abstract
As prospective phototheranostic agents for cancer imaging and therapy, semiconducting organic molecule-based nanomedicines are developed. However, near-infrared (NIR) emission, and tunable type I (O2 • -) and type II (1O2) photoinduced reactive oxygen species (ROS) generation to boost cancer photoimmunotherapy remains a big challenge. Herein, a series of D-π-A structures, NIR absorbing perylene diimides (PDIs) with heavy atom bromide modification at the bay position of PDIs are prepared for investigating the optimal photoinduced type I/II ROS generation. The heavy atom effect has demonstrated a reduction of molecular ∆EST and promotion of the intersystem crossing processes of PDIs, enhancing the photodynamic therapy (PDT) efficacy. The modification of three bromides and one pyrrolidine at the bay position of PDI (TBDT) has demonstrated the best type I/II PDT performance by batch experiments and theoretical calculations. TBDT based nanoplatforms (TBDT NPs) enable type I/II PDT in the hypoxic tumor microenvironment as a strong immunogenic cell death (ICD) inducer. Moreover, TBDT NPs showing NIR emission allow in vivo bioimaging guided phototherapy of tumor. This work uses novel PDIs with adjustable type I/II ROS production to promote antitumor immune response and accomplish effective tumor eradication, consequently offering molecular guidelines for building high-efficiency ICD inducers.
Collapse
Affiliation(s)
- Jie Zhang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Wen Ma
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Haifen Luo
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Kangxin Zhang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Jingqi Lv
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Lizhi Jiang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Yanli Huang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Jibing Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhen Yang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
| | - Wei Huang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
14
|
Eichelmann R, Jeudy P, Schneider L, Zerhoch J, Mayer PR, Ballmann J, Deschler F, Gade LH. Chiral Bay-Alkynylated Tetraazaperylenes: Photophysics and Chiroptical Properties. Org Lett 2024; 26:1172-1177. [PMID: 38300988 DOI: 10.1021/acs.orglett.3c04257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Fully bay-alkynylated octaazaperopyrene dioxide (OAPPDO) derivatives were accessible through Stille cross coupling reaction of the corresponding bay-chlorinated derivatives. This steric congestion of the bay area led to helically chiral fluorophores, and chiral resolution of two derivatives allowed the investigation of their chiroptical properties as well as their kinetics of enantiomerization and the related thermodynamic parameters depending on the size of the terminal alkynyl substituent. An increase of the latter resulted in stable OAPPDO atropisomers at room temperature. The dynamics of the photoexcited states of two of the OAPPDO derivatives were investigated by transient absorption (TA) and time-resolved photoluminescence (tr-PL) spectroscopy.
Collapse
Affiliation(s)
- Robert Eichelmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Pierre Jeudy
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Lars Schneider
- Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Jonathan Zerhoch
- Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Paula R Mayer
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Felix Deschler
- Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Fryer C, Murray P, Zhang H. Modification of nanodiamonds for fluorescence bioimaging. RSC Adv 2024; 14:4633-4644. [PMID: 38318624 PMCID: PMC10839752 DOI: 10.1039/d3ra08762j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
Non-invasive bioimaging is essential in enhancing pre-clinical diagnosis and therapy. Developing efficient imaging probes with high stability, low toxicity, and the potential of offering high resolution images is a very important aspect of developing non-invasive bioimaging techniques. Fluorescent nanodiamonds, which are produced by high energy beam irradiation and high temperature/pressure treatment, have been extensively investigated. In this study, we report the chemical modification of common nanodiamonds (prepared by detonation and high-pressure high-temperature milling) using a stable fluorophore (perylene diimide derivative) via carbodiimide coupling. The resulting nanodiamonds show good biocompatibility, cellular uptake and fluorescent imaging potential with mesenchymal stromal cells. This method provides an efficient alternative approach to the preparation and the use of fluorescent nanodiamonds for bioimaging, with the potential benefit of chemically adjusting the structure of perylene diimide for optimized emission/absorbance wavelength.
Collapse
Affiliation(s)
- Claudia Fryer
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool Liverpool L69 3GE UK
| | - Patricia Murray
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool Liverpool L69 3GE UK
| | - Haifei Zhang
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| |
Collapse
|
16
|
Zhu L, Wu W. Dual/Multi-Modal Image-Guided Diagnosis and Therapy Based on Luminogens with Aggregation-Induced Emission. Molecules 2024; 29:371. [PMID: 38257284 PMCID: PMC10819122 DOI: 10.3390/molecules29020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The combination of multiple imaging methods has made an indelible contribution to the diagnosis, surgical navigation, treatment, and prognostic evaluation of various diseases. Due to the unique advantages of luminogens with aggregation-induced emission (AIE), their progress has been significant in the field of organic fluorescent contrast agents. Herein, this manuscript summarizes the recent advancements in AIE molecules as contrast agents for optical image-based dual/multi-modal imaging. We particularly focus on the exceptional properties of each material and the corresponding application in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
| | - Wenbo Wu
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
17
|
Liu D, Liang M, Fan A, Bing W, Qi J. Hypoxia-responsive AIEgens for precise disease theranostics. LUMINESCENCE 2024; 39:e4659. [PMID: 38286609 DOI: 10.1002/bio.4659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024]
Abstract
Specific biomarker-activatable probes have revolutionized theranostics, being beneficial for precision medicine. Hypoxia is a critical pathological characteristic prevalent in numerous major diseases such as cancers, cardiovascular disorders, inflammatory diseases, and acute ischemia. Aggregation-induced emission luminogens (AIEgens) have emerged as a promising tool to tackle the biomedical issues. Of particular significance are the hypoxia-responsive AIEgens, representing a kind of crucial probe capable of delicately sensing and responding to the hypoxic microenvironment, thereby enhancing the precision of disease diagnosis and treatment. In this review, we summarize the recent advances of hypoxia-responsive AIEgens for varied biomedical applications. The hypoxia-responsive structures based on AIEgens, such as azobenzene, nitrobenzene, and N-oxide are presented, which are in response to the reduction property to bring about significant alternations in response spectra and/or fluorescence intensity. The bioapplications including imaging and therapy of tumor and ischemia diseases are discussed. Moreover, the review sheds light on the future challenges and prospects in this field. This review aims to provide comprehensive guidance and understanding into the development of activatable bioprobes, especially the hypoxia-responsive AIEgens for improving the diagnosis and therapy outcome of related diseases.
