1
|
Pylova E, Lasorne B, McClenaghan ND, Jonusauskas G, Taillefer M, Konchenko SN, Prieto A, Jaroschik F. Visible-Light Organic Photosensitizers Based on 2-(2-Aminophenyl)benzothiazoles for Photocycloaddition Reactions. Chemistry 2024; 30:e202401851. [PMID: 39011924 DOI: 10.1002/chem.202401851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
We have studied 2-(2-aminophenyl)benzothiazole and related derivatives for their photophysical properties in view of employing them as new and readily tunable organic photocatalysts. Their triplet energies were estimated by DFT calculations to be in the range of 52-57 kcal mol-1, suggesting their suitability for the [2+2] photocycloaddition of unsaturated acyl imidazoles with styrene derivatives. Experimental studies have shown that 2-(2-aminophenyl)benzothiazoles comprising alkylamino groups (NHMe, NHiPr) or the native amino group provide the best photocatalytic results in these visible-light mediated [2+2] reactions without the need of any additives, yielding a range of cyclobutane derivatives. A combined experimental and theoretical approach has provided insights into the underlying triplet-triplet energy transfer process.
Collapse
Affiliation(s)
- Ekaterina Pylova
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090, Montpellier, France
- Nikolaev Institute of Inorganic Chemistry SB RAS, Prosp. Lavrentieva 3, 630090, Novosibirsk, Russia
- Department of Natural Sciences, National Research University-Novosibirsk State, 630090, Novosibirsk, Russia
| | | | - Nathan D McClenaghan
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence, F-33400, France
| | - Gediminas Jonusauskas
- Laboratoire Ondes et Matières d'Aquitaine, Université Bordeaux, CNRS, Bordeaux INP, LOMA, UMR 5255, Talence, F-33400, France
| | - Marc Taillefer
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090, Montpellier, France
| | - Sergey N Konchenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, Prosp. Lavrentieva 3, 630090, Novosibirsk, Russia
| | - Alexis Prieto
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090, Montpellier, France
| | | |
Collapse
|
2
|
Liu C, Qin M, Jiang L, Shan J, Sun Y. Mitochondria-Targetable Cyclometalated Iridium(III) Complex-Based Luminescence Probe for Monitoring and Assessing Treatment Response of Ferroptosis-Mediated Hepatic Ischemia-Reperfusion Injury. Inorg Chem 2024; 63:21627-21636. [PMID: 39473350 DOI: 10.1021/acs.inorgchem.4c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Ferroptosis plays an essential role in the pathological progression of hepatic ischemia-reperfusion injury (HIRI), which is closely related to iron-dependent lipid peroxidation. Since mitochondria are thought to be the major site of reactive oxygen species (ROS) production and iron storage, monitoring the variations of mitochondrial hypochlorous acid (HClO) (an important member of ROS) has important implications for the assessment of ferroptosis status, as well as the formulation of treatment strategies for HIRI. However, reliable imaging tools for the visualization of mitochondrial HClO and monitoring its dynamic changes in ferroptosis-mediated HIRI are still lacking. Herein, in this work, an HClO-activated near-infrared (NIR) cyclometalated iridium(III) complex-based probe, named NIR-Ir-HClO, was developed for the visual monitoring of the mitochondrial HClO fluxes in ferroptosis-mediated HIRI. The newly prepared probe showed fast response (<30 s), good sensitivity, excellent selectivity, good cell biocompatibility, and satisfactory mitochondrial-targeting performance, making it suitable for accurate monitoring of mitochondrial HClO in living cells. Moreover, visualization of the variations of mitochondrial HClO in ferroptosis-mediated HIRI and monitoring of the treatment response of ferroptosis-mediated HIRI to the ferroptosis inhibitors were achieved for the first time. All these show that probe NIR-Ir-HClO can be utilized as a reliable imaging tool for revealing the pathological mechanism of mitochondrial HClO in ferroptosis-mediated HIRI, as well as for the formulation of new treatment strategies for HIRI.
