1
|
Herzog M, Verdenik I, Černe K, Kobal B. Extracellular Vesicle Characteristics in Local Fluid and Plasma Measured by Nanoparticle Tracking Analysis Can Help Differentiate High-Grade Serous Carcinoma from Benign Ovarian Pathology. Diagnostics (Basel) 2024; 14:2235. [PMID: 39410639 PMCID: PMC11475832 DOI: 10.3390/diagnostics14192235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Background: High-grade serous carcinoma (HGSC) is the most lethal of gynecological cancers in developed countries. It usually presents late with non-specific symptoms and most cases are diagnosed at an advanced stage, with 5-year overall survival being around 40%. Biomarkers for screening and early diagnosis of this aggressive disease are, thus, a research priority. Extracellular vesicles (EVs) that reflect the cell of origin and that can be isolated from local fluid and plasma by minimally invasive liquid biopsy are such promising biomarkers. Besides EV concentration and molecular profile, which have been the main focus of research for many years, recent studies have also called attention to EV size distribution. The aim of our study was to evaluate the potential of EV concentration and size distribution in local fluid and plasma as diagnostic biomarkers for HGSC. Methods: Paired pretreatment ascites and plasma samples from 37 patients with advanced HGSC and paired pretreatment free peritoneal fluid (FPF) and plasma samples from 40 controls with benign ovarian pathology (BOP) were analyzed using nanoparticle tracking analysis (NTA). Results: We observed a significant difference in EV concentration in local fluid, but not in plasma, between HGSC patients and the control group. We also found a significant difference in EV size distribution in both local fluid and plasma between HGSC patients and the control group. The receiver operating characteristics (ROC) curve analysis of EV characteristics showed excellent diagnostic performance for the mode, D10, and D50 in local fluid and acceptable diagnostic performance for EV concentration and mean EV size in local fluid, as well as for the mode and D10 value in plasma. Conclusions: The results of our study show that EV concentration in local fluid and more importantly EV size distribution in both local fluid and plasma are significantly changed in the presence of HGSC. Future research of size-dependent molecular profiling of EVs could help identify novel diagnostic biomarkers for HGSC.
Collapse
Affiliation(s)
- Maruša Herzog
- Division of Gynecology and Obstetrics, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia; (M.H.); (I.V.)
| | - Ivan Verdenik
- Division of Gynecology and Obstetrics, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia; (M.H.); (I.V.)
| | - Katarina Černe
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Borut Kobal
- Division of Gynecology and Obstetrics, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia; (M.H.); (I.V.)
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Ren B, Li X, Zhang Z, Tai S, Yu S. Exosomes: a significant medium for regulating drug resistance through cargo delivery. Front Mol Biosci 2024; 11:1379822. [PMID: 39135913 PMCID: PMC11317298 DOI: 10.3389/fmolb.2024.1379822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/17/2024] [Indexed: 08/15/2024] Open
Abstract
Exosomes are small lipid nanovesicles with a diameter of 30-150 nm. They are present in all body fluids and are actively secreted by the majority of cells through the process of exocytosis. Exosomes play an essential role in intercellular communication and act as significant molecular carriers in regulating various physiological and pathological processes, such as the emergence of drug resistance in tumors. Tumor-associated exosomes transfer drug resistance to other tumor cells by releasing substances such as multidrug resistance proteins and miRNAs through exosomes. These substances change the cell phenotype, making it resistant to drugs. Tumor-associated exosomes also play a role in impacting drug resistance in other cells, like immune cells and stromal cells. Exosomes alter the behavior and function of these cells to help tumor cells evade immune surveillance and form a tumor niche. In addition, exosomes also export substances such as tumoricidal drugs and neutralizing antibody drugs to help tumor cells resist drug therapy. In this review, we summarize the mechanisms of exosomes in promoting drug resistance by delivering cargo in the context of the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Bixuan Ren
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqing Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihua Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng Tai
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Fu S, Zhu L, Yang X, Jiao Y, Hao G, Liu Y. Extracellular vesicles separated from goat milk by differential centrifugation coupled with sodium citrate pretreatments. Food Chem 2024; 446:138807. [PMID: 38422640 DOI: 10.1016/j.foodchem.2024.138807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Satisfactory separation of milk-derived extracellular vesicles (MEVs) is important for the downstream analysis of the functions and properties of MEVs. However, the presence of abundant proteins in milk hindered the separation of MEVs. In this study, three pretreatment methods, including sodium citrate (SC), acetic acid (AA), and high-speed centrifugation, were adopted to separate MEVs from goat milk while minimizing the impact of protein. The MEVs were then characterized by nanoparticle tracking, transmission electron microscopy and western blotting experiments. The results indicated that pretreatments with AA and SC greatly decreased the impact of casein, but AA pretreatment damaged the surface structure of MEVs. Additionally, the differential centrifugation process resulted in a slight loss of MEVs. Overall, MEVs with small size and high purity can be obtained under 125 k × g centrifugation combined with SC pretreatment, which suggests a promising method for separation of MEVs from goat milk.