Collapse
Affiliation(s)
- Dongfang Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Mengyun Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Aohua Fan
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Wei Bing
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
18
|
Xue N, Chen K, Liu G, Wang Z, Jiang W. Molecular Engineering of Rylene Diimides via Sila-Annulation Toward High-Mobility Organic Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307875. [PMID: 38072766 DOI: 10.1002/smll.202307875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Indexed: 12/19/2023]
Abstract
The continuous innovation of captivating new organic semiconducting materials remains pivotal in the development of high-performance organic electronic devices. Herein, a molecular engineering by combining sila-annulation with the vertical extension of rylene diimides (RDIs) toward high-mobility organic semiconductors is presented. The unilateral and bilateral sila-annulated quaterrylene diimides (Si-QDI and 2Si-QDI) are designed and synthesized. In particular, the symmetrical bilateral 2Si-QDI exhibits a compact, 1D slipped π-π stacking arrangement through the synergistic combination of a sizable π-conjugated core and intercalating alkyl chains. Combining the appreciable elevated HOMO levels and reduced energy gaps, the single-crystalline organic field-effect transistors (SC-OFETs) based on 2Si-QDI demonstrate exceptional ambipolar transport characteristics with an impressive hole mobility of 3.0 cm2 V-1 s-1 and an electron mobility of 0.03 cm2 V-1 s-1 , representing the best ampibolar SC-OFETs based on RDIs. Detailed theoretical calculations rationalize that the larger transfer integral along the π-π stacking direction is responsible for the achievement of the superior charge transport. This study showcases the remarkable potential of sila-annulation in optimizing carrier transport performances of polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Ning Xue
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Kai Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Guogang Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
19
|
Zhou B, Chen H, Ji C, Yin M. Regulating steric hindrances of perylenediimide to construct NIR photothermal J-aggregates with a large red-shift. NANOSCALE 2023; 15:17350-17355. [PMID: 37873593 DOI: 10.1039/d3nr03571a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Perylene diimide (PDI)-based photothermal agents (PTAs) possess excellent stability and high photothermal conversion efficiency. However, developing PDIs with strong near-infrared absorption under biological conditions remains a challenge. In this study, we introduce a novel approach to facilitate the formation of J-aggregate-based PTAs with significantly red-shifted absorption by modulating steric hindrances of PDIs. PDIA, featuring larger steric hindrances at the bay position and smaller steric hindrances at the imide position, self-assembles into J-aggregates which exhibit a remarkable red-shift of over 100 nm. After encapsulation by DPSE-PEG, PDIA nanoparticles (PDIA-NPs) demonstrated a uniform and stable size, while retaining their significant red-shift. In vitro experiments demonstrated the great potential of PDIA-NPs in photothermal therapies for tumors and thrombi under 808 nm laser irradiation. This research provides valuable insights into the design of stable J-aggregates based on PDIs suitable for biological applications, paving the way for the development of more effective PTAs.
Collapse
Affiliation(s)
- Bingcheng Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hongtao Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
20
|
Yuan L, Yang J, Qi S, Liu Y, Tian X, Jia T, Wang Y, Dou C. Diradicaloid Boron-Doped Molecular Carbons Achieved by Pentagon-Fusion. Angew Chem Int Ed Engl 2023:e202314982. [PMID: 37924227 DOI: 10.1002/anie.202314982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/06/2023]
Abstract
Molecular carbons (MCs) are molecular cutouts of carbon materials. Doping with heteroatoms and constructing open-shell structures are two powerful approaches to achieve unexpected and unique properties of MCs. Herein, we disclose a new strategy to design open-shell boron-doped MCs (BMCs), namely by pentagon-fusion of an organoborane π-system. We synthesized two diradicaloid BMC molecules that feature C24 B and C38 B π-skeletons containing a pentagonal ring. A thorough investigation reveals that such pentagon-fusion not only leads to their local antiaromaticity, but also incorporates an internal quinoidal substructure and thereby induces open-shell singlet diradical states. Moreover, their fully fused structures enable efficient π conjugation, which is expanded over the whole frameworks. Consequently, some intriguing physical properties are achieved, such as narrow energy gaps, very broad light absorptions, and superior photothermal capability, along with excellent photostability. Notably, the solid of the C38 B molecule exhibits absorption that covers the range of 300-1200 nm and an efficiency of 93.5 % for solar-driven water evaporation, thus demonstrating the potential of diradicaloid BMCs as high-performance organic photothermal materials.
Collapse
Affiliation(s)
- Liuzhong Yuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Jingyuan Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Shuo Qi
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, P. R. China
| | - Yujia Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Xinyu Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Tao Jia
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| |
Collapse
|
21
|
Hu H, Zhang YY, Ma H, Yang Y, Mei S, Li J, Xu JF, Zhang X. A Supramolecular Naphthalene Diimide Radical Anion with Efficient NIR-II Photothermal Conversion for E. coli-Responsive Photothermal Therapy. Angew Chem Int Ed Engl 2023; 62:e202308513. [PMID: 37607898 DOI: 10.1002/anie.202308513] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
We report a supramolecular naphthalene diimide (NDI) radical anion with efficient NIR-II photothermal conversion for E. coli-responsive photothermal therapy. The supramolecular radical anion (NDI-2CB[7])⋅- , which is obtained from the E. coli-induced in situ reduction of NDI-2CB[7] neutral complex, formed by the host-guest interaction between an NDI derivative and cucurbit[7]uril (CB[7]), exhibits unexpectedly strong NIR-II absorption and remarkable photothermal conversion capacity in aqueous solution. The NIR-II absorption is caused by the self-assembly of NDI radical anions to form supramolecular dimer radicals in aqueous solution, which is supported by theoretically predicted spectra. The (NDI-2CB[7])⋅- demonstrates excellent NIR-II photothermal antimicrobial activity (>99 %). This work provides a new approach for constructing NIR-II photothermal agents and non-contact treatments for bacterial infections.
Collapse
Affiliation(s)
- Hao Hu
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang-Yang Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518005, China
| | - He Ma
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuchong Yang
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shan Mei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun Li
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518005, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
22
|
Song Q, Xu M, Zhang B, He M, Guo X, Nie J, Xing Y, Liang X, Chang Y. Near-Infrared-I to III Absorption and Emission via Core Engineering of Open-Shelled Organic Mixed-Valence Systems. Adv Healthc Mater 2023; 12:e2300484. [PMID: 37036385 DOI: 10.1002/adhm.202300484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/01/2023] [Indexed: 04/11/2023]
Abstract
A novel class of agents is developed based on the core engineering of open-shelled organic mixed-valence (MV) systems, which enable tunable absorption and emission across the near infrared (NIR)-I to III biowindow (700-1850 nm) by adjusting the number of central nitrogen oxidation sites and the length of the conjugated bridge. Organic mixed-valence (MV) systems are synthesized through a one-step partial chemical oxidation of starburst oligoarylamines, with varying nitrogen oxidation sites and conjugated bridge lengths, including tris(4-[diethylamino]phenyl)aminen+ (T4EPAn + ), N,N,N',N'-tetrakis(4-[diisobutylamino]phenyl)-1,4-phenylenediaminen+ (TPDAn + ), and N,N,N',N'-tetrakis(4-methoxyphenyl)benzidinen+ (TMPBn + ). The absorption wavelength of the MV systems redshifted clearly as the number of central nitrogen oxidation sites increased or the conjugated bridge length is prolonged. T4EPAn + with one central nitrogen oxidation site exhibits fluorescence emission in the range of 900-1400 nm, while TPDAn + with two central nitrogen oxidation sites demonstrate strong heat generation capabilities. Additionally, the absorption peak of TMPBn + with a biphenyl conjugated bridge reaches up to 1610 nm. Especially, these MV systems are highly stable for biological applications due to their high steric hindrance and hyperconjugation effect. These characteristics make MV systems promising candidates for constructing NIR-I/II/III emitters and photothermal agents, representing a significant advance toward developing the next generation of NIR-I to III agents.