Collapse
Affiliation(s)
- Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Meichun Qin
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lin Jiang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Jiongchen Shan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| |
Collapse
|
3
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
4
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
5
|
Yang L, Li L, Liu R, Xie C, Zhao J, Chang W, Chen L, Yan Y, Zhang N, Zhang W, Liu B, Yang L. Cationic fluorescent carbon dots with solution ultra-stability and its rapid/on-site sensing application for HClO. Talanta 2024; 267:125137. [PMID: 37666083 DOI: 10.1016/j.talanta.2023.125137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Carbon dots (CDs) as a remarkable fluorescent nanomaterial have the advantages of easy preparation, good photostability and high sensitivity. However, the poor aqueous solution stability of carbon dots largely limited their practical application due to the characteristic of easily forming precipitation for long time storage. Here, a kind of cationic fluorescent carbon dots CDs-P(Ph)3 was designed by introducing a cationic compound, (4-carboxybutyl) triphenyl phosphonium bromide, to construct an electrostatic shell outside the dots. Such electrostatic shell could highly improve carbon dots stability in an aqueous solution to make CDs-P(Ph)3 stable for long-term storage with negligible aggregation. Meanwhile, the sensitivity of CDs-P(Ph)3 for hypochlorous acid (HClO) was also enhanced on the basis of the electron-withdrawing effect of cationic substituents on the surface of carbon dots. The limit of detection of CDs-P(Ph)3 for HClO was as low as ∼0.32 μM. Additionally, the fluorescence of CDs-P(Ph)3 could be rapid quenched by HClO with a quenching efficiency of more than 80% within 30 s. The excellent stability of CDs-P(Ph)3 in an aqueous solution made it suitable for on-site detecting HClO in real samples, such as tap, well and lake water. Such designed fluorescent nanomaterial would provide a practical application pathway for optical sensing detection in environmental samples.
Collapse
Affiliation(s)
- Linlin Yang
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Lingfei Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Renyong Liu
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Chenggen Xie
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Jun Zhao
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Wengui Chang
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Lijuan Chen
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Yehan Yan
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Ningning Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Bianhua Liu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Liang Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| |
Collapse
|
6
|
Jing S, Wu X, Niu D, Wang J, Leung CH, Wang W. Recent Advances in Organometallic NIR Iridium(III) Complexes for Detection and Therapy. Molecules 2024; 29:256. [PMID: 38202839 PMCID: PMC10780525 DOI: 10.3390/molecules29010256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Iridium(III) complexes are emerging as a promising tool in the area of detection and therapy due to their prominent photophysical properties, including higher photostability, tunable phosphorescence emission, long-lasting phosphorescence, and high quantum yields. In recent years, much effort has been devoted to develop novel near-infrared (NIR) iridium(III) complexes to improve signal-to-noise ratio and enhance tissue penetration. In this review, we summarize different classes of organometallic NIR iridium(III) complexes for detection and therapy, including cyclometalated ligand-enabled NIR iridium(III) complexes and NIR-dye-conjugated iridium(III) complexes. Moreover, the prospects and challenges for organometallic NIR iridium(III) complexes for targeted detection and therapy are discussed.
