1
|
Han Y, Li J, Li M, An R, Zhang X, Cai S. A Chemiluminescence Signal Amplification Method for MicroRNA Detection: The Combination of Molecular Aptamer Beacons with Enzyme-Free Hybridization Chain Reaction. Molecules 2024; 29:5782. [PMID: 39683939 DOI: 10.3390/molecules29235782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
The association between microRNA (miRNA) and various diseases has been established; miRNAs have the potential to be biomarkers for these diseases. Nevertheless, the challenge of correctly quantifying an miRNA arises from its low abundance and a high degree of family homology. Therefore, in the present study, we devised a chemiluminescence (CL) detection method for miRNAs, known as the hybridization chain reaction (HCR)-CL, utilizing the enzyme-free signal amplification technology of HCR. The proposed methodology obviates the need for temperature conversion and offers a straightforward procedure owing to the absence of enzymatic participation, and the lumino-H2O2-mediated CL reaction occurs at a high rate. The technique successfully detected 2.5 amol of the target analyte and 50 amol of miR-146b in a 1% concentration of human serum. In summary, the method developed in this study is characterized by its ease of operation, cost-effectiveness, remarkable analytical prowess, and ability to detect miRNA without the need for total RNA extraction from serum samples. This method is expected to be widely used for biological sample testing in clinical settings.
Collapse
Affiliation(s)
- Yu Han
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Jialin Li
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Man Li
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Ran An
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Xu Zhang
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Sheng Cai
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Yoshikawa AM, Rangel AE, Zheng L, Wan L, Hein LA, Hariri AA, Eisenstein M, Soh HT. A massively parallel screening platform for converting aptamers into molecular switches. Nat Commun 2023; 14:2336. [PMID: 37095144 PMCID: PMC10126150 DOI: 10.1038/s41467-023-38105-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/14/2023] [Indexed: 04/26/2023] Open
Abstract
Aptamer-based molecular switches that undergo a binding-induced conformational change have proven valuable for a wide range of applications, such as imaging metabolites in cells, targeted drug delivery, and real-time detection of biomolecules. Since conventional aptamer selection methods do not typically produce aptamers with inherent structure-switching functionality, the aptamers must be converted to molecular switches in a post-selection process. Efforts to engineer such aptamer switches often use rational design approaches based on in silico secondary structure predictions. Unfortunately, existing software cannot accurately model three-dimensional oligonucleotide structures or non-canonical base-pairing, limiting the ability to identify appropriate sequence elements for targeted modification. Here, we describe a massively parallel screening-based strategy that enables the conversion of virtually any aptamer into a molecular switch without requiring any prior knowledge of aptamer structure. Using this approach, we generate multiple switches from a previously published ATP aptamer as well as a newly-selected boronic acid base-modified aptamer for glucose, which respectively undergo signal-on and signal-off switching upon binding their molecular targets with second-scale kinetics. Notably, our glucose-responsive switch achieves ~30-fold greater sensitivity than a previously-reported natural DNA-based switch. We believe our approach could offer a generalizable strategy for producing target-specific switches from a wide range of aptamers.
Collapse
Affiliation(s)
- Alex M Yoshikawa
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Liwei Zheng
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Leighton Wan
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Linus A Hein
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Amani A Hariri
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Michael Eisenstein
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Tom Soh
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
3
|
Petrucci S, Ramón Codina Garcia-Andrade J, Moutsiopoulou A, Broyles DB, Dikici E, Daunert S, Deo SK. A Bioluminescent Protein-Graphene Oxide Donor-Quencher Pair in DNA Hybridization Assays. Chempluschem 2022; 87:e202200372. [PMID: 36457160 DOI: 10.1002/cplu.202200372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/02/2022] [Indexed: 11/12/2022]
Abstract
Despite fluorescent quenching with graphene oxide (GO) having shown great success in various applications - bioluminescent quenching has not yet been demonstrated using GO as a quencher. To explore the ability of GO to quench bioluminescence, we used Gaussia luciferase (Gluc) as a donor and GO as a quencher and demonstrated its application in sensing of two target analytes, HIV-1 DNA and IFN-γ. We demonstrated that the incubation of Gluc conjugated HIV-1 and IFN-γ oligonucleotide probes with GO provided for monitoring of probe-target interactions based on bioluminescence measurement in a solution phase sensing system. The limits of detection obtained for IFN-γ and HIV-1 DNA detection were 17 nM and 7.59 nM, respectively. Both sensing systems showed selectivity toward the target analyte. The detection of IFN-γ in saliva matrix was demonstrated. The use of GO as a quencher provides for high sensitivity while maintaining the selectivity of designed probes to their respective targets. The use of GO as a quencher provides for an easy assay design and low cost, environmentally friendly reporter.