Collapse
Affiliation(s)
- Shangchen Fu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Li Zhu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Xi Yang
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-0075, Japan.
| | - Yang Jiao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Guo Hao
- Shaanxi Goat Milk Product Quality Supervision and Inspection Center, Fuping 711700, Shaanxi, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| |
Collapse
|
4
|
Li Y, Wang J, Chen W, Lu H, Zhang Y. Comprehensive review of MS-based studies on N-glycoproteome and N-glycome of extracellular vesicles. Proteomics 2024; 24:e2300065. [PMID: 37474487 DOI: 10.1002/pmic.202300065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed particles that can be released by all type of cells. Whereas, as one of the most common post-translational modifications, glycosylation plays a vital role in various biological functions of EVs, such as EV biogenesis, sorting, and cellular recognition. Nevertheless, compared with studies on RNAs or proteins, those investigating the glycoconjugates of EVs are limited. An in-depth investigation of N-glycosylation of EVs can improve the understanding of the biological functions of EVs and help to exploit EVs from different perspectives. The general focus of studies on glycosylation of EVs primarily includes isolation and characterization of EVs, preparation of glycoproteome/glycome samples and MS analysis. However, the low content of EVs and non-standard separation methods for downstream analysis are the main limitations of these studies. In this review, we highlight the importance of glycopeptide/glycan enrichment and derivatization owing to the low abundance of glycoproteins and the low ionization efficiency of glycans. Diverse fragmentation patterns and professional analytical software are indispensable for analysing glycosylation via MS. Altogether, this review summarises recent studies on glycosylation of EVs, revealing the role of EVs in disease progression and their remarkable potential as biomarkers.
Collapse
Affiliation(s)
- Yang Li
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, P. R. China
| | - Jun Wang
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, P. R. China
| | - Weiyu Chen
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, P. R. China
| | - Haojie Lu
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, P. R. China
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, P. R. China
| | - Ying Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, P. R. China
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, P. R. China
| |
Collapse
|
5
|
Li Y, Fu B, Li Y, Li C, Zhai Y, Feng X, Wang J, Zhang Y, Lu H. O-GlycoIsoQuant: A Novel O-Glycome Quantitative Approach through Superbase Release and Isotopic Girard's P Labeling. Anal Chem 2024; 96:7289-7296. [PMID: 38666489 DOI: 10.1021/acs.analchem.4c01300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Quantitative glycosylation analysis serves as an effective tool for detecting changes in glycosylation patterns in cancer and various diseases. However, compared with N-glycans, O-glycans present challenges in both qualitative and quantitative mass spectrometry analysis due to their low abundance, ease of peeling, lack of a universal enzyme, and difficult accessibility. To address this challenge, we developed O-GlycoIsoQuant, a novel O-glycome quantitative approach utilizing superbase release and isotopic Girard's P labeling. This method facilitates rapid and efficient nonreducing β-elimination to dissociate O-glycans from proteins using the organic superbase, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), combined with light and heavy isotopic Girard's reagent P (GP) labeling for relative quantification of O-glycans by mass spectrometry. Employing this method, labeled O-glycans exhibit a double peak with a mass difference of 5 Da, suitable for stable relative quantification. The O-GlycoIsoQuant method is characterized by its high labeling efficiency, excellent reproducibility (CV < 20%), and good linearity (R2 > 0.99), across a dynamic range spanning a 100-fold range. This method was applied to various complex sample types, including human serum, porcine spermatozoa, human saliva, and urinary extracellular vesicles, detecting 33, 39, 49, and 37 O-glycans, respectively, thereby demonstrating its broad applicability.