Collapse
Affiliation(s)
- Shaozhen Jing
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Xiaolei Wu
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Dou Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| | - Jing Wang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
- Macao Centre for Research and Development in Chinese Medicine, University of Macau, Taipa, Macau 999078, China
- MoE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Wanhe Wang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (S.J.); (X.W.); (J.W.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
| |
Collapse
|
7
|
Dai Y, Zhou J, Wei C, Chai L, Xie X, Liu R, Lv Y. "Iridium Signature" Mass Spectrometric Probes: New Tools Integrated in a Liquid Chromatography-Mass Spectrometry Workflow for Routine Profiling of Nitric Oxide and Metabolic Fingerprints in Cells. Anal Chem 2023. [PMID: 37262414 DOI: 10.1021/acs.analchem.3c01076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nitric oxide (NO) is a highly reactive signaling molecule involved in diverse biological processes. Simultaneous profiling of NO and associated metabolic fingerprints in a single assay allows more accurate assessments of cell states and offers the possibility to better understand its exact biological roles. Herein, a multiplexing LC-MS workflow was established for simultaneous detection of intracellular NO and various metabolites based on a novel "iridium signature" mass spectrometric probe (Ir-MSP841). This Ir-MSP841 can convert highly liable NO to a stable permanently charged triazole product (Ir-TP852), enabling direct MS detection of NO. This 191/193Ir-signature mass spectrometric probe-based approach is endowed with overwhelming advantages of interference-free, high quantitative accuracy, and great sensitivity (limit of detection down to 0.14 nM). It also reveals good linearity over a wide concentration range 12.5-500 nM and has been successfully employed for exploring the release behaviors of three representative NO donors in cells. Meanwhile, metabolic profiling results reveal that varying the concentrations of NO has distinct effects on various cellular metabolites. This study provides a robust, sensitive, and versatile method for simultaneous detection of NO and numerous metabolites in a single LC-MS run and expands its applications in biomedical research.
Collapse
Affiliation(s)
- Yongcheng Dai
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Zhou
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Chudong Wei
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Chai
- Core Facility of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaobo Xie
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Dai Y, Zhang K, Yuan X, Xie X, Zhan Z, Lv Y. Novel Near-Infrared Iridium(III) Complex for Chemiluminescence Imaging of Hypochlorous Acid. Anal Chem 2023; 95:8310-8317. [PMID: 37200201 DOI: 10.1021/acs.analchem.3c00738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chemiluminescence (CL) probes that possess near-infrared (NIR) emission are highly desirable for in vivo imaging due to their deeper tissue penetration ability and intrinsically high sensitivity. Herein, a novel iridium-based CL probe (NIRIr-CL-1) with direct NIR emission was reported as the result of hypochlorous acid (HClO)-initiated oxidative deoximation. To improve its biocompatibility and extend the CL time for in vivo imaging applications, this NIRIr-CL-1 was prepared as a CL nanoparticle probe (NIRIr-CL-1 dots) through encapsulation by an amphiphilic polymer Pluronic F127 (F127). All results demonstrate that the NIRIr-CL-1 dots have good selectivity and sensitivity for visualization of HClO even at the depth of 1.2 cm. Owing to these advantages, the CL imaging of exogenous and endogenous HClO in mice was achieved. This study could provide new insights into the construction of new NIR emission CL probes and expand their applications in biomedical imaging.
Collapse
Affiliation(s)
- Yongcheng Dai
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Kexin Zhang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiaohan Yuan
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiaobo Xie
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Zixuan Zhan
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Rabha M, Sheet SK, Sen B, Konthoujam I, Aguan K, Khatua S. Ruthenium(II) Complex‐based Highly Specific Luminescence Light‐up Probe for Detecting HOCl via C(sp
2
)‐H Chlorination. ChemistrySelect 2023. [DOI: 10.1002/slct.202204643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Monosh Rabha
- Centre for Advanced Studies Department of Chemistry North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Sanjoy Kumar Sheet
- Centre for Advanced Studies Department of Chemistry North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Bhaskar Sen
- Centre for Advanced Studies Department of Chemistry North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Ibemhanbi Konthoujam
- Department of Biotechnology and Bioinformatics North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies Department of Chemistry North-Eastern Hill University Shillong Meghalaya 793022 India
| |
Collapse
|
10
|
Development and Application of Ruthenium(II) and Iridium(III) Based Complexes for Anion Sensing. Molecules 2023; 28:molecules28031231. [PMID: 36770897 PMCID: PMC9920910 DOI: 10.3390/molecules28031231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Improvements in the design of receptors for the detection and quantification of anions are desirable and ongoing in the field of anion chemistry, and remarkable progress has been made in this direction. In this regard, the development of luminescent chemosensors for sensing anions is an imperative and demanding sub-area in supramolecular chemistry. This decade, in particular, witnessed advancements in chemosensors based on ruthenium and iridium complexes for anion sensing by virtue of their modular synthesis and rich chemical and photophysical properties, such as visible excitation wavelength, high quantum efficiency, high luminescence intensity, long lifetimes of phosphorescence, and large Stokes shifts, etc. Thus, this review aims to summarize the recent advances in the development of ruthenium(II) and iridium(III)-based complexes for their application as luminescent chemosensors for anion sensing. In addition, the focus was devoted to designing aspects of polypyridyl complexes of these two transition metals with different recognition motifs, which upon interacting with different inorganic anions, produces desirable quantifiable outputs.
