1
|
Sandech N, Yang MC, Juntranggoor P, Rukthong P, Gorelkin P, Savin N, Timoshenko R, Vaneev A, Erofeev A, Wichaiyo S, Pradidarcheep W, Maiuthed A. Benja-ummarit induces ferroptosis with cell ballooning feature through ROS and iron-dependent pathway in hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118672. [PMID: 39127118 DOI: 10.1016/j.jep.2024.118672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/22/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Benja-ummarit (BU), a traditional Thai herbal formula, has been prescribed by traditional Thai practitioners for the treatment of liver cancer. Clinical trials of BU have shown an increase in overall survival in hepatocellular carcinoma (HCC) patients, including stage 1-3 (with or without prior standard chemotherapy) and terminal stage. The clinical outcomes differ from those of other apoptosis-based conventional chemotherapies. The molecular mechanisms underlying the anti-cancer properties of BU remain unclear. AIM OF STUDY To investigate BU-induced ferroptosis through morphological and molecular analyses of HCC cell lines and HCC rat tissues. METHODOLOGY Cytotoxicity of BU extract in HepG2 and HuH-7 cells, with or without LX-2 in 2D and 3D cultures, was determined through MTT assay and by observing spheroid formation, respectively, as compared to sorafenib. Morphological changes and the cellular ultrastructure of the treated cells were evaluated by light microscopy and transmission electron microscopy (TEM), respectively. In addition, alterations in ferroptosis protein markers in both cell lines and rat liver tissue were determined using western blot analysis and immunohistochemical staining, respectively. To investigate the pathways mediating ferroptosis, cells were pretreated with an iron chelator to confirm the iron-dependent ferroptosis induced by the BU extract. Intracellular ROS, a mediator of ferroptosis, was measured using a scanning ion conductance microscope (SICM). SICM was also used to determine cellular stiffness. The lipid profiles of BU-treated cells were studied using LC-MS/MS. RESULTS The BU extract induced cell death under all HCC cell culture conditions. The BU-IC50 in HepG2 and HuH-7 were 31.24 ± 4.46 μg/mL and 23.35 ± 0.27 μg/mL, respectively as determined by MTT assay. In co-culture with LX-2, BU exhibited a similar trend of cytotoxicity in both HepG2 and HuH-7 cells. Light microscopy showed cell ballooning features with intact plasma membranes, and TEM microscopy showed mitochondrial swelling and reduced mitochondrial cristae in BU-treated cells. BU promotes intracellular iron levels by increasing DMT1 and NCOA4 expression and decreasing FTH1 expression. BU also suppressed the cellular antioxidant system by lowering CD98, NRF2, and GPX4 expression, and promoting KEAP1 expression. IHC results of HCC rat liver tissues showed the absence of DMT1 and high expression of GPX4 in the tumor area. Pre-treatment with an iron chelator partially restored cell viability and shifted the mode of cell death to a more apoptosis-like morphology in the BU-treated group. The SICM showed increased intracellular ROS levels and cellular stiffness 24 h after BU treatment. In more detail of BU-mediated ferroptosis, cellular lipid profiling revealed increased expression of 3 polyunsaturated lipids, which are highly susceptible to lipid peroxidation, in BU-treated cells. DISCUSSION Alterations in intracellular iron levels, ROS levels, and cellular lipid composition have been previously reported in cancer cells. Therefore, targeting the iron-dependent ROS pathway and polyunsaturated lipids via BU-induced ferroptosis may be more cancer-specific than apoptosis-based cancer drugs. These observations are in accordance with the clinical outcomes of BU. The ferroptosis-inducing mechanism of BU makes it an extremely promising novel drug candidate for the treatment of HCC.
Collapse
Affiliation(s)
- Nichawadee Sandech
- Doctor of Philosophy Program in Innovative Anatomy, Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand; Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Meng Chieh Yang
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Pichakorn Juntranggoor
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Pattarawit Rukthong
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Srinakharinwirot University, Nakornnayok, 26120, Thailand; Center for Excellence in Plant and Herbal Innovation Research, Strategic Wisdom and Research Institute, Srinakharinwirot University, Nakornnayok, 26120, Thailand
| | - Petr Gorelkin
- ICAPPIC Limited, London, E8 3PN, United Kingdom; Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia
| | - Nikita Savin
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia
| | - Roman Timoshenko
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia
| | - Alexander Vaneev
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander Erofeev
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Surasak Wichaiyo
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand; Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Wisuit Pradidarcheep
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand.
| | - Arnatchai Maiuthed
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand; Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Vaneev AN, Gorelkin PV, Barykin EP, Kolmogorov VS, Timoshenko RV, Mitkevich VA, Petrushanko IY, Varshavskaya KB, Salikhov SV, Klyachko NL, Makarov AA, Erofeev AS. Impact of Antioxidants on Mechanical Properties and ROS Levels of Neuronal Cells Exposed to β-Amyloid Peptide. Chembiochem 2024:e202400786. [PMID: 39548866 DOI: 10.1002/cbic.202400786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/31/2024] [Accepted: 11/15/2024] [Indexed: 11/18/2024]
Abstract
This study aims to investigate the potential role of antioxidants in oxidative stress and its consequent impact on the mechanical properties of neuronal cells, particularly the stress induced by amyloid-beta (1-42) (Aβ42) aggregates. A key aspect of our research involved using scanning ion-conductance microscopy (SICM) to assess the mechanical properties (Young's modulus) of neuronal cells under oxidative stress. Reactive oxygen species (ROS) level was measured in single-cell using the electrochemical method by low-invasive Pt nanoelectrode. We investigated the effects of the low molecular weight antioxidant N-acetylcysteine (NAC) and the antioxidant enzyme superoxide dismutase 1 (SOD1) on the physiological and mechanical properties of neuronal cells using SICM. Using electrochemical method and SICM, NAC effectively reduces oxidative stress and restores Young's Modulus in SH-SY5Y cells exposed to hydrogen peroxide and Aβ42 oligomers. Our study first examined the influence of SOD1 on intracellular ROS levels in the presence of Aβ oligomers. The investigation into the effects of SOD1 and its nanoparticle form SOD1 on SH-SY5Y cells reveals impacts on mechanical properties and oxidative stress. The combined use of SICM and electrochemical measurements provided a comprehensive understanding of how oxidative stress, including that triggered by the Aβ oligomers affects the mechanical properties of cells.
Collapse
Affiliation(s)
- Alexander N Vaneev
- Laboratory of biophysics, National University of Science and Technology MISIS, Leninskiy ave. 4, Moscow, 119049, Russia
- Chemistry department, Lomonosov Moscow State University, Leninskie gory, 1-3, Moscow, 119991, Russia
| | - Petr V Gorelkin
- Laboratory of biophysics, National University of Science and Technology MISIS, Leninskiy ave. 4, Moscow, 119049, Russia
| | - Evgeny P Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, Moscow, 119991, Russia
| | - Vasilii S Kolmogorov
- Laboratory of biophysics, National University of Science and Technology MISIS, Leninskiy ave. 4, Moscow, 119049, Russia
- Chemistry department, Lomonosov Moscow State University, Leninskie gory, 1-3, Moscow, 119991, Russia
| | - Roman V Timoshenko
- Laboratory of biophysics, National University of Science and Technology MISIS, Leninskiy ave. 4, Moscow, 119049, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, Moscow, 119991, Russia
| | - Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, Moscow, 119991, Russia
| | - Ksenia B Varshavskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, Moscow, 119991, Russia
| | - Sergey V Salikhov
- Laboratory of biophysics, National University of Science and Technology MISIS, Leninskiy ave. 4, Moscow, 119049, Russia
| | - Natalia L Klyachko
- Chemistry department, Lomonosov Moscow State University, Leninskie gory, 1-3, Moscow, 119991, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, Moscow, 119991, Russia
| | - Alexander S Erofeev
- Laboratory of biophysics, National University of Science and Technology MISIS, Leninskiy ave. 4, Moscow, 119049, Russia
- Chemistry department, Lomonosov Moscow State University, Leninskie gory, 1-3, Moscow, 119991, Russia
| |
Collapse
|
3
|
Varshavskaya KB, Barykin EP, Timoshenko RV, Kolmogorov VS, Erofeev AS, Gorelkin PV, Mitkevich VA, Makarov AA. Post-translational modifications of beta-amyloid modulate its effect on cell mechanical properties and influence cytoskeletal signaling cascades. Front Mol Neurosci 2024; 17:1501874. [PMID: 39610710 PMCID: PMC11602469 DOI: 10.3389/fnmol.2024.1501874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Post-translational modifications of beta-amyloid (Aβ) play an important role in the pathogenesis of Alzheimer's disease (AD). Aβ modifications such as Ser8 phosphorylation (pS8-Aβ42) and Asp7 isomerization (iso-Aβ42) can significantly alter the properties of Aβ and have been detected in vivo. One of the reasons for the different pathogenicity of Aβ isoforms may be the activation of different signaling cascades leading to changes in the mechanical properties of cells. In this paper, we used correlative scanning ion-conductance microscopy (SICM) and Pt-nanoelectrodes to compare the effects of Aβ isoforms on the Young's modulus of SH-SY5Y cells and the level of ROS. It was found that unmodified Aβ42 resulted in the largest increase in cell Young's modulus of all isoforms after 4 h of incubation, while pS8-Aβ42 induced the greatest increase in stiffness and ROS levels after 24 h of incubation. Analysis of signaling proteins involved in the regulation of the actin cytoskeleton showed that Aβ42, pS8-Aβ42 and iso-Aβ42 have different effects on cofilin, GSK3β, LIMK, ERK and p38. This indicates that post-translational modifications of Aβ modulate its effect on neuronal cells through the activation of various signaling cascades, which affects the mechanical properties of cells.
Collapse
Affiliation(s)
| | | | - Roman V. Timoshenko
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Vasilii S. Kolmogorov
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander S. Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Petr V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow, Russia
| | | | | |
Collapse
|
4
|
Kandrashina S, Sherstyukova E, Shvedov M, Inozemtsev V, Timoshenko R, Erofeev A, Dokukin M, Sergunova V. The Effect of the Acid-Base Imbalance on the Shape and Structure of Red Blood Cells. Cells 2024; 13:1813. [PMID: 39513920 PMCID: PMC11545479 DOI: 10.3390/cells13211813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Red blood cells respond to fluctuations in blood plasma pH by changing the rate of biochemical and physical processes that affect the specific functions of individual cells. This study aimed to analyze the effect of pH changes on red blood cell morphology and structure. The findings revealed that an increase or decrease in pH above or below the physiological level of pH 7.4 results in the transformation of discocytes into echinocytes and causes significant alterations in the membrane, including its roughness, cytoskeleton structure, and the cell's elastic modulus. Furthermore, the study shown a strong connection between critical acidosis and alkalosis with increased intracellular reactive oxygen species production.
Collapse
Affiliation(s)
- Snezhanna Kandrashina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (S.K.); (E.S.); (M.S.); (V.I.)
| | - Ekaterina Sherstyukova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (S.K.); (E.S.); (M.S.); (V.I.)
| | - Mikhail Shvedov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (S.K.); (E.S.); (M.S.); (V.I.)
| | - Vladimir Inozemtsev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (S.K.); (E.S.); (M.S.); (V.I.)
| | - Roman Timoshenko
- Research laboratory of biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.T.); (A.E.)
| | - Alexander Erofeev
- Research laboratory of biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.T.); (A.E.)
| | - Maxim Dokukin
- Sarov Physics and Technology Institute, MEPhI, 607186 Sarov, Russia;
| | - Viktoria Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (S.K.); (E.S.); (M.S.); (V.I.)
| |
Collapse
|
5
|
Krasnovskaya O, Abramchuk D, Vaneev A, Gorelkin P, Abakumov M, Timoshenko R, Kuzmichev I, Chmelyuk N, Vadehina V, Kuanaeva R, Dubrovin E, Kolmogorov V, Beloglazkina E, Kechko O, Mitkevich V, Varshavskaya K, Salikhov S, Erofeev A. Bifunctional Copper Chelators Capable of Reducing Aβ Aggregation and Aβ-Induced Oxidative Stress. ACS OMEGA 2024; 9:43376-43384. [PMID: 39493999 PMCID: PMC11525521 DOI: 10.1021/acsomega.4c03152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
Five bifunctional copper chelating agents, Alz-(1-5), designed to prevent beta-amyloid (Aβ) aggregation, were synthesized, and the leader compound (Alz-5) was chosen. Alz-5 acts as a bifunctional chelator that can interact with various Aβ aggregates and reduce their neurotoxicity. Reactive oxygen species measurements provided by the Pt-nanoelectrode technique in single Aβ42-affected human neuroblastoma SH-SY5Y cells revealed significant antioxidant activity of Alz-5. AFM data obtained on Aβ42 fibrils clearly indicate the antiaggregating property of Alz-5. To gain insights into the changes in the physiomechanical properties of Aβ42-affected cells, as well as in order to evaluate the antiaggregating ability of Alz-5, Young's modulus mapping on living SH-SY5Y cells affected consequently by Aβ42 and Alz-5 was conducted, and the ability of Alz-5 to decrease cell rigidity induced by Aβ42 was indisputably proven. Low cell toxicity and antioxidating properties, in conjunction with AFM and SICM-based biophysical provided on Aβ42-affected SH-SY5Y cells, support Alz-5 as a potential inhibitor of Aβ aggregation.