Collapse
Affiliation(s)
- Yueyue Li
- Liver Cancer Institute, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bin Fu
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Yang Li
- Liver Cancer Institute, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Chong Li
- Liver Cancer Institute, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yujia Zhai
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Xiaoxiao Feng
- Liver Cancer Institute, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jun Wang
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | | | | |
Collapse
|
6
|
Al-Madhagi H. The Landscape of Exosomes Biogenesis to Clinical Applications. Int J Nanomedicine 2024; 19:3657-3675. [PMID: 38681093 PMCID: PMC11048319 DOI: 10.2147/ijn.s463296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Exosomes are extracellular vesicles that originate from various cells and mediate intercellular communication, altering the behavior or fate of recipient cells. They carry diverse macromolecules, such as lipids, proteins, carbohydrates, and nucleic acids. Environmental stressors can change the exosomal contents of many cells, making them useful for diagnosing many chronic disorders, especially neurodegenerative, cardiovascular, cancerous, and diabetic diseases. Moreover, exosomes can be engineered as therapeutic agents to modulate disease processes. State-of-art techniques are employed to separate exosomes including ultracentrifugation, size-exclusion chromatography and immunoaffinity. However, modern technologies such as aqueous two-phase system as well as microfluidics are gaining attention in the recent years. The article highlighted the composition, biogenesis, and implications of exosomes, as well as the standard and novel methods for isolating them and applying them as biomarkers and therapeutic cargo carriers.
Collapse
Affiliation(s)
- Haitham Al-Madhagi
- Biochemical Technology Program, Faculty of Applied Sciences, Dhamar University, Dhamar, Yemen
| |
Collapse
|
7
|
Sun T, Li M, Liu Q, Yu A, Cheng K, Ma J, Murphy S, McNutt PM, Zhang Y. Insights into optimizing exosome therapies for acute skin wound healing and other tissue repair. Front Med 2024; 18:258-284. [PMID: 38216854 PMCID: PMC11283324 DOI: 10.1007/s11684-023-1031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/15/2023] [Indexed: 01/14/2024]
Abstract
Exosome therapy holds great promise as a novel approach to improve acute skin wound healing. This review provides a comprehensive overview of the current understanding of exosome biology and its potential applications in acute skin wound healing and beyond. Exosomes, small extracellular vesicles secreted by various stem cells, have emerged as potent mediators of intercellular communication and tissue repair. One advantage of exosome therapy is its ability to avoid potential risks associated with stem cell therapy, such as immune rejection or stem cells differentiating into unwanted cell types. However, further research is necessary to optimize exosome therapy, not only in the areas of exosome isolation, characterization, and engineering, but also in determining the optimal dose, timing, administration, and frequency of exosome therapy. Thus, optimization of exosome therapy is critical for the development of more effective and safer exosome-based therapies for acute skin wound healing and other diseases induced by cancer, ischemia, or inflammation. This review provides valuable insights into the potential of exosome therapy and highlights the need for further research to optimize exosome therapy for clinical use.
Collapse
Affiliation(s)
- Tianjing Sun
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Mo Li
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Qi Liu
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Anyong Yu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Jianxing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Sean Murphy
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Patrick Michael McNutt
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Yuanyuan Zhang
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
8
|
Heidarpour M, Krockenberger M, Bennett P. Review of exosomes and their potential for veterinary medicine. Res Vet Sci 2024; 168:105141. [PMID: 38218063 DOI: 10.1016/j.rvsc.2024.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Small extracellular vesicles called exosomes are released by almost all cell types and play a crucial role in both healthy and pathological circumstances. Exosomes, found in biological fluids (including plasma, urine, milk, semen, saliva, abdominal fluid and cervical vaginal fluid) and ranging in size from 50 to 150 nm, are critical for intercellular communication. Analysis of exosomal cargos, including micro RNAs (miRNAs), proteins and lipids, has been proposed as valuable diagnostic and prognostic biomarkers of disease. Exosomes can also be used as novel, cell-free, treatment strategies. In this review, we discuss the role, significance and application of exosomes and their cargos in diseases of animals.