Collapse
Affiliation(s)
- Qiuyan Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Changzhou Institute of Advanced Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, P. R. China
- Defense Innovation Institute, Academy of Military Sciences, 53 Dongdajie, Fengtai District, Beijing, 100071, P. R. China
| | - Manman Xu
- Department of Oncology, Institution Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, North Line Pavilion, Xicheng District, Beijing, 100053, P. R. China
| | - Baoli Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Changzhou Institute of Advanced Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, P. R. China
| | - Mingxu He
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Changzhou Institute of Advanced Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, P. R. China
| | - Xindong Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Changzhou Institute of Advanced Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, P. R. China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Changzhou Institute of Advanced Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, P. R. China
| | - Yue Xing
- Defense Innovation Institute, Academy of Military Sciences, 53 Dongdajie, Fengtai District, Beijing, 100071, P. R. China
| | - Xiubing Liang
- Defense Innovation Institute, Academy of Military Sciences, 53 Dongdajie, Fengtai District, Beijing, 100071, P. R. China
| | - Yincheng Chang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Changzhou Institute of Advanced Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, P. R. China
| |
Collapse
|
23
|
Kang X, Zhang Y, Song J, Wang L, Li W, Qi J, Tang BZ. A photo-triggered self-accelerated nanoplatform for multifunctional image-guided combination cancer immunotherapy. Nat Commun 2023; 14:5216. [PMID: 37626073 PMCID: PMC10457322 DOI: 10.1038/s41467-023-40996-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Precise and efficient image-guided immunotherapy holds great promise for cancer treatment. Here, we report a self-accelerated nanoplatform combining an aggregation-induced emission luminogen (AIEgen) and a hypoxia-responsive prodrug for multifunctional image-guided combination immunotherapy. The near-infrared AIEgen with methoxy substitution simultaneously possesses boosted fluorescence and photoacoustic (PA) brightness for the strong light absorption ability, as well as amplified type I and type II photodynamic therapy (PDT) properties via enhanced intersystem crossing process. By formulating the high-performance AIEgen with a hypoxia-responsive paclitaxel (PTX) prodrug into nanoparticles, and further camouflaging with macrophage cell membrane, a tumor-targeting theranostic agent is built. The integration of fluorescence and PA imaging helps to delineate tumor site sensitively, providing accurate guidance for tumor treatment. The light-induced PDT effect could consume the local oxygen and lead to severer hypoxia, accelerating the release of PTX drug. As a result, the combination of PDT and PTX chemotherapy induces immunogenic cancer cell death, which could not only elicit strong antitumor immunity to suppress the primary tumor, but also inhibit the growth of distant tumor in 4T1 tumor-bearing female mice. Here, we report a strategy to develop theranostic agents via rational molecular design for boosting antitumor immunotherapy.
Collapse
Affiliation(s)
- Xiaoying Kang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianwen Song
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lu Wang
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
24
|
Zhu S, Zhao B, Li M, Wang H, Zhu J, Li Q, Gao H, Feng Q, Cao X. Microenvironment responsive nanocomposite hydrogel with NIR photothermal therapy, vascularization and anti-inflammation for diabetic infected wound healing. Bioact Mater 2023; 26:306-320. [PMID: 36950149 PMCID: PMC10027510 DOI: 10.1016/j.bioactmat.2023.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Bacterial infection, excessive inflammation and damaging blood vessels network are the major factors to delay the healing of diabetic ulcer. At present, most of wound repair materials are passive and can't response to the wound microenvironment, resulting in a low utilization of bioactive substances and hence a poor therapeutic effect. Therefore, it's essential to design an intelligent wound dressing responsive to the wound microenvironment to achieve the release of drugs on-demand on the basis of multifunctionality. In this work, metformin-laden CuPDA NPs composite hydrogel (Met@ CuPDA NPs/HG) was fabricated by dynamic phenylborate bonding of gelatin modified by dopamine (Gel-DA), Cu-loaded polydopamine nanoparticles (CuPDA NPs) with hyaluronic acid modified by phenyl boronate acid (HA-PBA), which possessed good injectability, self-healing, adhesive and DPPH scavenging performance. The slow release of metformin was achieved by the interaction with CuPDA NPs, boric groups (B-N coordination) and the constraint of hydrogel network. Metformin had a pH and glucose responsive release behavior to treat different wound microenvironment intelligently. Moreover, CuPDA NPs endowed the hydrogel excellent photothermal responsiveness to kill bacteria of >95% within 10 min and also the slow release of Cu2+ to protect wound from infection for a long time. Met@ CuPDA NPs/HG also recruited cells to a certain direction and promoted vascularization by releasing Cu2+. More importantly, Met@CuPDA NPs/HG effectively decreased the inflammation by eliminating ROS and inhibiting the activation of NF-κB pathway. Animal experiments demonstrated that Met@CuPDA NPs/HG significantly promoted wound healing of diabetic SD rats by killing bacteria, inhibiting inflammation, improving angiogenesis and accelerating the deposition of ECM and collagen. Therefore, Met@CuPDA NPs/HG had a great application potential for diabetic wound healing.
Collapse
Affiliation(s)
- Shuangli Zhu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Bangjiao Zhao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Maocai Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Hao Wang
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Jiayi Zhu
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Qingtao Li
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Huichang Gao
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Qi Feng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Xiaodong Cao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, PR China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
- Zhongshan Institute of Modern Industrial Technology of SCUT, Zhongshan, Guangdong, 528437, PR China
- Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China.
| |
Collapse
|
25
|
Li ZJ, Wang CY, Xu L, Zhang ZY, Tang YH, Qin TY, Wang YL. Recent Progress of Activity-Based Fluorescent Probes for Imaging Leucine Aminopeptidase. BIOSENSORS 2023; 13:752. [PMID: 37504150 PMCID: PMC10377407 DOI: 10.3390/bios13070752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Leucine aminopeptidase (LAP) is an important protease that can specifically hydrolyze Leucine residues. LAP occurs in microorganisms, plants, animals, and humans and is involved in a variety of physiological processes in the human body. In the physiological system, abnormal levels of LAP are associated with a variety of diseases and pathological processes, such as cancer and drug-induced liver injury; thus, LAP was chosen as the early biochemical marker for many physiological processes, including cancer. Considering the importance of LAP in physiological and pathological processes, it is critical that high-efficiency and dependable technology be developed to monitor LAP levels. Herein, we summarize the organic small molecule fluorescence/chemiluminescence probes used for LAP detection in recent years, which can image LAP in cancer, drug-induced liver injury (DILI), and bacteria. It can also reveal the role of LAP in tumors and differentiate the serum of cirrhotic, drug-induced liver injury and normal models.