Collapse
Affiliation(s)
- Olga Krasnovskaya
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Daniil Abramchuk
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Alexander Vaneev
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Petr Gorelkin
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Maxim Abakumov
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
- Pirogov
Russian National Research Medical University (RNRMU), Moscow 117997, Russia
| | - Roman Timoshenko
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Ilia Kuzmichev
- Serbsky
National Medical Research Center for Psychiatry and Narcology, Moscow 119991, Russia
| | - Nelly Chmelyuk
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Veronika Vadehina
- Pirogov
Russian National Research Medical University (RNRMU), Moscow 117997, Russia
- Serbsky
National Medical Research Center for Psychiatry and Narcology, Moscow 119991, Russia
| | - Regina Kuanaeva
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Evgeniy Dubrovin
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
- Faculty
of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 2, Moscow 119991, Russia
| | - Vasilii Kolmogorov
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Elena Beloglazkina
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Olga Kechko
- Engelhardt
Institute of Molecular Biology, Russian
Academy of Sciences, Moscow 119991, Russia
| | - Vladimir Mitkevich
- Engelhardt
Institute of Molecular Biology, Russian
Academy of Sciences, Moscow 119991, Russia
| | - Kseniya Varshavskaya
- Engelhardt
Institute of Molecular Biology, Russian
Academy of Sciences, Moscow 119991, Russia
| | - Sergey Salikhov
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Alexander Erofeev
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| |
Collapse
|
6
|
Shvedov M, Sherstyukova E, Kandrashina S, Inozemtsev V, Sergunova V. Atomic Force Microscopy and Scanning Ion-Conductance Microscopy for Investigation of Biomechanical Characteristics of Neutrophils. Cells 2024; 13:1757. [PMID: 39513864 PMCID: PMC11545488 DOI: 10.3390/cells13211757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Scanning probe microscopy (SPM) is a versatile tool for studying a wide range of materials. It is well suited for investigating living matter, for example, in single-cell neutrophil studies. SPM has been extensively utilized to analyze cell physical properties, providing detailed insights into their structural and functional characteristics at the nanoscale. Its long-standing application in this field highlights its essential role in cell biology and immunology research, significantly contributing to understanding cellular mechanics and interactions. In this review, we discuss the application of SPM techniques, specifically atomic force microscopy (AFM) and scanning ion-conductance microscopy (SICM), to study the fundamental functions of neutrophils. In addition, recent advances in the application of SPM in single-cell immunology are discussed. The application of these techniques allows for obtaining data on the morphology, topography, and mechanical and electrochemical properties of neutrophils with high accuracy.
Collapse
Affiliation(s)
- Mikhail Shvedov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
| | - Ekaterina Sherstyukova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
| | - Snezhanna Kandrashina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
| | - Vladimir Inozemtsev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
- Koltzov Institute of Development Biology of Russia Academy of Science, 119334 Moscow, Russia
| | - Viktoria Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
| |
Collapse
|
7
|
Ushakova V, Zorkina Y, Abramova O, Kuanaeva R, Barykin E, Vaneev A, Timoshenko R, Gorelkin P, Erofeev A, Zubkov E, Valikhov M, Gurina O, Mitkevich V, Chekhonin V, Morozova A. Beta-Amyloid and Its Asp7 Isoform: Morphological and Aggregation Properties and Effects of Intracerebroventricular Administration. Brain Sci 2024; 14:1042. [PMID: 39452054 PMCID: PMC11506273 DOI: 10.3390/brainsci14101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES One of the hallmarks of Alzheimer's disease (AD) is the accumulation of aggregated beta-amyloid (Aβ) protein in the form of senile plaques within brain tissue. Senile plaques contain various post-translational modifications of Aβ, including prevalent isomerization of Asp7 residue. The Asp7 isomer has been shown to exhibit increased neurotoxicity and induce amyloidogenesis in brain tissue of transgenic mice. The toxicity of Aβ peptides may be partly mediated by their structure and morphology. In this respect, in this study we analyzed the structural and aggregation characteristics of the Asp7 isoform of Aβ42 and compared them to those of synthetic Aβ42. We also investigated the effects of intracerebroventricular (i.c.v.) administration of these peptides, a method often used to induce AD-like symptoms in rodent models. METHODS Atomic force microscopy (AFM) was conducted to compare the morphological and aggregation properties of Aβ42 and Asp7 iso-Aβ42. The effects of i.c.v. stereotaxic administration of the proteins were assessed via behavioral analysis and reactive oxygen species (ROS) estimation in vivo using a scanning ion-conductance microscope with a confocal module. RESULTS AFM measurements revealed structural differences between the two peptides, most notably in their soluble toxic oligomeric forms. The i.c.v. administration of Asp7 iso-Aβ42 induced spatial memory deficits in rats and elevated oxidative stress levels in vivo, suggesting a potential of ROS in the pathogenic mechanism of the peptide. CONCLUSIONS The findings support the further investigation of Asp7 iso-Aβ42 in translational research on AD and suggest its involvement in neurodegenerative processes.
Collapse
Affiliation(s)
- Valeriya Ushakova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
- Department of Higher Nervous Function, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yana Zorkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| | - Olga Abramova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| | - Regina Kuanaeva
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
| | - Evgeny Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.B.)
| | - Alexander Vaneev
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman Timoshenko
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
| | - Peter Gorelkin
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
| | - Alexander Erofeev
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugene Zubkov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| | - Marat Valikhov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.B.)
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.B.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
- Department of Medical Nanobiotechnology, N. I. Pirogov Russian National Research Medical University, the Ministry of Health of the Russian Federation, 117513 Moscow, Russia
| | - Anna Morozova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| |
Collapse
|
8
|
Pleskova SN, Vaneev AN, Bezrukov NA, Erofeev AS, Bobyk SZ, Kolmogorov VS, Gorelkin PV, Mamed-Nabizade VV, Gorshkova EN. Changes in ROS/RNS Levels in Endothelial Cells in Experimental Bacteremia. Chembiochem 2024; 25:e202400341. [PMID: 39016541 DOI: 10.1002/cbic.202400341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/18/2024]
Abstract
A high-precision system was developed for the quantification of biological analytes in single cells (reactive oxygen species (ROS) and reactive nitrogen species (RNS)) based on the electrochemical amperometric method. The efficacy of this system was evaluated using an experimental bacteremia model. Endothelial cells exhibited increased ROS/RNS production when stimulated by Staphylococcus aureus. However, they remained inactive when exposed to either unprimed or primed neutrophils that had been pre-incubated with bacteria. It is noteworthy that the sequential stimulation of endothelial cells with bacteria followed by neutrophils resulted in a significant increase in the ROS/RNS level, which demonstrated a correlation with the number of neutrophils in contact with the endothelial cells. These results highlight the potential of our system to quantitatively assess ROS/RNS dynamics in complex biological systems. They also offer insights into the interplay between various cellular components in experimental bacteremia.
Collapse
Affiliation(s)
- Svetlana N Pleskova
- Research Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, Gagarina Ave. 23, Build. 3, Nizhny Novgorod, 603950, Russia
- Department "Nanotechnology and Biotechnology", Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minina St. 24, Nizhny Novgorod, 603155, Russia
| | - Alexander N Vaneev
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Ave. 4, Moscow, 119049, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1-3, Moscow, 119991, Russia
| | - Nikolay A Bezrukov
- Research Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, Gagarina Ave. 23, Build. 3, Nizhny Novgorod, 603950, Russia
| | - Alexander S Erofeev
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Ave. 4, Moscow, 119049, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1-3, Moscow, 119991, Russia
| | - Sergey Z Bobyk
- Research Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, Gagarina Ave. 23, Build. 3, Nizhny Novgorod, 603950, Russia
| | - Vasilii S Kolmogorov
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Ave. 4, Moscow, 119049, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1-3, Moscow, 119991, Russia
| | - Petr V Gorelkin
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Ave. 4, Moscow, 119049, Russia
| | - Vugara V Mamed-Nabizade
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Ave. 4, Moscow, 119049, Russia
| | - Ekaterina N Gorshkova
- Research Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, Gagarina Ave. 23, Build. 3, Nizhny Novgorod, 603950, Russia
| |
Collapse
|
9
|
Wang D, Woodcock E, Yang X, Nishikawa H, Sviderskaya EV, Oshima M, Edwards C, Zhang Y, Korchev Y. Exploration of individual colorectal cancer cell responses to H 2O 2 eustress using hopping probe scanning ion conductance microscopy. Sci Bull (Beijing) 2024; 69:1909-1919. [PMID: 38644130 DOI: 10.1016/j.scib.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
Colorectal cancer (CRC), a widespread malignancy, is closely associated with tumor microenvironmental hydrogen peroxide (H2O2) levels. Some clinical trials targeting H2O2 for cancer treatment have revealed its paradoxical role as a promoter of cancer progression. Investigating the dynamics of cancer cell H2O2 eustress at the single-cell level is crucial. In this study, non-contact hopping probe mode scanning ion conductance microscopy (HPICM) with high-sensitive Pt-functionalized nanoelectrodes was employed to measure dynamic extracellular to intracellular H2O2 gradients in individual colorectal cancer Caco-2 cells. We explored the relationship between cellular mechanical properties and H2O2 gradients. Exposure to 0.1 or 1 mmol/L H2O2 eustress increased the extracellular to intracellular H2O2 gradient from 0.3 to 1.91 or 3.04, respectively. Notably, cellular F-actin-dependent stiffness increased at 0.1 mmol/L but decreased at 1 mmol/L H2O2 eustress. This H2O2-induced stiffness modulated AKT activation positively and glutathione peroxidase 2 (GPX2) expression negatively. Our findings unveil the failure of some H2O2-targeted therapies due to their ineffectiveness in generating H2O2, which instead acts eustress to promote cancer cell survival. This research also reveals the complex interplay between physical properties and biochemical signaling in cancer cells' antioxidant defense, illuminating the exploitation of H2O2 eustress for survival at the single-cell level. Inhibiting GPX and/or catalase (CAT) enhances the cytotoxic activity of H2O2 eustress against CRC cells, which holds significant promise for developing innovative therapies targeting cancer and other H2O2-related inflammatory diseases.
Collapse
Affiliation(s)
- Dong Wang
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Emily Woodcock
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom; Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, United Kingdom
| | - Xi Yang
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiromi Nishikawa
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Elena V Sviderskaya
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, United Kingdom
| | - Masanobu Oshima
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Christopher Edwards
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Yanjun Zhang
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan; Department of Medicine, Imperial College London, London W12 0NN, United Kingdom.
| | - Yuri Korchev
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom; WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
10
|
Spector D, Bubley A, Zharova A, Bykusov V, Skvortsov D, Ipatova D, Erofeev A, Gorelkin P, Vaneev A, Mazur D, Nikitina V, Melnikov M, Pergushov V, Bunin D, Kuzmin V, Kostyukov A, Egorov A, Beloglazkina E, Akasov R, Krasnovskaya O. Light-Responsive Pt(IV) Prodrugs with Controlled Photoactivation and Low Dark Toxicity. ACS APPLIED BIO MATERIALS 2024; 7:3431-3440. [PMID: 38697834 DOI: 10.1021/acsabm.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Light-induced release of cisplatin from Pt(IV) prodrugs represents a promising approach for precise control over the antiproliferative activity of Pt-based chemotherapeutic drugs. This method has the potential to overcome crucial drawbacks of conventional cisplatin therapy, such as high general toxicity toward healthy organs and tissues. Herein, we report two Pt(IV) prodrugs with BODIPY-based photoactive ligands Pt-1 and Pt-2, which were designed using carbamate and triazole linkers, respectively. Both prodrugs demonstrated the ability to release cisplatin under blue light irradiation without the requirement of an external reducing agent. Dicarboxylated Pt-2 prodrug turned out to be more stable in the dark and more sensitive to light than its monocarbamate Pt-1 counterpart; these observations were explained using DFT calculations. The investigation of the photoreduction mechanism of Pt-1 and Pt-2 prodrugs using DFT modeling and ΔG0 PET estimation suggests that the photoinduced electron transfer from the singlet excited state of the BODIPY axial ligand to the Pt(IV) center is the key step in the light-induced release of cisplatin from the complexes. Cytotoxicity studies demonstrated that both prodrugs were nontoxic in the dark and toxic to MCF-7 cells under low-dose irradiation with blue light, and the observed effect was solely due to the cisplatin release from the Pt(IV) prodrugs. Our research presents an elegant synthetic approach to light-activated Pt(IV) prodrugs and presents findings that may contribute to the future rational design of photoactivatable Pt(IV) prodrugs.