Collapse
Affiliation(s)
- Mohammad Heidarpour
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, PO Box 91775-1793, Mashhad, Iran; Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Mark Krockenberger
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Peter Bennett
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
9
|
Zhai C, Xie F, Xu J, Yang Y, Zheng W, Hu H, Ding X, Yu H. Correlation between membrane proteins and sizes of extracellular vesicles and particles: A potential signature for cancer diagnosis. J Extracell Vesicles 2023; 12:e12391. [PMID: 38050829 PMCID: PMC10696525 DOI: 10.1002/jev2.12391] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Extracellular vesicles and particles (EVPs) are recognized as ideal liquid biopsy tools for cancer detection, and membrane proteins are commonly used EVP biomarkers. However, bulk analysis of EVP membrane protein biomarkers typically fails to meet the clinical requirement for diagnostic accuracy. We investigated the correlation between the membrane protein expression level, the binding kinetics to aptamers and the sizes of EVPs with interferometric plasmonic microscopy (iPM), and demonstrated the implementation of the correlative signature to determine cancer types. Using EVPs collected from both cell model and clinical plasma samples with liver, lung, breast, or prostate cancer, we found that the selective set of membrane protein expression levels of five protein markers and their binding kinetics were highly heterogeneous across various sizes of EVPs, resulting in the low overall accuracy (<50%) in cancer classification with bulk analysis of all populations. By grouping the EVPs into three subpopulations according to their sizes, the overall accuracy could be increased to about 70%. We further grouped the EVPs into subpopulations with a 10 nm interval in sizes and analysed the correlation between the membrane proteins and sizes with a machine learning algorithm. The results show that the overall accuracy to discriminate cancer types could be improved to 85%. Therefore, this work highlights the significance of size-dependent subtyping of EVPs and suggests that the correlation between the selective set of membrane proteins and sizes of EVP can serve as a signature for clinical cancer diagnosis.
Collapse
Affiliation(s)
- Chunhui Zhai
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Feng Xie
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Jiaying Xu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yuting Yang
- Department of Instrument Science and EngineeringSchool of Electronic Information and Electrical Engineering ShanghaiShanghaiChina
| | - Weiqiang Zheng
- Department of Instrument Science and EngineeringSchool of Electronic Information and Electrical Engineering ShanghaiShanghaiChina
| | - Haiyan Hu
- Oncology DepartmentShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xianting Ding
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Hui Yu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
10
|
Verscheure E, Stierum R, Schlünssen V, Lund Würtz AM, Vanneste D, Kogevinas M, Harding BN, Broberg K, Zienolddiny-Narui S, Erdem JS, Das MK, Makris KC, Konstantinou C, Andrianou X, Dekkers S, Morris L, Pronk A, Godderis L, Ghosh M. Characterization of the internal working-life exposome using minimally and non-invasive sampling methods - a narrative review. ENVIRONMENTAL RESEARCH 2023; 238:117001. [PMID: 37683788 DOI: 10.1016/j.envres.2023.117001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
During recent years, we are moving away from the 'one exposure, one disease'-approach in occupational settings and towards a more comprehensive approach, taking into account the totality of exposures during a life course by using an exposome approach. Taking an exposome approach however is accompanied by many challenges, one of which, for example, relates to the collection of biological samples. Methods used for sample collection in occupational exposome studies should ideally be minimally invasive, while at the same time sensitive, and enable meaningful repeated sampling in a large population and over a longer time period. This might be hampered in specific situations e.g., people working in remote areas, during pandemics or with flexible work hours. In these situations, using self-sampling techniques might offer a solution. Therefore, our aim was to identify existing self-sampling techniques and to evaluate the applicability of these techniques in an occupational exposome context by conducting a literature review. We here present an overview of current self-sampling methodologies used to characterize the internal exposome. In addition, the use of different biological matrices was evaluated and subdivided based on their level of invasiveness and applicability in an occupational exposome context. In conclusion, this review and the overview of self-sampling techniques presented herein can serve as a guide in the design of future (occupational) exposome studies while circumventing sample collection challenges associated with exposome studies.