Collapse
Affiliation(s)
- Ze-Jun Li
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Cai-Yun Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Liang Xu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Zhen-Yu Zhang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Ying-Hao Tang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Tian-Yi Qin
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| | - Ya-Long Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| |
Collapse
|
26
|
Luo H, Liu FZ, Liu Y, Chu Z, Yan K. Biasing Divergent Polycyclic Aromatic Hydrocarbon Oxidation Pathway by Solvent-Free Mechanochemistry. J Am Chem Soc 2023. [PMID: 37428958 DOI: 10.1021/jacs.3c00614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Precise control in reaction selectivity is the goal in modern organic synthesis, and it has been widely studied throughout the synthetic community. In comparison, control of divergent reactivity of a given reagent under different reaction conditions is relatively less explored aspect of chemical selectivity. We herein report an unusual reaction between polycyclic aromatic hydrocarbons and periodic acid H5IO6 (1), where the product outcome is dictated by the choice of reaction conditions. That is, reactions under solution-based condition give preferentially C-H iodination products, while reactions under solvent-free mechanochemical condition provide C-H oxidation quinone products. Control experiments further indicated that the iodination product is not a reaction intermediate toward the oxidation product and vice versa. Mechanistic studies unveiled an in situ crystalline-to-crystalline phase change in 2 during ball-milling treatment, where we assigned it as a polymeric hydrogen-bond network of 1. We believe that this polymeric crystalline phase shields the more embedded electrophilic I═O group of 1 from C-H iodination and bias a divergent C-H oxidation pathway (with I═O) in the solid state. Collectively, this work demonstrates that mechanochemistry can be employed to completely switch a reaction pathway and unmask hidden reactivity of chemical reagents.
Collapse
Affiliation(s)
- Hao Luo
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Fang-Zi Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Yan Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Zhaoyang Chu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| |
Collapse
|
27
|
Xu Q, Xiao F, Xu H. Fluorescent detection of emerging virus based on nanoparticles: From synthesis to application. Trends Analyt Chem 2023; 161:116999. [PMID: 36852170 PMCID: PMC9946731 DOI: 10.1016/j.trac.2023.116999] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
The spread of COVID-19 has caused huge economic losses and irreversible social impact. Therefore, to successfully prevent the spread of the virus and solve public health problems, it is urgent to develop detection methods with high sensitivity and accuracy. However, existing detection methods are time-consuming, rely on instruments, and require skilled operators, making rapid detection challenging to implement. Biosensors based on fluorescent nanoparticles have attracted interest in the field of detection because of their advantages, such as high sensitivity, low detection limit, and simple result readout. In this review, we systematically describe the synthesis, intrinsic advantages, and applications of organic dye-doped fluorescent nanoparticles, metal nanoclusters, up-conversion particles, quantum dots, carbon dots, and others for virus detection. Furthermore, future research initiatives are highlighted, including green production of fluorescent nanoparticles with high quantum yield, speedy signal reading by integrating with intelligent information, and error reduction by coupling with numerous fluorescent nanoparticles.
Collapse
Affiliation(s)
- Qian Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Fangbin Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| |
Collapse
|
28
|
Krupka O, Hudhomme P. Recent Advances in Applications of Fluorescent Perylenediimide and Perylenemonoimide Dyes in Bioimaging, Photothermal and Photodynamic Therapy. Int J Mol Sci 2023; 24:ijms24076308. [PMID: 37047280 PMCID: PMC10094654 DOI: 10.3390/ijms24076308] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The emblematic perylenediimide (PDI) motif which was initially used as a simple dye has undergone incredible development in recent decades. The increasing power of synthetic organic chemistry has allowed it to decorate PDIs to achieve highly functional dyes. As these PDI derivatives combine thermal, chemical and photostability, with an additional high absorption coefficient and near-unity fluorescence quantum yield, they have been widely studied for applications in materials science, particularly in photovoltaics. Although PDIs have always been in the spotlight, their asymmetric counterparts, perylenemonoimide (PMI) analogues, are now experiencing a resurgence of interest with new efforts to create architectures with equally exciting properties. Namely, their exceptional fluorescence properties have recently been used to develop novel systems for applications in bioimaging, biosensing and photodynamic therapy. This review covers the state of the art in the synthesis, photophysical characterizations and recently reported applications demonstrating the versatility of these two sister PDI and PMI compounds. The objective is to show that after well-known applications in materials science, the emerging trends in the use of PDI- and PMI-based derivatives concern very specific biomedicinal applications including drug delivery, diagnostics and theranostics.
Collapse
Affiliation(s)
- Oksana Krupka
- Univ. Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
- Correspondence: (O.K.); (P.H.); Tel.: +33-2-41-73-85-59 (O.K.); +33-2-41-73-50-94 (P.H.)
| | - Piétrick Hudhomme
- Univ. Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
- Correspondence: (O.K.); (P.H.); Tel.: +33-2-41-73-85-59 (O.K.); +33-2-41-73-50-94 (P.H.)
| |
Collapse
|
29
|
Lou X, Wang H, Liu Y, Huang Y, Liu Z, Zhang W, Wang T. Perylene-Based Reactive Oxygen Species Supergenerator for Immunogenic Photochemotherapy against Hypoxic Tumors. Angew Chem Int Ed Engl 2023; 62:e202214586. [PMID: 36597125 DOI: 10.1002/anie.202214586] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/03/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) can act as cytotoxic radicals to directly kill tumor cells and concurrently trigger immunogenic cell death (ICD) to efficiently achieve tumor therapy. Thus motivated, we herein present one perylene monoamide-based ROS supergenerator (PMIC-NC) that not only induces hypoxia-enhanced Type-I ROS burst aided by proton transients but also triggers Type-I/II ROS production by electron or energy transfer under near-infrared (NIR) light irradiation and also elicits a strong ICD effect. More interesting, the mitochondria- and lung-specific distribution of PMIC-NC also boosts the tumor therapeutic efficiency. As a result, PMIC-NC was employed for NIR-triggered photodynamic therapy, hypoxia-enhanced chemotherapy and also displayed robust immunogenicity for systemic tumor eradication. This work thus contributes one proof-of-concept demonstration of perylene as an integrated therapeutic platform for efficient immunogenic photochemotherapy against hypoxic tumors.