Collapse
Affiliation(s)
- Daniil Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Anna Bubley
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Anastasia Zharova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Vladislav Bykusov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitry Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Daria Ipatova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexander Erofeev
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Petr Gorelkin
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Alexander Vaneev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Dmitrii Mazur
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Vita Nikitina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Mikhail Melnikov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Vladimir Pergushov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitry Bunin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr., 31, bldg. 4, Moscow 119071, Russia
| | - Vladimir Kuzmin
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street 4, Moscow 119334, Russia
| | - Alexey Kostyukov
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street 4, Moscow 119334, Russia
| | - Anton Egorov
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street 4, Moscow 119334, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Roman Akasov
- I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia
- Moscow Pedagogical State University, Malaya Pirogovskaya str. 1, Moscow 119435, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| |
Collapse
|
11
|
Yu G, Kuang H, Xu C, Sun M, Hao C. Tri-mode Responses to Reactive Oxygen Species In Vivo by Chiral Vanadium-Based Nanoparticles. Anal Chem 2024; 96:5677-5685. [PMID: 38533607 DOI: 10.1021/acs.analchem.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Reactive oxygen species (ROS) are closely associated with the redox balance of the physiological environment, and monitoring ROS can aid in the early diagnosis of many diseases, including cancer. In this study, chiral vanadium trioxide/vanadium nitride (V2O3/VN) nanoparticles (NPs) modified with an organic dye (cyanine 3 [Cy3]) were prepared for ROS sensing. Chiral V2O3/VN NPs were prepared with the "ligand-induced chirality" strategy and showed a g-factor of up to 0.12 at a wavelength of 512 nm. To the best of our knowledge, this g-factor is the highest value of all chiral ceramic nanomaterials. The very high g-factor of the nanoprobe confers very high sensitivity, because the higher g-factor, the higher sensitivity. In the presence of ROS, V3+ in the chiral V2O3/VN nanoprobe undergoes a redox reaction to form V2O5, reducing the circular dichroism and absorbance signals, whereas the fluorescence signal of Cy3 is restored. With this nanoprobe, the limits of detection for the circular dichroic and fluorescence signals in living cells are 0.0045 nmol/106 and 0.018 nmol/106 cells, respectively. This chiral nanoprobe can also monitor ROS levels in vivo by fluorescence. This strategy provides an innovative approach to the detection of ROS and is expected to promote the wider application of chiral nanomaterials for biosensing.
Collapse
Affiliation(s)
- Guangbo Yu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
12
|
Abramova O, Zorkina Y, Pavlov K, Ushakova V, Morozova A, Zubkov E, Pavlova O, Storozheva Z, Gurina O, Chekhonin V. Chronic Ultrasound Prenatal Stress Altered the Brain's Neurochemical Systems in Newborn Rats. Neural Plast 2024; 2024:3829941. [PMID: 39290524 PMCID: PMC11407898 DOI: 10.1155/2024/3829941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/25/2023] [Accepted: 01/27/2024] [Indexed: 09/19/2024] Open
Abstract
Prenatal stress (PS) affects the development and functioning of the central nervous system, but the exact mechanisms underpinning this effect have not been pinpointed yet. A promising model of PS is one based on chronic exposure of pregnant rodents to variable-frequency ultrasound (US PS), as it mimics the PS with a psychic nature that most adequately captures the human stressors in modern society. The aim of this study was to investigate the effects of US PS on the brain neurotransmitter, neuropeptide, and neurotrophic systems of newborn Wistar rats. We determined the concentration of neurotransmitters and their metabolites (serotonin, HIAA, dopamine, DOPAC, and norepinephrine), neuropeptides (α-MSH, β-endorphin, neurotensin, oxytocin, and substance P), and the neurotrophin brain-derived neurotrophic factor (BDNF) in rat brain tissues by HPLC-ED, ELISA, and multiplex ELISA. Correlation analysis and principal component analysis (PCA) were used to get a sense of the relationship between the biochemical parameters of the brain. The results demonstrated that US PS increases the concentration of serotonin (p=0.004) and DOPAC (p=0.04) in the hippocampus has no effect on the neurotransmitter systems of the frontal cortex, reduces the concentration of BDNF in the entirety of the brain of males (p=0.008), and increases the neuropeptides α-MSH (p=0.02), β-endorphin (p=0.01), oxytocin (p=0.008), and substance P (p < 0.001) in the entire brain. A degree of complexity in the neurotransmitter system network in the frontal cortex and network change in the hippocampus after exposure to US PS have been observed. PCA revealed a similar pattern of neurotransmitter system interactions in the frontal cortex and hippocampus in males and females after exposure to US PS. We suggest that US PS can alter neurodevelopment, which is mediated by changes in the studied neurochemical systems that thus affect the behavioral phenotype in animals.
Collapse
Affiliation(s)
- Olga Abramova
- Department of Basic and Applied Neurobiology, V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Yana Zorkina
- Department of Basic and Applied Neurobiology, V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Valeria Ushakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named After N.A. Alekseev, Zagorodnoe Highway 2, Moscow 115191, Russia
| | - Eugene Zubkov
- Department of Basic and Applied Neurobiology, V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Olga Pavlova
- Department of Basic and Applied Neurobiology, V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Zinaida Storozheva
- Laboratory of Functional Neurochemistry, P. K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Vladimir Chekhonin
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
13
|
Timoshenko RV, Gorelkin PV, Vaneev AN, Krasnovskaya OO, Akasov RA, Garanina AS, Khochenkov DA, Iakimova TM, Klyachko NL, Abakumova TO, Shashkovskaya VS, Chaprov KD, Makarov AA, Mitkevich VA, Takahashi Y, Edwards CRW, Korchev YE, Erofeev AS. Electrochemical Nanopipette Sensor for In Vitro/In Vivo Detection of Cu 2+ Ions. Anal Chem 2024; 96:127-136. [PMID: 38126724 DOI: 10.1021/acs.analchem.3c03337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In vitro/in vivo detection of copper ions is a challenging task but one which is important in the development of new approaches to the diagnosis and treatment of cancer and hereditary diseases such as Alzheimer's, Wilson's, etc. In this paper, we present a nanopipette sensor capable of measuring Cu2+ ions with a linear range from 0.1 to 10 μM in vitro and in vivo. Using the gold-modified nanopipette sensor with a copper chelating ligand, we evaluated the accumulation ability of the liposomal form of an anticancer Cu-containing complex at three levels of biological organization. First, we detected Cu2+ ions in a single cell model of human breast adenocarcinoma MCF-7 and in murine melanoma B16 cells. The insertion of the nanoelectrode did not result in leakage of the cell membrane. We then evaluated the distribution of the Cu-complex in MCF-7 tumor spheroids and found that the diffusion-limited accumulation was a function of the depth, typical for 3D culture. Finally, we demonstrated the use of the sensor for Cu2+ ion detection in the brain of an APP/PS1 transgenic mouse model of Alzheimer's disease and tumor-bearing mice in response to injection (2 mg kg-1) of the liposomal form of the anticancer Cu-containing complex. Enhanced stability and selectivity, as well as distinct copper oxidation peaks, confirmed that the developed sensor is a promising tool for testing various types of biological systems. In summary, this research has demonstrated a minimally invasive electrochemical technique with high temporal resolution that can be used for the study of metabolism of copper or copper-based drugs in vitro and in vivo.
Collapse
Affiliation(s)
- Roman V Timoshenko
- National University of Science and Technology (MISIS), Moscow 119049, Russia
| | - Petr V Gorelkin
- National University of Science and Technology (MISIS), Moscow 119049, Russia
| | - Alexander N Vaneev
- National University of Science and Technology (MISIS), Moscow 119049, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Olga O Krasnovskaya
- National University of Science and Technology (MISIS), Moscow 119049, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Roman A Akasov
- Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow 119333, Russia
- Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | | | - Dmitry A Khochenkov
- N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
- Togliatti State University, Togliatti 445020, Russia
| | - Tamara M Iakimova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Natalia L Klyachko
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | | | | | - Kirill D Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Yasufumi Takahashi
- Department of Electronics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | | | - Yuri E Korchev
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Department of Medicine, Imperial College London, London W120NN, U.K
| | - Alexander S Erofeev
- National University of Science and Technology (MISIS), Moscow 119049, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
14
|
Iakimova TM, Bubley AA, Boychenko OP, Guk DA, Vaneev AN, Prusov AN, Erofeev AS, Gorelkin PV, Krasnovskaya OO, Klyachko NL, Vlasova KY. Liposomal form of 2-alkylthioimidazolone-based copper complexes for combined cancer therapy. Nanomedicine (Lond) 2023; 18:2105-2123. [PMID: 38127591 DOI: 10.2217/nnm-2023-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Aim: To develop an optimized approach for encapsulating a 2-alkylthioimidazolone-based copper coordination compound within liposomes, which could offer treatment of cancer and bacterial infections by reactive oxygen species generation toxicity mechanisms. Materials & methods: For drug-loaded liposome preparation, lipids and drug mixture in organic solvents was injected into copper salt solution, forming a coordination compound simultaneously embedded in the lipid bilayer. In vitro tests were performed on MCF7 and MDA-MB-231 breast cancer cells. Results: Liposomes had a loading capacity of up to 1.75% (molar drug-to-lipid ratio). In vitro tests showed increased viability and accumulation of the liposomal formulation compared with free drug as well as lack of cytotoxicity in hepatocytes. Conclusion: This optimized technique for encapsulating large copper complexes in liposomes could be used to improve their delivery and better treat cancer and bacterial infections.
Collapse
Affiliation(s)
- Tamara M Iakimova
- Faculty of Materials Science, Lomonosov Moscow State University, Moscow, 119991, Russia
- School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anna A Bubley
- School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga P Boychenko
- School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry A Guk
- School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander N Vaneev
- School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Research Laboratory of Biophysics, National University of Science & Technology, Moscow, 119049, Russia
| | | | - Alexander S Erofeev
- Research Laboratory of Biophysics, National University of Science & Technology, Moscow, 119049, Russia
- Research Laboratory of Scanning Probe Microscopy, Moscow Polytechnical University, Moscow, 107023, Russia
| | - Petr V Gorelkin
- Research Laboratory of Biophysics, National University of Science & Technology, Moscow, 119049, Russia
| | - Olga O Krasnovskaya
- School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Natalia L Klyachko
- School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Kseniia Yu Vlasova
- School of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
15
|
Ponomarev VA, Sheveyko AN, Kuptsov KA, Sukhanova EV, Popov ZI, Permyakova ES, Slukin PV, Ignatov SG, Ilnitskaya AS, Gloushankova NA, Timoshenko RV, Erofeev AS, Kuchmizhak AA, Shtansky DV. X-ray and UV Irradiation-Induced Reactive Oxygen Species Mediated Antibacterial Activity in Fe and Pt Nanoparticle-Decorated Si-Doped TiCaCON Films. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37888937 DOI: 10.1021/acsami.3c13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Bone implants with biocompatibility and the ability to biomineralize and suppress infection are in high demand. The occurrence of early infections after implant placement often leads to repeated surgical treatment due to the ineffectiveness of antibiotic therapy. Therefore, an extremely attractive solution to this problem would be the ability to initiate bacterial protection of the implant by an external influence. Here, we present a proof-of-concept study based on the generation of reactive oxygen species (ROS) by the implant surface in response to X-ray irradiation, including through a layer of 3 mm adipose tissue, providing bactericidal protection. The effect of UV and X-ray irradiation of the implant surface on the ROS formation and the associated bactericidal activity was compared. The focus of our study was light-sensitive Si-doped TiCaCON films decorated with Fe and Pt nanoparticles (NPs) with photoinduced antibacterial activity mediated by ROS. In the visible and infrared range of 300-1600 nm, the films absorb more than 60% of the incident light. The high light absorption capacity of TiO2/TiC and TiO2/TiN heterostructures was demonstrated by density functional theory calculations. After short-term (5-10 s) low-dose X-ray irradiation, the films generated significantly more ROS than after UV illumination for 1 h. The Fe/TiCaCON-Si films showed enhanced biomineralization capacity, superior cytocompatibility, and excellent antibacterial activity against multidrug-resistant hospital Escherichia coli U20 and K261 strains and methicillin-resistant Staphylococcus aureus MW2 strain. Our study clearly demonstrates that oxidized Fe NPs are a promising alternative to the widely used Ag NPs in antibacterial coatings, and X-rays can potentially be used in ROS-regulating therapy to suppress inflammation in case of postimplant complications.