Collapse
|
11
|
Qu W, Guo T, Yang B, Tian R, Qiu S, Chen X, Geng Z, Wang Z. Tracking HOCl by an incredibly simple fluorescent probe with AIE plus ESIPT in vitro and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121649. [PMID: 35872428 DOI: 10.1016/j.saa.2022.121649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Hypochlorous acid is an important active substance involved in a variety of physiological processes in living organisms, while abnormal concentrations of HOCl are strongly associated with a variety of diseases such as cancer, inflammation, atherosclerosis, and Alzheimer's disease. As a result, it's crucial to establish a reliable method for tracking HOCl in vivo in order to investigate its physiological consequences. In this work, we developed a fluorescent probe DFSN with both AIE and ESIPT for imaging HOCl in vivo. DFSN not only has a basic structure and is easy to synthesize, but also has superior performance. The probe responds to HOCl in less than 10 s and has good selectivity and sensitivity to HOCl (DL = 6.3 nM), with a 110-fold increase in fluorescence intensity following response. In addition, DFSN can realize the rapid detection of hypochlorous acid with naked eyes. Moreover, DFSN can be used for the detection of exogenous and endogenous HOCl in RAW264.7 cells, and additionally enables the tracking of HOCl in cancer cells (Hela cells and HepG2 cells). More notably, it has been utilized to image hypochlorous acid in zebrafish with great success. The probe DFSN will be useful in determining the physiological significance of HOCl.
Collapse
Affiliation(s)
- Wangbo Qu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China
| | - Taiyu Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China
| | - Bin Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China
| | - Ruowei Tian
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China
| | - Shuang Qiu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China
| | - Xinyue Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China
| | - Zhirong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China.
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
12
|
Hao XL, Guo JF, Ren AM, Zhou L. Persistent and Efficient Multimodal Imaging for Tyrosinase Based on Two-Photon Excited Fluorescent and Room-Temperature Phosphorescent Probes. J Phys Chem A 2022; 126:7650-7659. [PMID: 36240504 DOI: 10.1021/acs.jpca.2c05482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tyrosinase is crucial to regulate the metabolism of phenol derivatives, playing an important role in the biosynthesis of melanin pigments, whereas an abnormal level of tyrosinase would lead to severe diseases. It is rather necessary to develop a sensitive and selective imaging tool to assess the level of tyrosinase in vivo. We thoroughly researched the luminous mechanism of the existing TPTYR probe and provided design strategies to improve its two-photon excited fluorescence properties. The designed probes benza2-TPTYR and product benza2-TPTYR-coumarin have large two-photon absorption cross sections at the NIR spectral region (41 GM/706 nm, 71 GM/852 nm), while benza2-TPTYR-coumarin possesses easily distinguishable spectrum in the visible region and a high fluorescence efficiency (ΦF = 0.27). What is more, novel two-photon excited multimodal imaging based on the pure organic small molecule benza1-TPTYR-coumarin (61 GM/936 nm) is proposed first, simultaneously possessing strong instantaneous fluorescent (563.79 nm) and persistent room-temperature phosphorescent emissions (767.68 nm, 0.54 ms).