Collapse
Affiliation(s)
- Xue Lou
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Hui Wang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Yu Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Zhonghua Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Wei Zhang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Tie Wang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China
| |
Collapse
|
30
|
Wang Y, Xie YH, Jiang QH, Chen HT, Ma RH, Wang ZJ, Yin MZ, Shen J, Yan S. Efficient polymer-mediated delivery system for thiocyclam: Nanometerization remarkably improves the bioactivity toward green peach aphids. INSECT SCIENCE 2023; 30:2-14. [PMID: 35275442 DOI: 10.1111/1744-7917.13033] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/20/2022] [Indexed: 05/21/2023]
Abstract
The unscientific application of synthetic pesticides has brought various negative effects on the environment, hindering the sustainable development of agriculture. Nanoparticles can be applied as carriers to improve pesticide delivery, showing great potential in the development of pesticide formulation in recent years. Herein, a star polymer (SPc) was constructed as an efficient pesticide nanocarrier/adjuvant that could spontaneously assemble with thiocyclam or monosultap into a complex, through hydrophobic association and hydrogen bonding, respectively, with the pesticide-loading contents of 42.54% and 19.3%. This complexation reduced the particle sizes of thiocyclam from 543.54 to 52.74 nm for pure thiocyclam, and 3 814.16 to 1 185.89 nm for commercial preparation (cp) of thiocyclam. Interestingly, the introduction of SPc decreased the contact angles of both pure and cp thiocyclam on plant leaves, and increased the plant uptake of cp thiocyclam to 2.4-1.9 times of that without SPc. Meanwhile, the SPc could promote the bioactivity of pure/cp thiocyclam against green peach aphids through leaf dipping method and root application. For leaf dipping method, the 50% lethal concentration decreased from 0.532 to 0.221 g/L after the complexation of pure thiocyclam with SPc, and that decreased from 0.390 to 0.251 g/L for cp thiocyclam. SPc seems a promising adjuvant for nanometerization of both pure and cp insecticides, which is beneficial for improving the delivery efficiency and utilization rate of pesticides.
Collapse
Affiliation(s)
- Ye Wang
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yong-Hui Xie
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming, China
| | - Qin-Hong Jiang
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hong-Tao Chen
- State Key Lab of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Rui-Hao Ma
- State Key Lab of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zhi-Jiang Wang
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming, China
| | - Mei-Zhen Yin
- State Key Lab of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Ji C, Wang X, Xue B, Li S, Li J, Qiao B, Du J, Yin M, Wang Y. A fluorescent nano vector for early diagnosis and enhanced Interleukin-33 therapy of thoracic aortic dissection. Biomaterials 2023; 293:121958. [PMID: 36566550 DOI: 10.1016/j.biomaterials.2022.121958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Thoracic aortic dissection (TAD) is the most devastating complication of vascular disease. The accuracy of the clinical diagnosis and treatment of TAD at the early stage is still limited. Herein, we report a nano-delivery strategy for early diagnosis and the first case of interleukin-33 (IL-33) based therapy for the effective intervention of TAD. A targeted fluorescent nano vector (FNV) is designed to co-assemble with IL-33, which protects IL-33 and prolongs its half-life. With specific targeting ability to the thoracic aorta, FNV can diagnose TAD at its early stage through fluorescent imaging. FNV@IL-33 nanocomplex presents better therapeutic effects on mice TAD progression compared with that of IL-33 alone by reducing smooth muscle apoptosis. Administration of FNV@IL-33 two weeks before onset, the development of TAD is greatly intervened. Our study provides a novel approach for early diagnosis and effective IL-33 therapy of TAD, which opens attractive opportunities for clinical prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xue Wang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), And Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029, Beijing, China
| | - Bingjie Xue
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), And Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029, Beijing, China
| | - Shuolin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Jianhao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Bokang Qiao
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), And Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029, Beijing, China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), And Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029, Beijing, China.
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Yuan Wang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), And Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029, Beijing, China.
| |
Collapse
|
32
|
Luo T, Wang Y, Hao J, Chen PA, Hu Y, Chen B, Zhang J, Yang K, Zeng Z. Furan-Extended Helical Rylenes with Fjord Edge Topology and Tunable Optoelectronic Properties. Angew Chem Int Ed Engl 2023; 62:e202214653. [PMID: 36470852 DOI: 10.1002/anie.202214653] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Lateral furan-expansion of polycyclic aromatics, which enables multiple O-doping and peripheral edge evolution of rylenes, is developed for the first time. Tetrafuranylperylene TPF-4CN and octafuranylquaterrylene OFQ-8CN were prepared as model compounds bearing unique fjord edge topology and helical conformations. Compared to TPF-4CN, the higher congener OFQ-8CN displays a largely red-shifted (≈333 nm) and intensified absorption band (λmax =829 nm) as well as a narrowed electrochemical band gap (≈1.08 eV) due to its pronounced π-delocalization and emerging of open-shell diradicaloid upon the increase of fjord edge length. Moreover, strong circular dichroism signals in a broad range until 900 nm are observed for open-shell chiral OFQ-8CN, owing to the excellent conformational stability of its central bis(tetraoxa[5]helicene) fragments. Our studies provide insights into the relationships between edge topologies and (chir)optoelectronic properties for this novel type of O-doped PAHs.
Collapse
Affiliation(s)
- Teng Luo
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yanpei Wang
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jiahang Hao
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Ping-An Chen
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Yuanyuan Hu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Bo Chen
- Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Zhang
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230039, P. R. China
| | - Kun Yang
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zebing Zeng
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
33
|
Chen H, Zhou B, Zheng X, Wei J, Ji C, Yin M. Tumor microenvironment-activated multi-functional nanodrug with size-enlargement for enhanced cancer phototheranostics. Biomater Sci 2023; 11:472-480. [PMID: 36472245 DOI: 10.1039/d2bm01604d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phototheranostics that integrate diagnosis and treatment modalities have shown great promise in personalized cancer therapy. However, the "always on" characteristics often lead to suboptimal imaging quality and severe side effects. Herein, we report the construction of a perylenemonoimide based nanodrug CPMI NP with multi-functional activatable theranostic capability. The nanodrug is facilely co-assembled from a prodrug CPMI and DSPE-mPEG2000. In a tumor microenvironment (TME) with excessive glutathione (GSH), CPMI undergoes a cascade reaction to generate the phototheranostic molecule NPMI and the chemodrug chlorambucil, simultaneously switching on the near-infrared (NIR) fluorescence, photothermal effect, and drug release. The photothermal conversion efficiency is as high as 52.2%. Moreover, NPMI exhibits an enhanced intermolecular π-π stacking effect, leading to significant size-enlargement of the nanodrug and prolonged tumor retention. Due to TME-activation, the strong in vivo fluorescence signal of the tumor can be observed 144 h post injection with a high signal-to-noise ratio of up to 17. The enhanced tumor inhibition efficiency of the nanodrug is confirmed through activatable chemo-photothermal therapy. This work paves the way for the design of activatable phototheranostic agents for accurate cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Hongtao Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Bingcheng Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xian Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jie Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
34
|
Zhang B, Zheng R, Liu Y, Lou X, Zhang W, Cui Z, Huang Y, Wang T. Perylene-Mediated Electron Leakage in Respiratory Chain to Trigger Endogenous ROS Burst for Hypoxic Cancer Chemo-Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204498. [PMID: 36373677 PMCID: PMC9875625 DOI: 10.1002/advs.202204498] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Perylene derivatives can be stimulated by the hypoxic tumor microenvironment to generate radical anion that is proposed to arouse electron exchange with oxidizing substance, and in turn, realize reactive oxygen species (ROS) burst. Here, three perylene therapeutic agents, PDI-NI, PDIB-NI, and PDIC-NI, are developed and it is found that the minimum lowest unoccupied molecular orbital (LUMO) energy level makes PDIC-NI most easily accept electrons from the oxidative respiratory chain to form lots of anions, and the resultant maximum ROS generation, establishing an unambiguous mechanism for the formation of perylene radical anions in the cell, presents solid evidence for LUMO energy level determining endogenous ROS burst. Stirringly, PDIC-NI-induced ROS generation arouses enhanced mitochondrial oxidative stress and concurrently activates immunogenic cell death (ICD), which not only efficiently kills lung tumor cells but also reprograms immunosuppressive tumor microenvironment, including the cytokine secretion, dendritic cell maturation, as well as cytotoxic T lymphocytes activation, to inhibit the growth of xenografted and metastasis tumor, presenting a proof-of-concept demonstration of perylene that acts as an integrated therapeutic agent to well realize hypoxia-activated chemotherapy with ICD-induced immunotherapy on lung cancer.