Collapse
Affiliation(s)
- Viktor A Ponomarev
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | | | | | | | - Zakhar I Popov
- Emanuel Institute of Biochemical Physics RAS, Moscow 199339, Russia
- Plekhanov Russian University of Economics, 36 Stremyanny per., Moscow 117997, Russia
| | | | - Pavel V Slukin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia
| | - Sergei G Ignatov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia
| | - Alla S Ilnitskaya
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Natalya A Gloushankova
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Roman V Timoshenko
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Alexander S Erofeev
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Aleksandr A Kuchmizhak
- Institute for Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
- Pacific Quantum Center, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| |
Collapse
|
16
|
Woodcock E, Gorelkin PV, Goff PS, Edwards CRW, Zhang Y, Korchev Y, Sviderskaya EV. Measuring Melanoma Nanomechanical Properties in Relation to Metastatic Ability and Anti-Cancer Drug Treatment Using Scanning Ion Conductance Microscopy. Cells 2023; 12:2401. [PMID: 37830615 PMCID: PMC10571876 DOI: 10.3390/cells12192401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
A cell's mechanical properties have been linked to cancer development, motility and metastasis and are therefore an attractive target as a universal, reliable cancer marker. For example, it has been widely published that cancer cells show a lower Young's modulus than their non-cancerous counterparts. Furthermore, the effect of anti-cancer drugs on cellular mechanics may offer a new insight into secondary mechanisms of action and drug efficiency. Scanning ion conductance microscopy (SICM) offers a nanoscale resolution, non-contact method of nanomechanical data acquisition. In this study, we used SICM to measure the nanomechanical properties of melanoma cell lines from different stages with increasing metastatic ability. Young's modulus changes following treatment with the anti-cancer drugs paclitaxel, cisplatin and dacarbazine were also measured, offering a novel perspective through the use of continuous scan mode SICM. We found that Young's modulus was inversely correlated to metastatic ability in melanoma cell lines from radial growth, vertical growth and metastatic phases. However, Young's modulus was found to be highly variable between cells and cell lines. For example, the highly metastatic cell line A375M was found to have a significantly higher Young's modulus, and this was attributed to a higher level of F-actin. Furthermore, our data following nanomechanical changes after 24 hour anti-cancer drug treatment showed that paclitaxel and cisplatin treatment significantly increased Young's modulus, attributed to an increase in microtubules. Treatment with dacarbazine saw a decrease in Young's modulus with a significantly lower F-actin corrected total cell fluorescence. Our data offer a new perspective on nanomechanical changes following drug treatment, which may be an overlooked effect. This work also highlights variations in cell nanomechanical properties between previous studies, cancer cell lines and cancer types and questions the usefulness of using nanomechanics as a diagnostic or prognostic tool.
Collapse
Affiliation(s)
- Emily Woodcock
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London SW17 0RE, UK; (E.W.)
- Department of Medicine, Imperial College London, W12 0NN London, UK (Y.K.)
| | - Peter V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia
| | - Philip S. Goff
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London SW17 0RE, UK; (E.W.)
| | | | - Yanjun Zhang
- Department of Medicine, Imperial College London, W12 0NN London, UK (Y.K.)
- Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yuri Korchev
- Department of Medicine, Imperial College London, W12 0NN London, UK (Y.K.)
- Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Elena V. Sviderskaya
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London SW17 0RE, UK; (E.W.)
| |
Collapse
|
17
|
Hou Y, Yao H, Lin JM. Recent advancements in single-cell metabolic analysis for pharmacological research. J Pharm Anal 2023; 13:1102-1116. [PMID: 38024859 PMCID: PMC10658044 DOI: 10.1016/j.jpha.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 12/01/2023] Open
Abstract
Cellular heterogeneity is crucial for understanding tissue biology and disease pathophysiology. Pharmacological research is being advanced by single-cell metabolic analysis, which offers a technique to identify variations in RNA, proteins, metabolites, and drug molecules in cells. In this review, the recent advancement of single-cell metabolic analysis techniques and their applications in drug metabolism and drug response are summarized. High-precision and controlled single-cell isolation and manipulation are provided by microfluidics-based methods, such as droplet microfluidics, microchamber, open microfluidic probe, and digital microfluidics. They are used in tandem with variety of detection techniques, including optical imaging, Raman spectroscopy, electrochemical detection, RNA sequencing, and mass spectrometry, to evaluate single-cell metabolic changes in response to drug administration. The advantages and disadvantages of different techniques are discussed along with the challenges and future directions for single-cell analysis. These techniques are employed in pharmaceutical analysis for studying drug response and resistance pathway, therapeutic targets discovery, and in vitro disease model evaluation.
Collapse
Affiliation(s)
- Ying Hou
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongren Yao
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Zhu W, Wang J, Luo H, Luo B, Li X, Liu S, Li C. Electrical Characterization and Analysis of Single Cells and Related Applications. BIOSENSORS 2023; 13:907. [PMID: 37887100 PMCID: PMC10605054 DOI: 10.3390/bios13100907] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 10/28/2023]
Abstract
Biological parameters extracted from electrical signals from various body parts have been used for many years to analyze the human body and its behavior. In addition, electrical signals from cancer cell lines, normal cells, and viruses, among others, have been widely used for the detection of various diseases. Single-cell parameters such as cell and cytoplasmic conductivity, relaxation frequency, and membrane capacitance are important. There are many techniques available to characterize biomaterials, such as nanotechnology, microstrip cavity resonance measurement, etc. This article reviews single-cell isolation and sorting techniques, such as the micropipette separation method, separation and sorting system (dual electrophoretic array system), DEPArray sorting system (dielectrophoretic array system), cell selector sorting system, and microfluidic and valve devices, and discusses their respective advantages and disadvantages. Furthermore, it summarizes common single-cell electrical manipulations, such as single-cell amperometry (SCA), electrical impedance sensing (EIS), impedance flow cytometry (IFC), cell-based electrical impedance (CEI), microelectromechanical systems (MEMS), and integrated microelectrode array (IMA). The article also enumerates the application and significance of single-cell electrochemical analysis from the perspectives of CTC liquid biopsy, recombinant adenovirus, tumor cells like lung cancer DTCs (LC-DTCs), and single-cell metabolomics analysis. The paper concludes with a discussion of the current limitations faced by single-cell analysis techniques along with future directions and potential application scenarios.
Collapse
Affiliation(s)
- Weitao Zhu
- Clinical Medicine (Eight-Year Program), West China School of Medicine, Sichuan University, Chengdu 610044, China; (W.Z.); (J.W.)
| | - Jiaao Wang
- Clinical Medicine (Eight-Year Program), West China School of Medicine, Sichuan University, Chengdu 610044, China; (W.Z.); (J.W.)
| | - Hongzhi Luo
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi 563002, China;
| | - Binwen Luo
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Xue Li
- Sichuan Hanyuan County People’s Hospital, Hanyuan 625300, China;
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China;
| |
Collapse
|
19
|
Chen CS, Yokokawa AS, Tseng KH, Wang MH, Ma KSK, Wan CF. A novel method for synthesis of carbon dots and their applications in reactive oxygen species (ROS) and glucose detections. RSC Adv 2023; 13:28250-28261. [PMID: 37753395 PMCID: PMC10519282 DOI: 10.1039/d3ra01795h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
A simple and novel method is proposed for preparation of water-soluble fluorescent carbon dots (C-dots), which have potential to be applied in detecting reactive oxygen species (ROS). The C-dots with high fluorescence quantum yield were created by hydrothermal methods with lactose as the carbon source and tris(hydroxylmethyl)aminomethane (Tris) as the surface passivation reagent. The C-dots have some unique characteristics such as excellent biocompatibility with a broad pH working range of 5-11 and high fluorescence, which makes them especially useful in the bio-detection field. The optical properties, surface groups, and element components of the prepared C-dots have been systematically studied by fluorescence spectroscopy. This facile approach is efficient and environmentally friendly and allows large-scale production of the C-dots without any further post-treatment. The C-dots have been adopted as probes for fluorescence turn-off detection owing to their high sensitivity to the hydroxyl radical. The detection limit can reach ∼0.1 μM under optimized conditions when using hydrogen peroxide as the source for generating ROS. Moreover, when paired with glucose oxidase, these C-dots can track glucose concentrations in samples. This adaptability suggests their potential in detecting various metabolites, paving the way for practical uses in disease detection.
Collapse
Affiliation(s)
- Chao-Sheng Chen
- Department of Life Science, Imperial College London London UK
| | | | - Kuan-Hsun Tseng
- Department of Life Science, National Taiwan Normal University Taipei Taiwan
| | - Ming-Hsu Wang
- Center for General Education, Affiliated with College of Interdisciplinary Studies, Taipei Medical University Taipei Taiwan
| | - Kevin Sheng-Kai Ma
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University Taipei Taiwan
- Department of Dentistry, Chung Shan Medical University and Hospital Taichung Taiwan
| | - Chin-Feng Wan
- Department of Medical Applied Chemistry, Chung Shan Medical University Taichung Taiwan
| |
Collapse
|
20
|
Popova AD, Sheveyko AN, Kuptsov KA, Advakhova DY, Karyagina AS, Gromov AV, Krivozubov MS, Orlova PA, Volkov AV, Slukin PV, Ignatov SG, Shubina IZ, Ilnitskaya AS, Gloushankova NA, Timoshenko RV, Erofeev AS, Shtansky DV. Osteoconductive, Osteogenic, and Antipathogenic Plasma Electrolytic Oxidation Coatings on Titanium Implants with BMP-2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37274-37289. [PMID: 37499236 DOI: 10.1021/acsami.3c08954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We report a one-pot plasma electrolytic oxidation (PEO) strategy for forming a multi-element oxide layer on the titanium surface using complex electrolytes containing Na2HPO4, Ca(OH)2, (NH2)2CO, Na2SiO3, CuSO4, and KOH compounds. For even better bone implant ingrowth, PEO coatings were additionally loaded with bone morphogenetic protein-2 (BMP-2). The samples were tested in vivo in a mouse craniotomy model. Tests for bactericidal and fungicidal activity were carried out using clinically isolated multi-drug-resistant Escherichia coli (E. coli) K261, E. coli U20, methicillin-resistant Staphylococcus aureus (S. aureus) CSA154 bacterial strains, and Neurospora crassa (N. crassa) and Candida albicans (C. albicans) D2528/20 fungi. The PEO-Cu coating effectively inactivated both Gram-positive and Gram-negative bacteria at low concentrations of Cu2+ ions: minimal bactericidal concentration for E. coli and N. crassa (99.9999%) and minimal inhibitory concentration (99.0%) for S. aureus were 5 ppm. For all studied bacterial and fungal strains, PEO-Cu coating completely prevented the formation of bacterial and fungal biofilms. PEO and PEO-Cu coatings demonstrated bone remodeling and moderate osteoconductivity in vivo, while BMP-2 significantly enhanced osteoconduction and osteogenesis. The obtained results are encouraging and indicate that Ti-based materials with PEO coatings loaded with BMP-2 can be widely used in customized medicine as implants for orthopedics and cranio-maxillofacial surgery.