Collapse
Affiliation(s)
- Eline Verscheure
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Vivi Schlünssen
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Anne Mette Lund Würtz
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Dorian Vanneste
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Manolis Kogevinas
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Barbara N Harding
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Mrinal K Das
- National Institute of Occupational Health, Oslo, Norway
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Corina Konstantinou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Xanthi Andrianou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Susan Dekkers
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | | | - Anjoeka Pronk
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at work, Heverlee, Belgium.
| | - Manosij Ghosh
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
11
|
Asleh K, Dery V, Taylor C, Davey M, Djeungoue-Petga MA, Ouellette RJ. Extracellular vesicle-based liquid biopsy biomarkers and their application in precision immuno-oncology. Biomark Res 2023; 11:99. [PMID: 37978566 PMCID: PMC10655470 DOI: 10.1186/s40364-023-00540-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
While the field of precision oncology is rapidly expanding and more targeted options are revolutionizing cancer treatment paradigms, therapeutic resistance particularly to immunotherapy remains a pressing challenge. This can be largely attributed to the dynamic tumor-stroma interactions that continuously alter the microenvironment. While to date most advancements have been made through examining the clinical utility of tissue-based biomarkers, their invasive nature and lack of a holistic representation of the evolving disease in a real-time manner could result in suboptimal treatment decisions. Thus, using minimally-invasive approaches to identify biomarkers that predict and monitor treatment response as well as alert to the emergence of recurrences is of a critical need. Currently, research efforts are shifting towards developing liquid biopsy-based biomarkers obtained from patients over the course of disease. Liquid biopsy represents a unique opportunity to monitor intercellular communication within the tumor microenvironment which could occur through the exchange of extracellular vesicles (EVs). EVs are lipid bilayer membrane nanoscale vesicles which transfer a plethora of biomolecules that mediate intercellular crosstalk, shape the tumor microenvironment, and modify drug response. The capture of EVs using innovative approaches, such as microfluidics, magnetic beads, and aptamers, allow their analysis via high throughput multi-omics techniques and facilitate their use for biomarker discovery. Artificial intelligence, using machine and deep learning algorithms, is advancing multi-omics analyses to uncover candidate biomarkers and predictive signatures that are key for translation into clinical trials. With the increasing recognition of the role of EVs in mediating immune evasion and as a valuable biomarker source, these real-time snapshots of cellular communication are promising to become an important tool in the field of precision oncology and spur the recognition of strategies to block resistance to immunotherapy. In this review, we discuss the emerging role of EVs in biomarker research describing current advances in their isolation and analysis techniques as well as their function as mediators in the tumor microenvironment. We also highlight recent lung cancer and melanoma studies that point towards their application as predictive biomarkers for immunotherapy and their potential clinical use in precision immuno-oncology.
Collapse
Affiliation(s)
- Karama Asleh
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada.
| | - Valerie Dery
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Catherine Taylor
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Michelle Davey
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | | | - Rodney J Ouellette
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- Dr Georges L. Dumont University Hospital, Vitalite Health Network, Moncton, New Brunswick, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| |
Collapse
|
12
|
Yan S, Huang Z, Chen X, Chen H, Yang X, Gao M, Zhang X. Metabolic profiling of urinary exosomes for systemic lupus erythematosus discrimination based on HPL-SEC/MALDI-TOF MS. Anal Bioanal Chem 2023; 415:6411-6420. [PMID: 37644324 DOI: 10.1007/s00216-023-04916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease which leads to the formation of immune complex deposits in multiple organs and has heterogeneous clinical manifestations. Currently, exosomes for liquid biopsy have been applied in diagnosis and monitoring of diseases, whereas SLE discrimination based on exosomes at the metabolic level is rarely reported. Herein, we constructed a protocol for metabolomic study of urinary exosomes from SLE patients and healthy controls (HCs) with high efficiency and throughput. Exosomes were first obtained by high-performance liquid size-exclusion chromatography (HPL-SEC), and then metabolic fingerprints of urinary exosomes were extracted by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with high throughput and high efficency. With the statistical analysis by orthogonal partial least-squares discriminant analysis (OPLS-DA) model, SLE patients were efficiently distinguished from HCs, the area under the curve (AUC) of the receiver characteristic curve (ROC) was 1.00, and the accuracy of the unsupervised clustering heatmap was 90.32%. In addition, potential biomarkers and related metabolic pathways were analyzed. This method, with the characteristics of high throughput, high efficiency, and high accuracy, will provide the broad prospect of exosome-driven precision medicine and large-scale screening in clinical applications.