Collapse
Affiliation(s)
- Bianbian Zhang
- Laboratory for NanoMedical PhotonicsSchool of Basic Medical ScienceHenan UniversityKaifeng475004P. R. China
| | - Rijie Zheng
- Laboratory for NanoMedical PhotonicsSchool of Basic Medical ScienceHenan UniversityKaifeng475004P. R. China
| | - Yuting Liu
- Laboratory for NanoMedical PhotonicsSchool of Basic Medical ScienceHenan UniversityKaifeng475004P. R. China
| | - Xue Lou
- Laboratory for NanoMedical PhotonicsSchool of Basic Medical ScienceHenan UniversityKaifeng475004P. R. China
| | - Wei Zhang
- Tianjin Key Laboratory of Drug Targeting and BioimagingLife and Health Intelligent Research InstituteTianjin University of TechnologyTianjin300384P. R. China
| | - Zhanjun Cui
- Laboratory for NanoMedical PhotonicsSchool of Basic Medical ScienceHenan UniversityKaifeng475004P. R. China
| | - Yongwei Huang
- Laboratory for NanoMedical PhotonicsSchool of Basic Medical ScienceHenan UniversityKaifeng475004P. R. China
| | - Tie Wang
- Tianjin Key Laboratory of Drug Targeting and BioimagingLife and Health Intelligent Research InstituteTianjin University of TechnologyTianjin300384P. R. China
| |
Collapse
|
35
|
Zheng X, Lei SN, Gao Z, Dong X, Xiao H, Liu W, Tung CH, Wu LZ, Wang P, Cong H. Supramolecular photosensitizers using extended macrocyclic hosts for photodynamic therapy with distinct cellular delivery. Chem Sci 2023; 14:3523-3530. [PMID: 37006687 PMCID: PMC10055832 DOI: 10.1039/d3sc00107e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Two hydrophilic macrocycles can strongly bind hypocrellin B. The resulting supramolecular photosensitizers show excellent photodynamic efficiency with different cellular delivery.
Collapse
Affiliation(s)
- Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100190 China
| | - Sheng-Nan Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100190 China
| | - Zekun Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100190 China
| | - Xiangyu Dong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100190 China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100190 China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100190 China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100190 China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
36
|
Shao G, Wu M, Wang X, Zhao J, You X, Wu D, Xia J. Regiochemically Pure 1,6-Ditriflato-Perylene Diimide: Preparation and Transformation. J Org Chem 2022; 87:14825-14832. [PMID: 36261214 DOI: 10.1021/acs.joc.2c01246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Preparation of regioisomerically pure 1,6-disubstituted perylene diimide (PDI) is not a trivial task owing to the lack of facile synthetic and separation methodologies for the precursors. Herein, we present a simple synthesis for 1,6-ditriflato-PDI (1,6-diOTf-PDI) using 1,6,9,10-tetrabromo-perylene monoimide 1 as the starting material. The selective methoxylation of 1 at the 1,6-position is the key step. Based on a four-step sequence of selective methoxylation, domino carbonylative amidation, demethylation, and triflation, 1,6-diOTf-PDI can be obtained in a satisfactory yield. Moreover, as a building block, 1,6-diOTf-PDIa can readily undergo Suzuki and Sonogashira cross-coupling reactions.
Collapse
Affiliation(s)
- Guangwei Shao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Mingliang Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xin Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jingjing Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Di Wu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.,International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
37
|
Yin S, Song J, Liu D, Wang K, Qi J. NIR-II AIEgens with Photodynamic Effect for Advanced Theranostics. Molecules 2022; 27:6649. [PMID: 36235186 PMCID: PMC9573674 DOI: 10.3390/molecules27196649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
Phototheranostics that concurrently integrates accurate diagnosis (e.g., fluorescence and photoacoustic (PA) imaging) and in situ therapy (e.g., photodynamic therapy (PDT) and photothermal therapy (PTT)) into one platform represents an attractive approach for accelerating personalized and precision medicine. The second near-infrared window (NIR-II, 1000-1700 nm) has attracted considerable attention from both the scientific community and clinical doctors for improved penetration depth and excellent spatial resolution. NIR-II agents with a PDT property as well as other functions are recently emerging as a powerful tool for boosting the phototheranostic outcome. In this minireview, we summarize the recent advances of photodynamic NIR-II aggregation-induced emission luminogens (AIEgens) for biomedical applications. The molecular design strategies for tuning the electronic bandgaps and photophysical energy transformation processes are discussed. We also highlight the biomedical applications, such as image-guided therapy of both subcutaneous and orthotopic tumors, and multifunctional theranostics in combination with other treatment methods, including chemotherapy and immunotherapy; and the precise treatment of both tumor and bacterial infection. This review aims to provide guidance for PDT agents with long-wavelength emissions to improve the imaging precision and treatment efficacy. We hope it will provide a comprehensive understanding about the chemical structure-photophysical property-biomedical application relationship of NIR-II luminogens.
Collapse
Affiliation(s)
- Shuai Yin
- School of Pharmacy, Nantong University, Nantong 226001, China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jianwen Song
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dongfang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Zou B, Stellmach KA, Luo SM, Gebresilassie FL, Jung H, Zhang CK, Bass AD, Janzen DE, Cao DD. Improved Syntheses of Halogenated Benzene-1,2,3,4-Tetracarboxylic Diimides. J Org Chem 2022; 87:13605-13614. [PMID: 36198127 DOI: 10.1021/acs.joc.2c01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation of halogenated benzene-1,2,3,4-tetracarboxylic diimide derivatives is challenging because of the possibility of competitive incorrect cyclizations and SNAr reactivity. Here, we demonstrate that bypassing traditional cyclic anhydrides and instead directly reacting dihalobenzene-1,2,3,4-tetracarboxylic acids with primary amines in acetic acid solvent successfully provides a range of desirable ortho-diimide products in good yields. Furthermore, we demonstrate that sterically challenging N-derivatizations can be readily achieved under microwave reactor conditions. The halogenated diimides described here are attractive building blocks for organic materials chemistry.