Collapse
Affiliation(s)
- Sabrina Petrucci
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Josep Ramón Codina Garcia-Andrade
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Angeliki Moutsiopoulou
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - David B Broyles
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Clinical and Translational Science Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
4
|
Wang X, Wang Y, Chen S, Fu P, Lin Y, Ye S, Long Y, Gao G, Zheng J. A persistent luminescence resonance energy transfer-based molecular beacon probe for the highly sensitive detection of microRNA in biological samples. Biosens Bioelectron 2022; 198:113849. [PMID: 34861528 DOI: 10.1016/j.bios.2021.113849] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022]
Abstract
Herein, a time-resolved luminescence resonance energy transfer (TR-LRET) molecular beacon (MB) probe employing persistent luminescence nanoparticles (PLNPs) as the energy donors was first constructed, and further designed for microRNA21 (miR21) sensing. This probe (named as PLNPs-MB) was facilely fabricated by covalent bioconjugation between poly-(acrylic acid) (PAA) modified near-infrared (NIR) emissive PLNPs i.e. ZnGa2O4:Cr3+ and functionalized MB oligonucleotide (5'-NH2 and 3'-BHQ3). Accordingly, PLNPs and BHQ3 were in close proximity to each other, leading to the occurrence of LRET and obvious persistent luminescence (PL) quenching. In the presence of miR21, loop of the PLNP-MB was hybridized, accompanying BHQ3 away from PLNPs and the restraint of LRET process. As a result, PL of the PLNPs was recovered, which built the foundation of miR21 quantification. The probe provided a linear response range from 0.1 to 10 nM for miR21 detection. Quantification limit of this probe was competitive and about 1-2 orders of magnitude lower than that of other reported MB probes for nucleic acid. Moreover, the proposed probe was successfully adopted for miR21 detection in biological fluids (human serum, cell extraction). This work also provided a sensitive detection nanoplatform for other targets through modifying diverse MBs onto the surface of PLNPs.
Collapse
Affiliation(s)
- Xiuhua Wang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China; Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China
| | - Yuhui Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China.
| | - Shu Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China
| | - Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China
| | - Yuanbin Lin
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China
| | - Shuyuan Ye
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, PR China
| | - Yunfei Long
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China.
| | - Guosheng Gao
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, PR China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China.
| |
Collapse
|
5
|
Guo W, Zou X, Jiang H, Koebke KJ, Hoarau M, Crisci R, Lu T, Wei T, Marsh ENG, Chen Z. Molecular Structure of the Surface-Immobilized Super Uranyl Binding Protein. J Phys Chem B 2021; 125:7706-7716. [PMID: 34254804 DOI: 10.1021/acs.jpcb.1c03849] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently, a super uranyl binding protein (SUP) was developed, which exhibits excellent sensitivity/selectivity to bind uranyl ions. It can be immobilized onto a surface in sensing devices to detect uranyl ions. Here, sum frequency generation (SFG) vibrational spectroscopy was applied to probe the interfacial structures of surface-immobilized SUP. The collected SFG spectra were compared to the calculated orientation-dependent SUP SFG spectra using a one-excitonic Hamiltonian approach based on the SUP crystal structures to deduce the most likely surface-immobilized SUP orientation(s). Furthermore, discrete molecular dynamics (DMD) simulation was applied to refine the surface-immobilized SUP conformations and orientations. The immobilized SUP structures calculated from DMD simulations confirmed the SUP orientations obtained from SFG data analyzed based on the crystal structures and were then used for a new round of SFG orientation analysis to more accurately determine the interfacial orientations and conformations of immobilized SUP before and after uranyl ion binding, providing an in-depth understanding of molecular interactions between SUP and the surface and the effect of uranyl ion binding on the SUP interfacial structures. We believe that the developed method of combining SFG measurements, DMD simulation, and Hamiltonian data analysis approach is widely applicable to study biomolecules at solid/liquid interfaces.