Collapse
Affiliation(s)
- Anastasiya D Popova
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | | | | | - Darya Yu Advakhova
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Anna S Karyagina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow 123098, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gori 1, Str. 40, Moscow 119992, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia
| | - Alexander V Gromov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow 123098, Russia
| | - Mikhail S Krivozubov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow 123098, Russia
| | - Polina A Orlova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str. 18, Moscow 123098, Russia
| | - Alexey V Volkov
- The Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
| | - Pavel V Slukin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia, National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Sergei G Ignatov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia, National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Irina Zh Shubina
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Alla S Ilnitskaya
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Natalia A Gloushankova
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - Roman V Timoshenko
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Alexander S Erofeev
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| |
Collapse
|
21
|
Savin N, Erofeev A, Timoshenko R, Vaneev A, Garanina A, Salikhov S, Grammatikova N, Levshin I, Korchev Y, Gorelkin P. Investigation of the Antifungal and Anticancer Effects of the Novel Synthesized Thiazolidinedione by Ion-Conductance Microscopy. Cells 2023; 12:1666. [PMID: 37371136 DOI: 10.3390/cells12121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
In connection with the emergence of new pathogenic strains of Candida, the search for more effective antifungal drugs becomes a challenge. Part of the preclinical trials of such drugs can be carried out using the innovative ion-conductance microscopy (ICM) method, whose unique characteristics make it possible to study the biophysical characteristics of biological objects with high accuracy and low invasiveness. We conducted a study of a novel synthesized thiazolidinedione's antimicrobial (for Candida spp.) and anticancer properties (on samples of the human prostate cell line PC3), and its drug toxicity (on a sample of the human kidney cell line HEK293). We used a scanning ion-conductance microscope (SICM) to obtain the topography and mechanical properties of cells and an amperometric method using Pt-nanoelectrodes to register reactive oxygen species (ROS) expression. All data and results are obtained and presented for the first time.
Collapse
Affiliation(s)
- Nikita Savin
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia
| | - Alexander Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia
| | - Roman Timoshenko
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia
| | - Alexander Vaneev
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia
| | - Anastasiia Garanina
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia
| | - Sergey Salikhov
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia
| | | | - Igor Levshin
- G. F. Gauze Research Institute for New Antibiotics, Moscow 119021, Russia
| | - Yuri Korchev
- Faculty of Medicine, Imperial College London, London SW7 2DD, UK
| | - Petr Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia
| |
Collapse
|
22
|
Pleskova SN, Erofeev AS, Vaneev AN, Gorelkin PV, Bobyk SZ, Kolmogorov VS, Bezrukov NA, Lazarenko EV. ROS Production by a Single Neutrophil Cell and Neutrophil Population upon Bacterial Stimulation. Biomedicines 2023; 11:biomedicines11051361. [PMID: 37239032 DOI: 10.3390/biomedicines11051361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The reactive oxygen species (ROS) production by a single neutrophil after stimulation with S. aureus and E. coli was estimated by an electrochemical amperometric method with a high time resolution. This showed significant variability in the response of a single neutrophil to bacterial stimulation, from a "silent cell" to a pronounced response manifested by a series of chronoamperometric spikes. The amount of ROS produced by a single neutrophil under the influence of S. aureus was 5.5-fold greater than that produced under the influence of E. coli. The response of a neutrophil granulocyte population to bacterial stimulation was analyzed using luminol-dependent biochemiluminescence (BCL). The stimulation of neutrophils with S. aureus, as compared to stimulation with E. coli, caused a total response in terms of ROS production that was seven-fold greater in terms of the integral value of the light sum and 13-fold greater in terms of the maximum peak value. The method of ROS detection at the level of a single cell indicated the functional heterogeneity of the neutrophil population, but the specificity of the cellular response to different pathogens was the same at the cellular and population levels.
Collapse
Affiliation(s)
- Svetlana N Pleskova
- Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Department "Nanotechnology and Biotechnology", R.E. Alekseev Technical State University of Nizhny Novgorod, 603155 Nizhny Novgorod, Russia
| | - Alexander S Erofeev
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Alexander N Vaneev
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Petr V Gorelkin
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
| | - Sergey Z Bobyk
- Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Vasilii S Kolmogorov
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Nikolay A Bezrukov
- Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Ekaterina V Lazarenko
- Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
23
|
Shan M, Wang H, Li S, Zhang X, Yang G, Shan Y. Distinguishing the Cellular Transport of Folic Acid Conjugated Nano-Drugs among Different Cell Lines by Using Force Tracing Technique. Mol Pharm 2023. [PMID: 37083400 DOI: 10.1021/acs.molpharmaceut.2c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Folic acid (FA) is a ligand that has been renowned for its strong binding to FA receptor (FR), and the robustness of the specific interaction has led to the generation of multitudinous tumor-targeted nano-drug delivery systems. However, selecting the appropriate FA targeted nano-drugs according to types of cancerous cells to achieve a high effect is critical. Understanding of how the drug is transported through the cell membrane and is delivered intracellularly is very important in screening ideal targeted nano-drugs for cancerous changes in different organs. Herein, by using a force tracing technique based on atomic force microscopy (AFM), the dynamic process of FA-polyamidoamine-Doxorubicin (FA-PAMAM-DOX) entry into different tumor cells (HeLa and A549) and normal cells (Vero) was monitored in real time. The cell membrane transport efficacy of FA-PAMAM-DOX in tumor cells with an FR high overexpression level (HeLa) and FR low overexpression level (A549) is analyzed, which is significantly higher than that in normal cells (Vero), especially for HeLa cells. Subsequently, the intracellular delivery efficiency of FA-PAMAM-DOX in different cell lines was measured by using fluorescence imaging and AFM-based nanoindentation techniques. This report will help to discover the cellular transport mechanism of nano-drugs and screen out optimal therapeutic nano-drugs for different types of tumors.
Collapse
Affiliation(s)
- Meirong Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Hui Wang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Siying Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Xiaowan Zhang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Guocheng Yang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
24
|
Krasnovskaya OO, Akasov RA, Spector DV, Pavlov KG, Bubley AA, Kuzmin VA, Kostyukov AA, Khaydukov EV, Lopatukhina EV, Semkina AS, Vlasova KY, Sypalov SA, Erofeev AS, Gorelkin PV, Vaneev AN, Nikitina VN, Skvortsov DA, Ipatova DA, Mazur DM, Zyk NV, Sakharov DA, Majouga AG, Beloglazkina EK. Photoinduced Reduction of Novel Dual-Action Riboplatin Pt(IV) Prodrug. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12882-12894. [PMID: 36854172 DOI: 10.1021/acsami.3c01771] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Controlled photoreduction of Pt(IV) prodrugs is a challenging task due to the possibility of targeted light-controlled activation of anticancer agents without affecting healthy tissues. Also, a conjugation of photosensitizers and clinically used platinum drugs into one Pt(IV) prodrug allows combining photodynamic therapy and chemotherapy approaches into one molecule. Herein, we designed the cisplatin-based Pt(IV) prodrug Riboplatin with tetraacetylriboflavin in the axial position. A novel Pt(IV) prodrug is able to act both as a photodynamic therapy (PDT) agent through the conversion of ground-state 3O2 to excited-state 1O2 and as an agent of photoactivated chemotherapy (PACT) through releasing of cisplatin under gentle blue light irradiation, without the requirement of a reducing agent. The light-induced behavior of Riboplatin was investigated using an electrochemical sensor in MCF-7 tumor spheroids. Photocontrolled cisplatin release and ROS generation were detected electrochemically in real time. This appears to be the first confirmation of simultaneous photoactivated release of anticancer drug cisplatin and ROS from a dual-action Pt(IV) prodrug observed from the inside of living tumor spheroids.
Collapse
Affiliation(s)
- Olga O Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Roman A Akasov
- I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia
- Federal Scientific Research Center "Crystallography and Photonics" Russian Academy of Sciences, Leninskiy Prospect 59, Moscow 119333, Russia
| | - Daniil V Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Kirill G Pavlov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Anna A Bubley
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Vladimir A Kuzmin
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow 119334, Russia
| | - Alexey A Kostyukov
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow 119334, Russia
| | - Evgeny V Khaydukov
- I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia
- Federal Scientific Research Center "Crystallography and Photonics" Russian Academy of Sciences, Leninskiy Prospect 59, Moscow 119333, Russia
| | - Elena V Lopatukhina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alevtina S Semkina
- Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia
- Department of Basic and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Kropot-kinskiy 23, Moscow 119034, Russia
| | - Kseniya Yu Vlasova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia
| | - Sergey A Sypalov
- Core Facility Center "Arktika", Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Alexander S Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Petr V Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Alexander N Vaneev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Vita N Nikitina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitrii A Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Daria A Ipatova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitrii M Mazur
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Nikolay V Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitry A Sakharov
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Alexander G Majouga
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| |
Collapse
|
25
|
Jaenen V, Bijnens K, Heleven M, Artois T, Smeets K. Live Imaging in Planarians: Immobilization and Real-Time Visualization of Reactive Oxygen Species. Methods Mol Biol 2023; 2680:209-229. [PMID: 37428380 DOI: 10.1007/978-1-0716-3275-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Imaging of living animals allows the study of metabolic processes in relation to cellular structures or larger functional entities. To enable in vivo imaging during long-term time-lapses in planarians, we combined and optimized existing protocols, resulting in an easily reproducible and inexpensive procedure. Immobilization with low-melting-point agarose eliminates the use of anesthetics, avoids interfering with the animal during imaging-functionally or physically-and allows recovering the organisms after the imaging procedure. As an example, we used the immobilization workflow to image the highly dynamic and fast-changing reactive oxygen species (ROS) in living animals. These reactive signaling molecules can only be studied in vivo and mapping their location and dynamics during different physiological conditions is crucial to understand their role in developmental processes and regeneration. In the current protocol, we describe both the immobilization and ROS detection procedure. We used the intensity of the signals together with pharmacological inhibitors to validate the signal specificity and to distinguish it from the autofluorescent nature of the planarian.
Collapse
Affiliation(s)
- Vincent Jaenen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Karolien Bijnens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Martijn Heleven
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tom Artois
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
26
|
Tikhonova TN, Kolmogorov VS, Timoshenko RV, Vaneev AN, Cohen-Gerassi D, Osminkina LA, Gorelkin PV, Erofeev AS, Sysoev NN, Adler-Abramovich L, Shirshin EA. Sensing Cells-Peptide Hydrogel Interaction In Situ via Scanning Ion Conductance Microscopy. Cells 2022; 11:cells11244137. [PMID: 36552900 PMCID: PMC9776472 DOI: 10.3390/cells11244137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Peptide-based hydrogels were shown to serve as good matrices for 3D cell culture and to be applied in the field of regenerative medicine. The study of the cell-matrix interaction is important for the understanding of cell attachment, proliferation, and migration, as well as for the improvement of the matrix. Here, we used scanning ion conductance microscopy (SICM) to study the growth of cells on self-assembled peptide-based hydrogels. The hydrogel surface topography, which changes during its formation in an aqueous solution, were studied at nanoscale resolution and compared with fluorescence lifetime imaging microscopy (FLIM). Moreover, SICM demonstrated the ability to map living cells inside the hydrogel. A zwitterionic label-free pH nanoprobe with a sensitivity > 0.01 units was applied for the investigation of pH mapping in the hydrogel to estimate the hydrogel applicability for cell growth. The SICM technique that was applied here to evaluate the cell growth on the peptide-based hydrogel can be used as a tool to study functional living cells.