Collapse
Affiliation(s)
- Brian Zou
- Chemistry Department, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105, United States
| | - Kellie A Stellmach
- Chemistry Department, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105, United States
| | - Stella M Luo
- Chemistry Department, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105, United States
| | - Feven L Gebresilassie
- Chemistry Department, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105, United States
| | - Healeam Jung
- Chemistry Department, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105, United States
| | - Cathy K Zhang
- Chemistry Department, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105, United States
| | - Adam D Bass
- Chemistry Department, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105, United States
| | - Daron E Janzen
- Department of Chemistry and Biochemistry, Saint Catherine University, 2004 Randolph Avenue, Saint Paul, Minnesota 55105, United States
| | - Dennis D Cao
- Chemistry Department, Macalester College, 1600 Grand Avenue, Saint Paul, Minnesota 55105, United States
| |
Collapse
|
39
|
Liu Y, Zhang P, Zhang L, Wang Y, Li J, Liu Y, Ji L, Yu H. Controlled helicity inversion, selective enantiomer release, and methanol recognition in azobenzene gel. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
Kang X, Li Y, Yin S, Li W, Qi J. Reactive Species-Activatable AIEgens for Biomedical Applications. BIOSENSORS 2022; 12:646. [PMID: 36005044 PMCID: PMC9406055 DOI: 10.3390/bios12080646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 05/27/2023]
Abstract
Precision medicine requires highly sensitive and specific diagnostic strategies with high spatiotemporal resolution. Accurate detection and monitoring of endogenously generated biomarkers at the very early disease stage is of extensive importance for precise diagnosis and treatment. Aggregation-induced emission luminogens (AIEgens) have emerged as a new type of excellent optical agents, which show great promise for numerous biomedical applications. In this review, we highlight the recent advances of AIE-based probes for detecting reactive species (including reactive oxygen species (ROS), reactive nitrogen species (RNS), reactive sulfur species (RSS), and reactive carbonyl species (RCS)) and related biomedical applications. The molecular design strategies for increasing the sensitivity, tuning the response wavelength, and realizing afterglow imaging are summarized, and theranostic applications in reactive species-related major diseases such as cancer, inflammation, and vascular diseases are reviewed. The challenges and outlooks for the reactive species-activatable AIE systems for disease diagnostics and therapeutics are also discussed. This review aims to offer guidance for designing AIE-based specifically activatable optical agents for biomedical applications, as well as providing a comprehensive understanding about the structure-property application relationships. We hope it will inspire more interesting researches about reactive species-activatable probes and advance clinical translations.
Collapse
Affiliation(s)
- Xiaoying Kang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yue Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuai Yin
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
41
|
Mu M, Ke X, Cheng W, Li J, Ji C, Yin M. Perylenemonoimide-Based Colorimetric Probe with High Contrast for Naked-Eye Detection of Fluoride Ions. Anal Chem 2022; 94:11470-11475. [PMID: 35960192 DOI: 10.1021/acs.analchem.2c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excessive fluoride ions (F-) in drinking water are harmful to the environment and human health. However, most reported probes of F- can only detect fluorocarbons rather than aqueous F-. Herein, a colorimetric and fluorescent probe (PMI-OH) based on perylenemonoimide is designed and synthesized for the detection of aqueous F-, with high sensitivity, good selectivity, and reversibility. The F- causes deprotonation of PMI-OH, leading to a significant red shift of 222 nm (from 520 to 742 nm) of the absorption band. Upon the addition of fluorocarbons, the fluorescence intensities of PMI-OH show good linearity against the concentrations of F-, realizing the quantitative detection of fluorocarbons with a limit of detection as low as 0.495 μM. Finally, PMI-OH is applied to detect F- in drinking water. The color of PMI-OH solution shows remarkable response from pink to green when the concentrations of F- exceed the upper limit set by the World Health Organization (WHO), realizing rapid and naked-eye detection of aqueous F-.
Collapse
Affiliation(s)
- Mengxin Mu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xin Ke
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenyu Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
42
|
Kantarod K, Soorukram D, Kuhakarn C, Surawatanawong P, Wattanathana W, Reutrakul V, Leowanawat P. Color-tunable emissive heptagon-embedded polycyclic aromatic dicarboximides. Chem Commun (Camb) 2022; 58:9468-9471. [PMID: 35894790 DOI: 10.1039/d2cc03461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heptagon-embedded polycyclic aromatic dicarboximides were developed as new push-pull fluorescent dyes through palladium-catalysed [4+3] annulation followed by nucleophilic substitution. The introduction of a seven-membered ring in these push-pull systems can efficiently modulate the optical properties leading to an enhancement of the fluorescence quantum yields up to 0.93 with color tunable emission covering the visible-NIR spectrum.
Collapse
Affiliation(s)
- Kritchasorn Kantarod
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Darunee Soorukram
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Chutima Kuhakarn
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Panida Surawatanawong
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Worawat Wattanathana
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Vichai Reutrakul
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Pawaret Leowanawat
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
43
|
Gu Y, Qiu Z, Müllen K. Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science. J Am Chem Soc 2022; 144:11499-11524. [PMID: 35671225 PMCID: PMC9264366 DOI: 10.1021/jacs.2c02491] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As cut-outs from a graphene sheet, nanographenes (NGs) and graphene nanoribbons (GNRs) are ideal cases with which to connect the world of molecules with that of bulk carbon materials. While various top-down approaches have been developed to produce such nanostructures in high yields, in the present perspective, precision structural control is emphasized for the length, width, and edge structures of NGs and GNRs achieved by modern solution and on-surface syntheses. Their structural possibilities have been further extended from "flatland" to the three-dimensional world, where chirality and handedness are the jewels in the crown. In addition to properties exhibited at the molecular level, self-assembly and thin-film structures cannot be neglected, which emphasizes the importance of processing techniques. With the rich toolkit of chemistry in hand, NGs and GNRs can be endowed with versatile properties and functions ranging from stimulated emission to spintronics and from bioimaging to energy storage, thus demonstrating their multitalents in present and future materials science.