Collapse
Affiliation(s)
- Xue-Li Hao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jing-Fu Guo
- School of Physics, Northeast Normal University, Changchun 130024, P. R. China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, P. R. China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
13
|
Wu S, Zou S, Wang S, Li Z, Ma DL, Miao X. CTnI diagnosis in myocardial infarction using G-quadruplex selective Ir(Ⅲ) complex as effective electrochemiluminescence probe. Talanta 2022; 248:123622. [DOI: 10.1016/j.talanta.2022.123622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
|
14
|
Xu ZY, Wu Y, Wang XH, Chen JR, Luo HQ, Li NB. Designing of a high-performance fluorescent small molecule enables dual-mode and ultra-sensitive fluorescence visualizing of HSO 3- and HClO in dried fruit, beverage, and water samples. Food Chem 2022; 397:133754. [PMID: 35882164 DOI: 10.1016/j.foodchem.2022.133754] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022]
Abstract
Herein, a novel hemicyanine derivative (E)-3-(1,1-dimethyl-2-(4-(methylthio)styryl)-1H-benzo[e]indol-3-ium-3-yl)propane-1-sulfonate (BIS) has been reasonably designed. Compound BIS is long-wavelength emissive and water-soluble with a large Stokes shift. Intriguingly, probe BIS provides a dual-mode fluorescence response pattern for the sensing of bisulfite (HSO3-) and hypochlorous acid (HClO) with great limit of detections (3.6 and 57.4 nM). First, the 1,4-Michael addition of HSO3- on the conjugated double bond triggers a ratiometric response (I465/I575). Second, the rapid oxidation of HClO on the thioether moiety provides a turn-on response (I575). Evaluation of HSO3- and HClO levels in dried fruit, beverage, and water samples has been carried out with satisfactory results. Moreover, motivated by an impressive chromatic variation (red to blue), smartphone-assisted signal readout system and thin-film sensing platform are facilely constructed for real-time and on-site measurement of HSO3- levels. Furthermore, probe BIS is used for the in vivo imaging of HSO3- in edible fish models.
Collapse
Affiliation(s)
- Zi Yi Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - You Wu
- Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiao Hu Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jing Rong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
15
|
Wang J, Jin Y, Li M, Liu S, Lo KKW, Zhao Q. Time-Resolved Luminescent Sensing and Imaging for Enzyme Catalytic Activity Based on Responsive Probes. Chem Asian J 2022; 17:e202200429. [PMID: 35819359 DOI: 10.1002/asia.202200429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Enzymes, as a kind of biomacromolecules, play an important role in many physiological processes and relate directly to various diseases. Developing an efficient detection method for enzyme activity is important to achieve early diagnosis of enzyme-relevant diseases and high throughput screening of potential enzyme-relevant drugs. Time-resolved luminescence assay provide a high accuracy and signal-to-noise ratios detection methods for enzyme activity, which has been widely used in high throughput screening of enzyme-relevant drugs and diagnosis of enzyme-relevant diseases. Inspired by these advantages, various responsive probes based on metal complexes and metal-free organic compounds have been developed for time-resolved bioimaging and biosensing of enzyme activity owing to their long luminescence lifetimes, high quantum yields and photostability. In this review, we comprehensively reviewed metal complex- and metal-free organic compound-based responsive probes applied to detect enzyme activity through time-resolved imaging, including their design strategies and sensing principles. Current challenges and future prospects in this rapidly growing field are also discussed.