Collapse
Affiliation(s)
- Tatiana N. Tikhonova
- Department of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1/2, 119991 Moscow, Russia
| | - Vasilii S. Kolmogorov
- Laboratory of Biophysics, National University of Science and Technology “MISiS”, 4 Leninskiy Prospekt, 119049 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Roman V. Timoshenko
- Laboratory of Biophysics, National University of Science and Technology “MISiS”, 4 Leninskiy Prospekt, 119049 Moscow, Russia
| | - Alexander N. Vaneev
- Laboratory of Biophysics, National University of Science and Technology “MISiS”, 4 Leninskiy Prospekt, 119049 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Dana Cohen-Gerassi
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, The Center for Nanoscience and Nanotechnology, The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Liubov A. Osminkina
- Department of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1/2, 119991 Moscow, Russia
| | - Petr V. Gorelkin
- Laboratory of Biophysics, National University of Science and Technology “MISiS”, 4 Leninskiy Prospekt, 119049 Moscow, Russia
| | - Alexander S. Erofeev
- Laboratory of Biophysics, National University of Science and Technology “MISiS”, 4 Leninskiy Prospekt, 119049 Moscow, Russia
| | - Nikolay N. Sysoev
- Department of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1/2, 119991 Moscow, Russia
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, The Center for Nanoscience and Nanotechnology, The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Evgeny A. Shirshin
- Department of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1/2, 119991 Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-4959391104
| |
Collapse
|
27
|
Synthesis and Preclinical Evaluation of Small-Molecule Prostate-Specific Membrane Antigen-Targeted Abiraterone Conjugate. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248795. [PMID: 36557929 PMCID: PMC9783881 DOI: 10.3390/molecules27248795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Prostate cancer is the second most common type of cancer among men. The main method of its treatment is androgen deprivation therapy, which has a wide range of side effects. One of the solutions to this challenge is the targeted delivery of drugs to prostate cancer cells. In this study, we performed the synthesis of a novel small-molecule PSMA-targeted conjugate based on abiraterone. Cytotoxicity, the induction of intracellular reactive oxygen species, and P450-cytochrome species inhibition were investigated for this conjugate PSMA-abiraterone. The conjugate demonstrated a preferential effect on prostate tumor cells, remaining inactive at up to 100 µM in human fibroblast cells. In addition, it revealed preferential efficacy, specifically on PSMA-expressing lines with a 65% tumor growth inhibition level on 22Rv1 (PSMA+) xenografts after 14-fold oral administration of PSMA-Abi at a single dose of 500 mg/kg (7.0 g/kg total dose) was observed. This compound showed significantly reduced acute toxicity with comparable efficacy compared to AbiAc.
Collapse
|
28
|
Sciurti E, Biscaglia F, Prontera C, Giampetruzzi L, Blasi L, Francioso L. Nanoelectrodes for Intracellular and Intercellular electrochemical detection: working principles, fabrication techniques and applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Abakumova T, Vaneev A, Naumenko V, Shokhina A, Belousov V, Mikaelyan A, Balysheva K, Gorelkin P, Erofeev A, Zatsepin T. Intravital electrochemical nanosensor as a tool for the measurement of reactive oxygen/nitrogen species in liver diseases. J Nanobiotechnology 2022; 20:497. [DOI: 10.1186/s12951-022-01688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractReactive oxygen/nitrogen species (ROS/RNS) are formed during normal cellular metabolism and contribute to its regulation, while many pathological processes are associated with ROS/RNS imbalances. Modern methods for measuring ROS/RNS are mainly based on the use of inducible fluorescent dyes and protein-based sensors, which have several disadvantages for in vivo use. Intravital electrochemical nanosensors can be used to quantify ROS/RNS with high sensitivity without exogenous tracers and allow dynamic ROS/RNS measurements in vivo. Here, we developed a method for quantifying total ROS/RNS levels in the liver and evaluated our setup in live mice using three common models of liver disease associated with ROS activation: acute liver injury with CCl4, partial hepatectomy (HE), and induced hepatocellular carcinoma (HCC). We have demonstrated using intravital electrochemical detection that any exposure to the peritoneum in vivo leads to an increase in total ROS/RNS levels, from a slight increase to an explosion, depending on the procedure. Analysis of the total ROS/RNS level in a partial hepatectomy model revealed oxidative stress, both in mice 24 h after HE and in sham-operated mice. We quantified dose-dependent ROS/RNS production in CCl4-induced injury with underlying neutrophil infiltration and cell death. We expect that in vivo electrochemical measurements of reactive oxygen/nitrogen species in the liver may become a routine approach that provides valuable data in research and preclinical studies.
Collapse
|
30
|
Ochneva A, Zorkina Y, Abramova O, Pavlova O, Ushakova V, Morozova A, Zubkov E, Pavlov K, Gurina O, Chekhonin V. Protein Misfolding and Aggregation in the Brain: Common Pathogenetic Pathways in Neurodegenerative and Mental Disorders. Int J Mol Sci 2022; 23:14498. [PMID: 36430976 PMCID: PMC9695177 DOI: 10.3390/ijms232214498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Mental disorders represent common brain diseases characterized by substantial impairments of social and cognitive functions. The neurobiological causes and mechanisms of psychopathologies still have not been definitively determined. Various forms of brain proteinopathies, which include a disruption of protein conformations and the formation of protein aggregates in brain tissues, may be a possible cause behind the development of psychiatric disorders. Proteinopathies are known to be the main cause of neurodegeneration, but much less attention is given to the role of protein impairments in psychiatric disorders' pathogenesis, such as depression and schizophrenia. For this reason, the aim of this review was to discuss the potential contribution of protein illnesses in the development of psychopathologies. The first part of the review describes the possible mechanisms of disruption to protein folding and aggregation in the cell: endoplasmic reticulum stress, dysfunction of chaperone proteins, altered mitochondrial function, and impaired autophagy processes. The second part of the review addresses the known proteins whose aggregation in brain tissue has been observed in psychiatric disorders (amyloid, tau protein, α-synuclein, DISC-1, disbindin-1, CRMP1, SNAP25, TRIOBP, NPAS3, GluA1, FABP, and ankyrin-G).
Collapse
Affiliation(s)
- Aleksandra Ochneva
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Yana Zorkina
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Abramova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Pavlova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Valeriya Ushakova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anna Morozova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Eugene Zubkov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Konstantin Pavlov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Gurina
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Vladimir Chekhonin
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- National University of Science and Technology “MISiS”, Leninskiy Avenue 4, 119049 Moscow, Russia
| |
Collapse
|
31
|
Vaneev AN, Timoshenko RV, Gorelkin PV, Klyachko NL, Korchev YE, Erofeev AS. Nano- and Microsensors for In Vivo Real-Time Electrochemical Analysis: Present and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3736. [PMID: 36364512 PMCID: PMC9656311 DOI: 10.3390/nano12213736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 05/14/2023]
Abstract
Electrochemical nano- and microsensors have been a useful tool for measuring different analytes because of their small size, sensitivity, and favorable electrochemical properties. Using such sensors, it is possible to study physiological mechanisms at the cellular, tissue, and organ levels and determine the state of health and diseases. In this review, we highlight recent advances in the application of electrochemical sensors for measuring neurotransmitters, oxygen, ascorbate, drugs, pH values, and other analytes in vivo. The evolution of electrochemical sensors is discussed, with a particular focus on the development of significant fabrication schemes. Finally, we highlight the extensive applications of electrochemical sensors in medicine and biological science.
Collapse
Affiliation(s)
- Alexander N. Vaneev
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman V. Timoshenko
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Petr V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Natalia L. Klyachko
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yuri E. Korchev
- Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Alexander S. Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
32
|
Spector DV, Erofeev AS, Gorelkin PV, Vaneev AN, Akasov RA, Ul'yanovskiy NV, Nikitina VN, Semkina AS, Vlasova KY, Soldatov MA, Trigub AL, Skvortsov DA, Finko AV, Zyk NV, Sakharov DA, Majouga AG, Beloglazkina EK, Krasnovskaya OO. Electrochemical Detection of a Novel Pt(IV) Prodrug with the Metronidazole Axial Ligand in the Hypoxic Area. Inorg Chem 2022; 61:14705-14717. [PMID: 36047922 DOI: 10.1021/acs.inorgchem.2c02062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report herein a Pt(IV) prodrug with metronidazole in axial positions Pt-Mnz. The nitroaromatic axial ligand was conjugated with a cisplatin scaffold to irreversibly reduce under hypoxic conditions, thereby retaining the Pt(IV) prodrug in the area of hypoxia. X-ray near-edge adsorption spectroscopy (XANES) on dried drug-preincubated tumor cell samples revealed a gradual release of cisplatin from the Pt-Mnz prodrug instead of rapid intracellular degradation. The ability of the prodrug to penetrate into three-dimensional (3D) spheroid cellular cultures was evaluated by a novel electrochemical assay via a platinum-coated carbon nanoelectrode, capable of single-cell measurements. Using a unique technique of electrochemical measurements in single tumor spheroids, we were able to both detect the real-time response of the axial ligand to hypoxia and establish the depth of penetration of the drug into the tumor model.
Collapse
Affiliation(s)
- Daniil V Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Alexander S Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Petr V Gorelkin
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Alexander N Vaneev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Roman A Akasov
- I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia.,Federal Scientific Research Center "Crystallography and Photonics" Russian Academy of Sciences, Leninskiy Prospect 59, Moscow 119333, Russia
| | - Nikolay V Ul'yanovskiy
- Core Facility Center "Arktika," Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Vita N Nikitina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Alevtina S Semkina
- Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia.,Department of Basic and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Kropotkinskiy 23, Moscow 119034, Russia
| | - Kseniya Yu Vlasova
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia.,Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia
| | - Mikhail A Soldatov
- The Smart Materials Research Institute Southern Federal University Sladkova, 178/24, Rostov-on-Don 344090, Russia
| | - Alexander L Trigub
- National Research Center "Kurchatov Institute", Akademika Kurcha-tova pl.,1, Moscow 123182, Russia
| | - Dmitry A Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Alexander V Finko
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Nikolay V Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Dmitry A Sakharov
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Alexander G Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia.,Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Olga O Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| |
Collapse
|
33
|
Spector DV, Pavlov KG, Akasov RA, Vaneev AN, Erofeev AS, Gorelkin PV, Nikitina VN, Lopatukhina EV, Semkina AS, Vlasova KY, Skvortsov DA, Roznyatovsky VA, Ul'yanovskiy NV, Pikovskoi II, Sypalov SA, Garanina AS, Vodopyanov SS, Abakumov MA, Volodina YL, Markova AA, Petrova AS, Mazur DM, Sakharov DA, Zyk NV, Beloglazkina EK, Majouga AG, Krasnovskaya OO. Pt(IV) Prodrugs with Non-Steroidal Anti-inflammatory Drugs in the Axial Position. J Med Chem 2022; 65:8227-8244. [PMID: 35675651 DOI: 10.1021/acs.jmedchem.1c02136] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report herein the design, synthesis, and biological investigation of a series of novel Pt(IV) prodrugs with non-steroidal anti-inflammatory drugs naproxen, diclofenac, and flurbiprofen, as well as these with stearic acid in the axial position. Six Pt(IV) prodrugs 5-10 were designed, which showed superior antiproliferative activity compared to cisplatin as well as an ability to overcome tumor cell line resistance to cisplatin. By tuning the drug lipophilicity via variation of the axial ligands, the most potent Pt(IV) prodrug 7 was obtained, with an enhanced cellular accumulation of up to 153-fold that of cisplatin and nanomolar cytotoxicity both in 2D and 3D cell cultures. Pt2+ species were detected at different depths of MCF-7 spheroids after incubation with Pt(IV) prodrugs using a Pt-coated carbon nanoelectrode. Cisplatin accumulation in vivo in the murine mammary EMT6 tumor tissue of BALB/c mice after Pt(IV) prodrug injection was proved electrochemically as well. The drug tolerance study on BALB/c mice showed good tolerance of 7 in doses up to 8 mg/kg.
Collapse
Affiliation(s)
- Daniil V Spector
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Kirill G Pavlov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Roman A Akasov
- I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia.,Federal Scientific Research Center "Crystallography and Photonics" Russian Academy of Sciences, Leninskiy Prospect 59, Moscow 119333, Russia
| | - Alexander N Vaneev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Alexander S Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Petr V Gorelkin
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Vita N Nikitina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Elena V Lopatukhina
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Alevtina S Semkina
- Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia.,Department of Basic and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Kropotkinskiy 23, Moscow 119034, Russia
| | - Kseniya Yu Vlasova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.,Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia
| | - Dmitrii A Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Vitaly A Roznyatovsky
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Nikolay V Ul'yanovskiy
- Core Facility Center "Arktika", Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Ilya I Pikovskoi
- Core Facility Center "Arktika", Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Sergey A Sypalov
- Core Facility Center "Arktika", Northern (Arctic) Federal University, Arkhangelsk 163002, Russia
| | - Anastasiia S Garanina
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Stepan S Vodopyanov
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Maxim A Abakumov
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia.,Pirogov Russian National Research Medical University (RNRMU), Ostrovitianov 1, Moscow 117997, Russia
| | - Yulia L Volodina
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe highway 23, Moscow 115478, Russia
| | - Alina A Markova
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow 119334, Russia.,A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilova 28, Moscow 119991, Russia
| | - Albina S Petrova
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya str. 6, Moscow 117198, Russia.,State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Marshal Novikov str. 23, Moscow 123098, Russia
| | - Dmitrii M Mazur
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitry A Sakharov
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Nikolay V Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexander G Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia.,Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russia
| | - Olga O Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia.,National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| |
Collapse
|
34
|
Song Q, Li Q, Yan J, Song Y. Echem methods and electrode types of the current in vivo electrochemical sensing. RSC Adv 2022; 12:17715-17739. [PMID: 35765338 PMCID: PMC9199085 DOI: 10.1039/d2ra01273a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
For a long time, people have been eager to realize continuous real-time online monitoring of biological compounds. Fortunately, in vivo electrochemical biosensor technology has greatly promoted the development of biological compound detection. This article summarizes the existing in vivo electrochemical detection technologies into two categories: microdialysis (MD) and microelectrode (ME). Then we summarized and discussed the electrode surface time, pollution resistance, linearity and the number of instances of simultaneous detection and analysis, the composition and characteristics of the sensor, and finally, we also predicted and prospected the development of electrochemical technology and sensors in vivo.