Collapse
Affiliation(s)
- Yanwei Gu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zijie Qiu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Shenzhen
Institute of Aggregate Science and Technology, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen 518172, China
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
for Physical Chemistry , Johannes Gutenberg
University Mainz, Duesbergweg
10-14, 55128 Mainz, Germany
| |
Collapse
|
44
|
Li J, Li P, Fan M, Zheng X, Guan J, Yin M. Chirality of Perylene Diimides: Design Strategies and Applications. Angew Chem Int Ed Engl 2022; 61:e202202532. [DOI: 10.1002/anie.202202532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Li
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Pengyu Li
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Mingyu Fan
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xian Zheng
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Jun Guan
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
45
|
Besse JR, Chasen SL, Claborn TR, Collins AN, Darpel AE, Fatta A, Ghanim RW, Kanaan GE, Lukyanchuk A, Nelson TL, Ray JL, Smith AL, Spagnola JD, Veazey SA, Womack LH, Wells MD, Panth N, Parkin S, Watson MD. Poly(arylene sulfide)s via
nucleophilic aromatic substitution
reactions of halogenated pyromellitic diimides. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jason R. Besse
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| | - Samuel L. Chasen
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| | | | - April N. Collins
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| | - Abigail E. Darpel
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| | - Anna Fatta
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| | - Ramy W. Ghanim
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| | - Ghady E. Kanaan
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| | | | - Taylor L. Nelson
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| | - Jessica L. Ray
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| | - Alexis L. Smith
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| | - James D. Spagnola
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| | - Sarah A. Veazey
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| | - Logan H. Womack
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| | - Michael D. Wells
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| | - Nabin Panth
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| | - Sean Parkin
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| | - Mark D. Watson
- Department of Chemistry University of Kentucky Lexington Kentucky USA
| |
Collapse
|
46
|
Dang H, Tian Y, Cheng Q, Teng C, Xie K, Yan L. Galactose conjugated boron dipyrromethene and hydrogen bonding promoted J-aggregates for efficiently targeted NIR-II fluorescence assistant photothermal therapy. J Colloid Interface Sci 2022; 612:287-297. [PMID: 34995865 DOI: 10.1016/j.jcis.2021.12.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022]
Abstract
It is essential to develop novel multifunctional and easily synthesized stable NIR-II fluorescent probes to guide photothermal therapy for tumors. Here, we propose a new strategy to construct boron dipyrromethene (BODIPY) J-aggregates by intermolecular hydrogen bonding (H-bond) and π-π stacking interactions to achieve fluorescence emission in the second near-infrared window (NIR-II, 1000-1700 nm). A novel meso-benzamide galactose hexanoate-BODIPY (Gal-OH-BDP) amphiphilic small molecular dye was synthesized and it formed nanoparticles spontaneously in aqueous solution with a maximum emission wavelength near 1060 nm, which works as a smart nanomedicine for targeting NIR-II imaging-guided photothermal therapy (PTT) of hepatocellular carcinoma. Galactose not only provided hydrogen bonds to regulate the aggregation pattern of the molecules but also effectively targeted hepatocellular carcinoma cells and promoted the formation of well-dispersed nanoparticles of dye molecules due to their hydrophilicity. Moreover, due to high photothermal conversion efficiency (PCE = 55%), Gal-OH-BDP NPs achieve galactose-targeted NIR-II imaging and PTT, which is important for the precise diagnosis and treatment of tumors (Scheme 1). In the present research work, H-bond was introduced for the first time into BODIPY for building J-aggregates to achieve the NIR-II fluorescence.
Collapse
Affiliation(s)
- Huiping Dang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Youliang Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Quan Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Changchang Teng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Kai Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Lifeng Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
47
|
Li J, Li P, Fan M, Zheng X, Guan J, Yin M. Chirality of Perylene Diimides: Design Strategies and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Li
- Beijing University of Chemical Technology College of Materials Science and Engineering 100029 Beijing CHINA
| | - Pengyu Li
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Mingyu Fan
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Xian Zheng
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Jun Guan
- Tsinghua University Department of Chemistry CHINA
| | - Meizhen Yin
- Beijing University of Chemical Technology College of Materials Science and Engineering No. 15 Bei San Huan Dong Lu 100029 Beijing CHINA
| |
Collapse
|
48
|
Liu Y, Teng L, Yin B, Meng H, Yin X, Huan S, Song G, Zhang XB. Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chem Rev 2022; 122:6850-6918. [PMID: 35234464 DOI: 10.1021/acs.chemrev.1c00875] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photoacoustic (PA) imaging technology, a three-dimensional hybrid imaging modality that integrates the advantage of optical and acoustic imaging, has great application prospects in molecular imaging due to its high imaging depth and resolution. To endow PA imaging with the ability for real-time molecular visualization and precise biomedical diagnosis, numerous activatable molecular PA probes which can specifically alter their PA intensities upon reacting with the targets or biological events of interest have been developed. This review highlights the recent developments of activatable PA probes for precise biomedical applications including molecular detection of the biotargets and imaging of the biological events. First, the generation mechanism of PA signals will be given, followed by a brief introduction to contrast agents used for PA probe design. Then we will particularly summarize the general design principles for the alteration of PA signals and activatable strategies for developing precise PA probes. Furthermore, we will give a detailed discussion of activatable PA probes in molecular detection and biomedical imaging applications in living systems. At last, the current challenges and outlooks of future PA probes will be discussed. We hope that this review will stimulate new ideas to explore the potentials of activatable PA probes for precise biomedical applications in the future.
Collapse
Affiliation(s)
- Yongchao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lili Teng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Baoli Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hongmin Meng
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
49
|
A sulfur-substituted hemicyanine for cancer photothermal therapy without influence of intracellular viscosity. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1189-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Sheyi R, de la Torre BG, Albericio F. Linkers: An Assurance for Controlled Delivery of Antibody-Drug Conjugate. Pharmaceutics 2022; 14:pharmaceutics14020396. [PMID: 35214128 PMCID: PMC8874516 DOI: 10.3390/pharmaceutics14020396] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
As one of the major therapeutic options for cancer treatment, chemotherapy has limited selectivity against cancer cells. Consequently, this therapeutic strategy offers a small therapeutic window with potentially high toxicity and thus limited efficacy of doses that can be tolerated by patients. Antibody-drug conjugates (ADCs) are an emerging class of anti-cancer therapeutic drugs that can deliver highly cytotoxic molecules directly to cancer cells. To date, twelve ADCs have received market approval, with several others in clinical stages. ADCs have become a powerful class of therapeutic agents in oncology and hematology. ADCs consist of recombinant monoclonal antibodies that are covalently bound to cytotoxic chemicals via synthetic linkers. The linker has a key role in ADC outcomes because its characteristics substantially impact the therapeutic index efficacy and pharmacokinetics of these drugs. Stable linkers and ADCs can maintain antibody concentration in blood circulation, and they do not release the cytotoxic drug before it reaches its target, thus resulting in minimum off-target effects. The linkers used in ADC development can be classified as cleavable and non-cleavable. The former, in turn, can be grouped into three types: hydrazone, disulfide, or peptide linkers. In this review, we highlight the various linkers used in ADC development and their design strategy, release mechanisms, and future perspectives.
Collapse
Affiliation(s)
- Rotimi Sheyi
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Beatriz G. de la Torre
- Kwazulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
- Correspondence: (B.G.d.l.T.); (F.A.); Tel.: +27-614-047-528 (B.G.d.l.T.); +27-6140-09144 (F.A.)
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa;
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (B.G.d.l.T.); (F.A.); Tel.: +27-614-047-528 (B.G.d.l.T.); +27-6140-09144 (F.A.)
| |
Collapse
|