Collapse
Affiliation(s)
- Jiawei Wang
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Yibiao Jin
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Mingdang Li
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Shujuan Liu
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Kenneth Kam-Wing Lo
- City University of Hong Kong, Department of Chemistry, Tat Chee Avenue, Hong Kong, CHINA
| | - Qiang Zhao
- Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, 210023, Nanjing, CHINA
| |
Collapse
|
16
|
Lu JJ, Ma XR, Xie K, Yang PX, Li RT, Ye RR. Novel heterobimetallic Ir(III)-Re(I) complexes: design, synthesis and antitumor mechanism investigation. Dalton Trans 2022; 51:7907-7917. [PMID: 35535974 DOI: 10.1039/d2dt00719c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The reasonable design of binuclear or multinuclear metal complexes has demonstrated their potential advantages in the anticancer field. Herein, three heterobimetallic Ir(III)-Re(I) complexes, [Ir(C^N)2LRe(CO)3DIP](PF6)2 (C^N = 2-phenylpyridine (ppy, in IrRe-1), 2-(2-thienyl)pyridine (thpy, in IrRe-2) and 2-(2,4-difluorophenyl)pyridine (dfppy, in IrRe-3); L = pyridylimidazo[4,5-f][1,10]phenanthroline; DIP = 4,7-diphenyl-1,10-phenanthroline), were designed and synthesized. The heterobimetallic IrRe-1-3 complexes show pH-sensitive emission properties, which can be used for specific imaging of lysosomes. Additionally, IrRe-1-3 display higher cytotoxicity against tested tumor cell lines than the clinical chemotherapeutic drug cisplatin. Further mechanisms indicate that IrRe-1-3 can induce apoptosis and autophagy, increase intracellular reactive oxygen species (ROS), depolarize the mitochondrial membrane (MMP), block the cell cycle at the G0/G1 phase and inhibit cell migration. To the best of our knowledge, this is the first example of the synthesis of heterobimetallic Ir(III)-Re(I) complexes with superior anticancer activities and evaluation of their anticancer mechanisms.
Collapse
Affiliation(s)
- Jun-Jian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Xiu-Rong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Kai Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Pei-Xin Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| |
Collapse
|
17
|
Zhan Z, Zhuang W, Lei Q, Li S, Mao W, Chen M, Li W. A smart probe for simultaneous imaging of the lipid/water microenvironment in atherosclerosis and fatty liver. Chem Commun (Camb) 2022; 58:4020-4023. [PMID: 35254361 DOI: 10.1039/d2cc00795a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A smart lipid droplet specific fluorescent probe (LDs-DM) with dual-emission in water (706 nm) and oil (535 nm) under single-excitation was prepared for revealing the ultra-structure of the aqueous and lipidic microenvironment in living cells, fatty liver tissues and atherosclerotic plaques without fluorescence emission crosstalk. This work is expected to provide inspiration for designing a novel probe with color switching ability.
Collapse
Affiliation(s)
- Zixuan Zhan
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Weihua Zhuang
- Laboratory of Heart Valve Disease, Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qian Lei
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Shufen Li
- Laboratory of Heart Valve Disease, Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Mao Chen
- Laboratory of Heart Valve Disease, Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
18
|
Zhou J, Li J, Zhang KY, Liu S, Zhao Q. Phosphorescent iridium(III) complexes as lifetime-based biological sensors for photoluminescence lifetime imaging microscopy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Su PR, Wang T, Zhou PP, Yang XX, Feng XX, Zhang MN, Liang LJ, Tang Y, Yan CH. Self-assembly-induced luminescence of Eu 3+-complexes and application in bioimaging. Natl Sci Rev 2022; 9:nwab016. [PMID: 35070324 PMCID: PMC8776545 DOI: 10.1093/nsr/nwab016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/25/2022] Open
Abstract
Design and engineering of highly efficient emitting materials with assembly-induced luminescence, such as room-temperature phosphorescence (RTP) and aggregation-induced emission (AIE), have stimulated extensive efforts. Here, we propose a new strategy to obtain size-controlled Eu3+-complex nanoparticles (Eu-NPs) with self-assembly-induced luminescence (SAIL) characteristics without encapsulation or hybridization. Compared with previous RTP or AIE materials, the SAIL phenomena of increased luminescence intensity and lifetime in aqueous solution for the proposed Eu-NPs are due to the combined effect of self-assembly in confining the molecular motion and shielding the water quenching. As proof of concept, we also show that this system can be further applied in bioimaging, temperature measurement and HClO sensing. The SAIL activity of the rare-earth (RE) system proposed here offers a further step forward on the roadmap for the development of RE light conversion systems and their integration in bioimaging and therapy applications.