Collapse
Affiliation(s)
- Qiuye Song
- The Affiliated Zhangjiagang Hospital of Soochow University Zhangjiagang 215600 Jiangsu People's Republic of China +86 791 87802135 +86 791 87802135
| | - Qianmin Li
- Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine 1688 Meiling Road Nanchang 330006 China
| | - Jiadong Yan
- The Affiliated Zhangjiagang Hospital of Soochow University Zhangjiagang 215600 Jiangsu People's Republic of China +86 791 87802135 +86 791 87802135
| | - Yonggui Song
- Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine 1688 Meiling Road Nanchang 330006 China.,Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College 1688 Meiling Road Nanchang 330006 China
| |
Collapse
|
35
|
Liu YL, Zhao YX, Li YB, Ye ZY, Zhang JJ, Zhou Y, Gao TY, Li F. Recent Advances of Nanoelectrodes for Single-Cell Electroanalysis: From Extracellular, Intercellular to Intracellular. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00223-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Vaneev AN, Gorelkin PV, Krasnovskaya OO, Akasov RA, Spector DV, Lopatukhina EV, Timoshenko RV, Garanina AS, Zhang Y, Salikhov SV, Edwards CRW, Klyachko NL, Takahashi Y, Majouga AG, Korchev YE, Erofeev AS. In Vitro/ In Vivo Electrochemical Detection of Pt(II) Species. Anal Chem 2022; 94:4901-4905. [PMID: 35285614 DOI: 10.1021/acs.analchem.2c00136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The biodistribution of chemotherapy compounds within tumor tissue is one of the main challenges in the development of antineoplastic drugs, and techniques for simple, inexpensive, sensitive, and selective detection of various analytes in tumors are of great importance. In this paper we propose the use of platinized carbon nanoelectrodes (PtNEs) for the electrochemical detection of platinum-based drugs in various biological models, including single cells and tumor spheroids in vitro and inside solid tumors in vivo. We have demonstrated the quantitative direct detection of Pt(II) in breast adenocarcinoma MCF-7 cells treated with cisplatin and a cisplatin-based DNP prodrug. To realize the potential of this technique in advanced tumor models, we measured Pt(II) in 3D tumor spheroids in vitro and in tumor-bearing mice in vivo. The concentration gradient of Pt(II) species correlated with the distance from the sample surface in MCF-7 tumor spheroids. We then performed the detection of Pt(II) species in tumor-bearing mice treated intravenously with cisplatin and DNP. We found that there was deeper penetration of DNP in comparison to cisplatin. This research demonstrates a minimally invasive, real-time electrochemical technique for the study of platinum-based drugs.
Collapse
Affiliation(s)
- Alexander N Vaneev
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia.,Lomonosov Moscow State University, Chemistry Department, Leninskie gory 1,3, Moscow 119991, Russia
| | - Petr V Gorelkin
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Olga O Krasnovskaya
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia.,Lomonosov Moscow State University, Chemistry Department, Leninskie gory 1,3, Moscow 119991, Russia
| | - Roman A Akasov
- Federal Scientific Research Centre "Crystallography and Photonics", Moscow, 119333 Russia.,Sechenov First Moscow State Medical University, Moscow, 119991 Russia
| | - Daniil V Spector
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia.,Lomonosov Moscow State University, Chemistry Department, Leninskie gory 1,3, Moscow 119991, Russia
| | - Elena V Lopatukhina
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Roman V Timoshenko
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Anastasiia S Garanina
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Yanjun Zhang
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Sergey V Salikhov
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | | | - Natalia L Klyachko
- Lomonosov Moscow State University, Chemistry Department, Leninskie gory 1,3, Moscow 119991, Russia
| | - Yasufumi Takahashi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Alexander G Majouga
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Yuri E Korchev
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Imperial College London, Department of Medicine, London W12 0NN, United Kingdom
| | - Alexander S Erofeev
- National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia.,Lomonosov Moscow State University, Chemistry Department, Leninskie gory 1,3, Moscow 119991, Russia
| |
Collapse
|
37
|
de Sire A, Marotta N, Ferrillo M, Agostini F, Sconza C, Lippi L, Respizzi S, Giudice A, Invernizzi M, Ammendolia A. Oxygen-Ozone Therapy for Reducing Pro-Inflammatory Cytokines Serum Levels in Musculoskeletal and Temporomandibular Disorders: A Comprehensive Review. Int J Mol Sci 2022; 23:ijms23052528. [PMID: 35269681 PMCID: PMC8910188 DOI: 10.3390/ijms23052528] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
To date, the application of oxygen-ozone (O2O3) therapy has significantly increased in the common clinical practice in several pathological conditions. However, beyond the favorable clinical effects, the biochemical effects of O2O3 are still far from being understood. This comprehensive review aimed at investigating the state of the art about the effects of O2O3 therapy on pro-inflammatory cytokines serum levels as a modulator of oxidative stress in patients with musculoskeletal and temporomandibular disorders (TMD). The efficacy of O2O3 therapy could be related to the moderate oxidative stress modulation produced by the interaction of ozone with biological components. More in detail, O2O3 therapy is widely used as an adjuvant therapeutic option in several pathological conditions characterized by chronic inflammatory processes and immune overactivation. In this context, most musculoskeletal and temporomandibular disorders (TMD) share these two pathophysiological processes. Despite the paucity of in vivo studies, this comprehensive review suggests that O2O3 therapy might reduce serum levels of interleukin 6 in patients with TMD, low back pain, knee osteoarthritis and rheumatic diseases with a concrete and measurable interaction with the inflammatory pathway. However, to date, further studies are needed to clarify the effects of this promising therapy on inflammatory mediators and their clinical implications.
Collapse
Affiliation(s)
- Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (N.M.); (A.A.)
- Correspondence: ; Tel.: +39-0961712819
| | - Nicola Marotta
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (N.M.); (A.A.)
| | - Martina Ferrillo
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (M.F.); (A.G.)
| | - Francesco Agostini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy;
| | - Cristiano Sconza
- IRCCS Humanitas Research Center, Via Manzoni 56, 20089 Rozzano, Italy; (C.S.); (S.R.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Lorenzo Lippi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy; (L.L.); (M.I.)
| | - Stefano Respizzi
- IRCCS Humanitas Research Center, Via Manzoni 56, 20089 Rozzano, Italy; (C.S.); (S.R.)
| | - Amerigo Giudice
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (M.F.); (A.G.)
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy; (L.L.); (M.I.)
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Antonio Ammendolia
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (N.M.); (A.A.)
| |
Collapse
|
38
|
Lin T, Xu Y, Zhao A, He W, Xiao F. Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: A review. Anal Chim Acta 2022; 1207:339461. [DOI: 10.1016/j.aca.2022.339461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
|
39
|
Reza AHMM, Zhu X, Qin J, Tang Y. Microalgae-Derived Health Supplements to Therapeutic Shifts: Redox-Based Study Opportunities with AIE-Based Technologies. Adv Healthc Mater 2021; 10:e2101223. [PMID: 34468087 DOI: 10.1002/adhm.202101223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules, serve the normal signaling in different cell types. Targeting ROS as the chemical signals, different stress based strategies have been developed to synthesis different anti-inflammatory molecules in microalgae. These molecules could be utilized as health supplements in human. To provoke the ROS-mediated defence systems, their connotation with the associated conditions must be well understood, therefore, proper tools for studying ROS in natural state are essential. The in vivo detection of ROS with phosphorescent probes offers promising opportunities to study these molecules in a non-invasive manner. Most of the common problems in the traditional fluorescent probes are lower photostability, excitation intensity, slow responsiveness, and the microenvironment that challenge their performance. Some ROS-specific aggregationinduced emission luminogens (AIEgens) with pronounced spatial and temporal resolution have recently demonstrated high selectivity, rapid responsiveness, and efficacies to resolve the aggregation-caused quenching issues. The nanocomposites of some AIE-photosensitizers can also improve the ROS-mediated photodynamic therapy. These AIEgens could be used to induce bioactive components in microalgae through altering the ROS signaling, therefore are more auspicious for biomedical research. This study reviews the prospects of AIEgen-based technologies to understand the ROS mediated bio-physiological processes in microalgae for better healthcare benefits.
Collapse
Affiliation(s)
- A. H. M. Mohsinul Reza
- College of Science and Engineering Flinders University South Australia 5042 Australia
- Institute for NanoScale Science and Technology Medical Device Research Institute College of Science and Engineering Flinders University South Australia 5042 Australia
| | - Xiaochen Zhu
- College of Science and Engineering Flinders University South Australia 5042 Australia
- Institute for NanoScale Science and Technology Medical Device Research Institute College of Science and Engineering Flinders University South Australia 5042 Australia
| | - Jianguang Qin
- College of Science and Engineering Flinders University South Australia 5042 Australia
| | - Youhong Tang
- College of Science and Engineering Flinders University South Australia 5042 Australia
- Institute for NanoScale Science and Technology Medical Device Research Institute College of Science and Engineering Flinders University South Australia 5042 Australia
| |
Collapse
|
40
|
A ROS-responsive fluorescent probe detecting experimental colitis by functional polymeric nanoparticles. Int J Pharm 2021; 609:121125. [PMID: 34560209 DOI: 10.1016/j.ijpharm.2021.121125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 12/19/2022]
Abstract
Current evidence shows that oxidative stress plays an essential role in the pathogenesis and progression of inflammatory bowel disease (IBD). TotalROX (λabs/λem = 425/525 nm) is a ratiometric probe with high detection sensitivity and a superior capacity to monitor total cellular oxidative capacity. Herein, we investigated the potential of combining totalROX with an oral nanoparticle delivery system to detect the degree of colitis. This detection system also featured pH-responsive Eudragit S100, hyaluronic acid with high affinity to the CD44 receptor, and chitosan, and demonstrated improved loading efficiency and stability. An experimental mouse model of experimental colitis was induced by dextran sodium sulfate do that we could investigate the ability of our nanoparticles to target the colon and determine the degree of inflammation. We also determined and validated the positive correlation between the fluorescence intensity of the detection product (Ox670, λabs/λem = 650/675 nm) and myeloperoxidase activity (R2 = 0.97) and the histopathological score (R2 = 0.98). TotalROX had significant ability to measure reactive oxygen species (ROS) produced by cells under inflammatory conditions, as confirmed by in vitro experiments with Caco-2 cells. Collectively, the data generated demonstrate that when loaded with totalROX, these functional nanoparticles are promising tools for cellular imaging after oral administration. This is the first description of a ROS-responsive fluorescent probe to evaluate the degree of colitis in experimental animal models and provides a promising approach for the diagnosis of inflammation in IBD with fluorescence-guided colonoscopy.