Collapse
Affiliation(s)
- Wen Guo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Xingquan Zou
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Hanjie Jiang
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Karl J Koebke
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Marie Hoarau
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Ralph Crisci
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Tieyi Lu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Tao Wei
- Department of Chemical Engineering, Howard University, 2366 Sixth Street, NW, Washington, D.C. 20059, United States
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Kaminski MM, Abudayyeh OO, Gootenberg JS, Zhang F, Collins JJ. CRISPR-based diagnostics. Nat Biomed Eng 2021; 5:643-656. [PMID: 34272525 DOI: 10.1038/s41551-021-00760-7] [Citation(s) in RCA: 538] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 06/02/2021] [Indexed: 02/02/2023]
Abstract
The accurate and timely diagnosis of disease is a prerequisite for efficient therapeutic intervention and epidemiological surveillance. Diagnostics based on the detection of nucleic acids are among the most sensitive and specific, yet most such assays require costly equipment and trained personnel. Recent developments in diagnostic technologies, in particular those leveraging clustered regularly interspaced short palindromic repeats (CRISPR), aim to enable accurate testing at home, at the point of care and in the field. In this Review, we provide a rundown of the rapidly expanding toolbox for CRISPR-based diagnostics, in particular the various assays, preamplification strategies and readouts, and highlight their main applications in the sensing of a wide range of molecular targets relevant to human health.
Collapse
Affiliation(s)
- Michael M Kaminski
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Omar O Abudayyeh
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA.,Massachusetts Consortium for Pathogen Readiness, Boston, MA, USA
| | - Jonathan S Gootenberg
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA.,Massachusetts Consortium for Pathogen Readiness, Boston, MA, USA
| | - Feng Zhang
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA.,Massachusetts Consortium for Pathogen Readiness, Boston, MA, USA.,Howard Hughes Medical Institute, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.,Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - James J Collins
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, MIT, Cambridge, MA, USA. .,Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
7
|
Davydova A, Krasitskaya V, Vorobjev P, Timoshenko V, Tupikin A, Kabilov M, Frank L, Venyaminova A, Vorobyeva M. Reporter-recruiting bifunctional aptasensor for bioluminescent analytical assays. RSC Adv 2020; 10:32393-32399. [PMID: 35516485 PMCID: PMC9056652 DOI: 10.1039/d0ra05117a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/21/2020] [Indexed: 12/26/2022] Open
Abstract
A novel structure-switching bioluminescent 2′-F-RNA aptasensor consists of analyte-binding and obelin-recruiting modules, joined into a bi-specific aptamer construct.
Collapse
Affiliation(s)
- Anna Davydova
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- Novosibirsk 630090
- Russia
| | - Vasilisa Krasitskaya
- Institute of Biophysics SB RAS
- Federal Research Center “Krasnoyarsk Science Center SB RAS”
- Krasnoyarsk 660036
- Russia
| | - Pavel Vorobjev
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - Valentina Timoshenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- Novosibirsk 630090
- Russia
| | - Alexey Tupikin
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- Novosibirsk 630090
- Russia
| | - Marsel Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- Novosibirsk 630090
- Russia
| | - Ludmila Frank
- Institute of Biophysics SB RAS
- Federal Research Center “Krasnoyarsk Science Center SB RAS”
- Krasnoyarsk 660036
- Russia
- Siberian Federal University
| | - Alya Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- Novosibirsk 630090
- Russia
| | - Mariya Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- Novosibirsk 630090
- Russia
| |
Collapse
|