Collapse
Affiliation(s)
- Ping-Ru Su
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tao Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Xi Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Xia Feng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mei-Na Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Li-Juan Liang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
20
|
Zhan Z, Chai L, Lei Q, Zhou X, Wang Y, Deng H, Lv Y, Li W. Two-photon ratiometric fluorescent probe for imaging of hypochlorous acid in acute lung injury and its remediation effect. Anal Chim Acta 2021; 1187:339159. [PMID: 34753573 DOI: 10.1016/j.aca.2021.339159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/05/2023]
Abstract
Acute lung injury (ALI) is a pulmonary inflammatory disease with high morbidity and mortality rates. However, owing to the unknown etiology and rapid progression of the disease, the diagnosis of ALI is full of challenges with no effective treatment. Since the inflammatory response and oxidative stress played vital roles in the development of ALI, we herein developed the largest emission cross-shift (△λ = 145 nm) two-photon ratiometric fluorescent probe of TPRS-HOCl with high selectivity and short response time toward hypochlorous acid (HOCl) for exploring the relevance between the degree of ALI and HOCl concentration in the development process of the disease. In addition, the inhibition effect of HOCl during different treatment periods was also evaluated. Moreover, the tendency of imaging results was basically in accordance with that of hematoxylin and eosin (H&E) staining and the treatment effect became better in the early stage when using N-acetylcysteine (NAC), demonstrating the sensitivity of TPRS-HOCl toward ALI response. Thus, TPRS-HOCl has great potential to diagnose ALI in the early stage and guide for effective treatment.
Collapse
Affiliation(s)
- Zixuan Zhan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Analytical & Testing Center, Sichuan University, Chengdu, 610064, China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Li Chai
- Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qian Lei
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xinglong Zhou
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Hui Deng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
21
|
Ning Y, Jin GQ, Wang MX, Gao S, Zhang JL. Recent progress in metal-based molecular probes for optical bioimaging and biosensing. Curr Opin Chem Biol 2021; 66:102097. [PMID: 34775149 DOI: 10.1016/j.cbpa.2021.102097] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
Biological imaging and biosensing from subcellular/cellular level to whole body have enabled non-invasive visualisation of molecular events during various biological and pathological processes, giving great contributions to the rapid and impressive advances in chemical biology, drug discovery, disease diagnosis and prognosis. Optical imaging features a series of merits, including convenience, high resolution, good sensitivity, low cost and the absence of ionizing radiation. Among different luminescent probes, metal-based molecules offer unique promise in optical bioimaging and biosensing in vitro and in vivo, arising from their small sizes, strong luminescence, large Stokes shifts, long lifetimes, high photostability and tunable toxicity. In this review, we aim to highlight the design of metal-based molecular probes from the standpoint of synthetic chemistry in the last 2 years for optical imaging, covering d-block transition metal and lanthanide complexes and multimodal imaging agents.
Collapse
Affiliation(s)
- Yingying Ning
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China; Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i(3)), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, 02129, USA
| | - Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Meng-Xin Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, PR China; Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, PR China.
| |
Collapse
|
22
|
Shi H, Wang Y, Lin S, Lou J, Zhang Q. Recent development and application of cyclometalated iridium(III) complexes as chemical and biological probes. Dalton Trans 2021; 50:6410-6417. [PMID: 33900334 DOI: 10.1039/d1dt00592h] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iridium complexes have been widely applied as molecular sensors because of their rich photophysical properties, including large Stokes shifts, long emission lifetimes, environment-sensitive emissions, and high luminescence quantum yields. In this paper, we review the recent development and application of iridium complexes as probes for ions, anions, gaseous species, organic molecules, small biomolecules, biomacromolecules, and subcellular organelles. Our outlook for iridium-based probes is also discussed.