Collapse
|
41
|
Wang L, Huang C, Hu F, Cui W, Li Y, Li J, Zong J, Liu X, Yuan XA, Liu Z. Preparation and antitumor application of N-phenylcarbazole/triphenylamine-modified fluorescent half-sandwich iridium(III) Schiff base complexes. Dalton Trans 2021; 50:15888-15899. [PMID: 34709269 DOI: 10.1039/d1dt02959b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Four N-phenylcarbazole/triphenylamine-appended half-sandwich iridium(III) salicylaldehyde Schiff base complexes ([(η5-Cpx)Ir(O^N)Cl]) were prepared and characterized. The complexes exhibited similar antitumor activity to cisplatin and effectively inhibited the migration of tumor cells. Furthermore, the complexes showed favourable hydrolytic activity, while remaining relatively stable in the plasma environment, which facilitated the binding of serum proteins and transport through them. These complexes could decrease the mitochondrial membrane potential, catalyze the oxidation of nicotinamide adenine dinucleotide, induce an increase in intracellular reactive oxygen species (ROS), and eventually result in apoptosis. Aided by their suitable fluorescence property, laser confocal detection showed that the complexes followed an energy-dependent mechanism for their cellular uptake, effectively accumulating in the lysosome and leading to lysosomal damage. In summary, the half-sandwich iridium(III) salicylaldehyde Schiff base complexes could induce lysosomal damage, increase intracellular ROS, and lead to apoptosis, which contributed to their antitumor mechanism of oxidation.
Collapse
Affiliation(s)
- Liyan Wang
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Chenyang Huang
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Fenglian Hu
- Liuhang Middle School, Jining High-tech Zone, Jining 272173, China
| | - Wen Cui
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Yiqing Li
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Jingwen Li
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Jiawen Zong
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Xicheng Liu
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Xiang-Ai Yuan
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Zhe Liu
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
42
|
Liu X, Huang L, Qian K. Nanomaterial‐Based Electrochemical Sensors: Mechanism, Preparation, and Application in Biomedicine. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Xun Liu
- State Key Laboratory for Oncogenes and Related Genes Division of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
- School of Biomedical Engineering Institute of Medical Robotics and Med-X Research Institute Shanghai Jiao Tong University Shanghai 200030 P.R. China
| | - Lin Huang
- Stem Cell Research Center Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes Division of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University 160 Pujian Road Shanghai 200127 P.R. China
- School of Biomedical Engineering Institute of Medical Robotics and Med-X Research Institute Shanghai Jiao Tong University Shanghai 200030 P.R. China
| |
Collapse
|
43
|
Vaneev AN, Kost OA, Eremeev NL, Beznos OV, Alova AV, Gorelkin PV, Erofeev AS, Chesnokova NB, Kabanov AV, Klyachko NL. Superoxide Dismutase 1 Nanoparticles (Nano-SOD1) as a Potential Drug for the Treatment of Inflammatory Eye Diseases. Biomedicines 2021; 9:396. [PMID: 33917028 PMCID: PMC8067682 DOI: 10.3390/biomedicines9040396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory eye diseases remain the most common clinical problem in ophthalmology. The secondary processes associated with inflammation, such as overproduction of reactive oxygen species (ROS) and exhaustion of the endogenous antioxidant system, frequently lead to tissue degeneration, vision blurring, and even blindness. Antioxidant enzymes, such as copper-zinc superoxide dismutase (SOD1), could serve as potent scavengers of ROS. However, their delivery into the eye compartments represents a major challenge due to the limited ocular penetration. This work presents a new therapeutic modality specifically formulated for the eye on the basis of multilayer polyion complex nanoparticles of SOD1 (Nano-SOD1), which is characterized by appropriate storage stability and pronounced therapeutic effect without side reactions such as eye irritation; acute, chronic, and reproductive toxicity; allergenicity; immunogenicity; mutagenicity even at high doses. The ability of Nano-SOD1 to reduce inflammatory processes in the eye was examined in vivo in rabbits with a model immunogenic uveitis-the inflammation of the inner vascular tract of the eye. It was shown during preclinical studies that topical instillations of Nano-SOD1 were much more effective compared to the free enzyme in decreasing uveitis manifestations. In particular, we noted statistically significant differences in such inflammatory signs in the eye as corneal and conjunctival edema, iris hyperemia, and fibrin clots. Moreover, Nano-SOD1 penetrates into interior eye structures more effectively than SOD itself and retains enzyme activity in the eye for a much longer period of time, decreasing inflammation and restoring antioxidant activity in the eye. Thus, the presented Nano-SOD1 can be considered as a potentially useful therapeutic agent for the treatment of ocular inflammatory disorders.
Collapse
Affiliation(s)
- Alexander N. Vaneev
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.N.V.); (O.A.K.); (N.L.E.); (A.S.E.); (A.V.K.)
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
| | - Olga A. Kost
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.N.V.); (O.A.K.); (N.L.E.); (A.S.E.); (A.V.K.)
| | - Nikolay L. Eremeev
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.N.V.); (O.A.K.); (N.L.E.); (A.S.E.); (A.V.K.)
| | - Olga V. Beznos
- Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (O.V.B.); (N.B.C.)
| | - Anna V. Alova
- School of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Peter V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
| | - Alexander S. Erofeev
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.N.V.); (O.A.K.); (N.L.E.); (A.S.E.); (A.V.K.)
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
| | - Natalia B. Chesnokova
- Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (O.V.B.); (N.B.C.)
| | - Alexander V. Kabanov
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.N.V.); (O.A.K.); (N.L.E.); (A.S.E.); (A.V.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalia L. Klyachko
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.N.V.); (O.A.K.); (N.L.E.); (A.S.E.); (A.V.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Research Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia
| |
Collapse
|
44
|
Detection of Vascular Reactive Oxygen Species in Experimental Atherosclerosis by High-Resolution Near-Infrared Fluorescence Imaging Using VCAM-1-Targeted Liposomes Entrapping a Fluorogenic Redox-Sensitive Probe. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6685612. [PMID: 33763173 PMCID: PMC7963910 DOI: 10.1155/2021/6685612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 01/06/2023]
Abstract
Excessive production of reactive oxygen species (ROS) and the ensuing oxidative stress are instrumental in all phases of atherosclerosis. Despite the major achievements in understanding the regulatory pathways and molecular sources of ROS in the vasculature, the specific detection and quantification of ROS in experimental models of disease remain a challenge. We aimed to develop a reliable and straightforward imaging procedure to interrogate the ROS overproduction in the vasculature and in various organs/tissues in atherosclerosis. To this purpose, the cell-impermeant ROS Brite™ 700 (RB700) probe that produces bright near-infrared fluorescence upon ROS oxidation was encapsulated into VCAM-1-targeted, sterically stabilized liposomes (VLp). Cultured human endothelial cells (EC) and macrophages (Mac) were used for in vitro experiments. C57BL6/J and ApoE-/- mice were randomized to receive normal or high-fat, cholesterol-rich diet for 10 or 32 weeks. The mice received a retroorbital injection with fluorescent tagged VLp incorporating RB700 (VLp-RB700). After two hours, the specific signals of the oxidized RB700 and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (NBD-DSPE), inserted into liposome bilayers, were measured ex vivo in the mouse aorta and various organs by high-resolution fluorescent imaging. VLp-RB700 was efficiently taken up by cultured human EC and Mac, as confirmed by fluorescence microscopy and spectrofluorimetry. After systemic administration in atherosclerotic ApoE-/- mice, VLp-RB700 were efficiently concentrated at the sites of aortic lesions, as indicated by the augmented NBD fluorescence. Significant increases in oxidized RB700 signal were detected in the aorta and in the liver and kidney of atherosclerotic ApoE-/- mice. RB700 encapsulation into sterically stabilized VCAM-1-sensitive Lp could be a novel strategy for the qualitative and quantitative detection of ROS in the vasculature and various organs and tissues in animal models of disease. The accurate and precise detection of ROS in experimental models of disease could ease the translation of the results to human pathologies.
Collapse
|
45
|
Affiliation(s)
- Keke Hu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Tho D. K. Nguyen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Stefania Rabasco
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Pieter E. Oomen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
- ParaMedir B.V., 1e Energieweg 13, 9301 LK Roden, The Netherlands
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| |
Collapse
|
46
|
Guk DA, Krasnovskaya OO, Moiseeva AA, Tafeenko VA, Ul'yanovskii NV, Kosyakov DS, Pergushov VI, Ya. Melnikov M, Zyk NV, Skvortsov DA, Lopatukhina EV, Vaneev AN, Gorelkin PV, Erofeev AS, Majouga AG, Beloglazkina EK. New Fe–Cu bimetallic coordination compounds based on ω-ferrocene carboxylic acids and 2-thioimidazol-4-ones: structural, mechanistic and biological studies. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00714a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Synthesis, characterization and in vitro cytotoxic investigation of a series of new ferrocene-containing derivatives based on ω-ferrocene carboxylic acids and 2-alkylthioimidazolin-4-ones and their copper complexes have been reported.
Collapse
Affiliation(s)
- Dmitry A. Guk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Olga O. Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Anna A. Moiseeva
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Victor A. Tafeenko
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Nikolay V. Ul'yanovskii
- Core Facility Center “Arktika”, Lomonosov Northern (Arctic) Federal University, nab. SevernoyDviny 17, 163002 Arkhangelsk, Russia
| | - Dmitriy S. Kosyakov
- Core Facility Center “Arktika”, Lomonosov Northern (Arctic) Federal University, nab. SevernoyDviny 17, 163002 Arkhangelsk, Russia
| | - Vladimir I. Pergushov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Mikhail Ya. Melnikov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Nikolay V. Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| | - Dmitry A. Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143026, Russia
| | - Elena V. Lopatukhina
- National University of Science and Technology MISIS, Leninskiy prospect 4, Moscow 101000, Russia
| | - Alexander N. Vaneev
- National University of Science and Technology MISIS, Leninskiy prospect 4, Moscow 101000, Russia
| | - Petr V. Gorelkin
- National University of Science and Technology MISIS, Leninskiy prospect 4, Moscow 101000, Russia
| | - Alexander S. Erofeev
- National University of Science and Technology MISIS, Leninskiy prospect 4, Moscow 101000, Russia
| | - Alexander G. Majouga
- National University of Science and Technology MISIS, Leninskiy prospect 4, Moscow 101000, Russia
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya Ploshchad'9, Moscow 125047, Russia
| | - Elena K. Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia
| |
Collapse
|
47
|
Graceffa V. Therapeutic Potential of Reactive Oxygen Species: State of the Art and Recent Advances. SLAS Technol 2020; 26:140-158. [PMID: 33345675 DOI: 10.1177/2472630320977450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the last decade, several studies have proven that when at low concentration reactive oxygen species (ROS) show an adaptive beneficial effect and posited the idea that they can be utilized as inexpensive and convenient inducers of tissue regeneration. On the other hand, the recent discovery that cancer cells are more sensitive to oxidative damage paved the way for their use in the selective killing of tumor cells, and sensors to monitor ROS production during cancer treatment are under extensive investigation. Nevertheless, although ROS-activated signaling pathways are well established, less is known about the mechanisms underlying the switch from an anabolic to a cytotoxic response. Furthermore, a high variability in biological response is observed between different modalities of administration, cell types, donor ages, eventual concomitant diseases, and external microenvironment. On the other hand, available preclinical studies are scarce, whereas the quest for the most suitable systems for in vivo delivery is still elusive. Furthermore, new strategies to control the temporal pattern of ROS release need to be developed, if considering their tumorigenic potential. This review initially discusses ROS mechanisms of action and their potential application in stem cell biology, tissue engineering, and cancer therapy. It then outlines the state of art of ROS-based drugs and identifies challenges faced in translating ROS research into clinical practice.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Bellanode, Sligo, Ireland.,Department of Life Sciences, Institute of Technology Sligo, Bellanode, Sligo, Ireland
| |
Collapse
|
48
|
McCormick HK, Dick JE. Nanoelectrochemical quantification of single-cell metabolism. Anal Bioanal Chem 2020; 413:17-24. [PMID: 32915282 DOI: 10.1007/s00216-020-02899-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
At the most fundamental level, the behavior of tissue is governed by the activity of its single cells. A detailed examination of single-cell biology is necessary in order to gain a deeper understanding of disease progression. While single-cell genomics and transcriptomics are mature due to robust amplification strategies, the metabolome is difficult to quantify. Nanoelectrochemical techniques stand poised to quantify single-cell metabolism as a result of the fabrication of nanoelectrodes, which allow one to make intracellular electrochemical measurements. This article is concerned with intracellular nanoelectrochemistry, focusing on the sensitive and selective quantification of various metabolites within a single, living cell. We will review the strong literature behind this field, discuss the potential deleterious effects of passing charge inside cells, and provide future outlooks for this promising avenue of inquiry. We also present a mathematical relationship based on Faraday's Law and bulk electrolysis theory to examine the consumption of analyte within a cell due to passing charge at the nanotip.Graphical abstract.
Collapse
Affiliation(s)
- Hadley K McCormick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|