Collapse
Affiliation(s)
- Hongdong Shi
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| | - Yi Wang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| | - Simin Lin
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| | - Jingxue Lou
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| | - Qianling Zhang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| |
Collapse
|
23
|
Dai Y, Zhan Z, Chai L, Zhang L, Guo Q, Zhang K, Lv Y. A Two-Photon Excited Near-Infrared Iridium(III) Complex for Multi-signal Detection and Multimodal Imaging of Hypochlorite. Anal Chem 2021; 93:4628-4634. [PMID: 33656847 DOI: 10.1021/acs.analchem.0c05460] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hypochlorite (ClO-), as a type of reactive oxygen species (ROS), plays a crucial role in the process of oxidative stress and is closely related to many diseases. Thus, developing a method for detecting and imaging of ClO- with high sensitivity and selectivity is of great significance. However, the applications of most luminescent probes are limited to the fact that the excitation and emission wavelengths of them are in the visible light region rather than in the near-infrared (NIR) region. Hence, an NIR iridium(III) complex (Mul-NIRIr) with two-photon excitation is designed for the detecting and imaging of ClO-. In the presence of ClO-, the luminescent intensity and lifetime of Mul-NIRIr are remarkably enhanced. Interestingly, Mul-NIRIr also exhibits excellent electrochemiluminescence (ECL) properties, and the ECL signal is significantly enhanced with the addition of ClO-. What is more, Mul-NIRIr is also suitable for the detection and analysis ClO- by flow cytometry. Therefore, Mul-NIRIr is developed to detect multiple signals and is successfully applied to detect exogenous and endogenous ClO- in living cells with one-photon, two-photon, and phosphorescence lifetime image microscopy (PLIM). In addition, Mul-NIRIr was successfully used for imaging of ClO- in tissues and inflammatory mouse models. All of the above results indicate that Mul-NIRIr is highly effective in detecting ClO- in living systems.
Collapse
Affiliation(s)
- Yongcheng Dai
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zixuan Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Chai
- Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Qi Guo
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Kexin Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
24
|
Xu ZH, Gao H, Zhang N, Zhao W, Cheng YX, Xu JJ, Chen HY. Ultrasensitive Nucleic Acid Assay Based on Cyclometalated Iridium(III) Complex with High Electrochemiluminescence Efficiency. Anal Chem 2021; 93:1686-1692. [PMID: 33378161 DOI: 10.1021/acs.analchem.0c04284] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This work developed a sensitive electrochemiluminescence (ECL) biosensor based on a cyclometalated iridium(III) complex ((bt)2Irbza), which was synthesized for the first time. Annihilation, reductive-oxidative, and oxidative-reductive ECL behaviors of (bt)2Irbza were investigated, respectively. The oxidative-reductive ECL intensity was the strongest compared with the other two, which showed 16.7 times relative ECL efficiency compared with commercial [Ru(bpy)3]2+ under the same experimental conditions. Therefore, an ECL biosensing system with (bt)2Irbza as the anodic luminophore was established for miRNA detection based on a closed bipolar electrode (BPE). Combined with both steric hindrance and catalytic effects induced by hemin/G-quadruplex in the cathodic reservoir of BPE that changed the Faraday current of the cathode and thus mediated the ECL intensity of (bt)2Irbza in the anode of BPE, the ECL sensor stated an ultrahigh sensitivity for microRNA (miRNA-122) analysis with a detection limit of 82 aM.
Collapse
Affiliation(s)
- Zhi-Hong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hang Gao
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Xiang Cheng
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
25
|
Zhan Z, Dai Y, Li Q, Lv Y. Small molecule-based bioluminescence and chemiluminescence probes for sensing and imaging of reactive species. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|