Collapse
Affiliation(s)
- Shaohan Yan
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Zhongzhou Huang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofei Chen
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Haolin Chen
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Xue Yang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China.
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
13
|
Xu L, Lu S, Wang H, Xu H, Ye BC. Dual-Recognition Triggered Proximity Ligation Combined with a Rolling Circle Amplification Strategy for Analysis of Exosomal Protein-Specific Glycosylation. Anal Chem 2023; 95:15745-15754. [PMID: 37842978 DOI: 10.1021/acs.analchem.3c03239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Exosomal surface glycan reveals the biological function and molecular information on the protein, especially in indicating the pathogenesis of certain diseases through monitoring of specific protein glycosylation accurately. However, in situ and nondestructive measurement techniques for certain Exosomal glycoproteins are still lacking. In this work, combined with on-chip purification, we designed a proximity ligation assay-induced rolling circle amplification (RCA) strategy for highly sensitive identification of Exosomal protein-specific glycosylation based on a couple of proximity probes to target Exosomal protein and the protein-specific glycosylation site. Benefiting from efficient separation, scalable dual-recognition, and proximity-triggered RCA amplification, the proposed strategy could convert different protein-specific glycan levels to prominent changes in absorbance signals, resulting in accurate quantification of specific glycosylated Exosomal protein. When detecting the glycosylated PD-L1 on MDA-MB-231 exosomes and glycosylated PTK7 on HepG2 exosomes, the detection limits were calculated to be as low as 1.04 × 104 and 2.759 × 103 particles/mL, respectively. In addition, we further expand the dual-recognition site to investigate the potential correlation of Exosomal glycosylation with polarization of THP-1 cells toward the tumor-suppressive M1 phenotype. Overall, this strategy provides a universal tool for multiple analyses of diverse protein-specific glycosylated exosomes, exhibiting enormous potential to explore exosome function and search for new early diagnosis markers.
Collapse
Affiliation(s)
- Lijun Xu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyu Lu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hua Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huiying Xu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Wang S, He Y, Tian T, Lu J, Lu Y, Huang X, Zou Y, Zhang L, Fang X, Liu B. Nanoarray Enabled Size-Dependent Isolation and Proteomics Profiling of Small Extracellular Vesicle Subpopulations toward Accurate Cancer Diagnosis and Prognosis. Anal Chem 2023; 95:15276-15285. [PMID: 37782295 DOI: 10.1021/acs.analchem.3c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Small extracellular vesicles (sEVs) have emerged as noninvasive biomarkers in liquid biopsy due to their significant function in pathology and physiology. However, the phenotypic heterogeneity of sEVs presents a significant challenge to their study and has significant implications for their applications in liquid biopsies. In this study, anodic aluminum oxide films with different pore sizes (AAO nanoarray) were introduced to enable size-based isolation and downstream proteomics profiling of sEV subpopulations. The adjustable pore size and abundant Al3+ on the framework of AAOs allowed size-dependent isolation of sEV subpopulations through nanoconfined effects and Lewis acid-base interaction between AAOs and sEVs. Benefiting from the strong concerted effect, the simple AAO nanoarray enabled specific isolation of three sEV subpopulations, termed "50", "90", and "150 nm" groups, from 10 μL of complex biological samples within 10 min with high capture efficiencies and purities. Moreover, the nanopores of AAOs also acted as nanoreactors for comprehensive proteomic profiling of the captured sEV subpopulations to reveal their heterogeneity. The AAO nanoarray was first investigated on sEVs from a cell culture medium, where sEV subpopulations could be clearly distinguished, and three traditional sEV-specific proteins (CD81, CD9, and FLOT1) could be identified by proteomic analysis. A total of 3946, 3951, and 3940 proteins were identified from 50, 90, and 150 nm sEV subpopulations, respectively, which is almost twice the number compared to those obtained from the conventional approach. The concept was further applied to complex real-case sample analysis from prostate cancer patients. Machine learning and gene ontology (GO) information analysis of the identified proteins indicate that different-sized sEV subpopulations contain unique protein cargos and have distinct cellular components and molecular functions. Further receiver operating characteristic curve (ROC) analysis of the top five differential proteins from the three sEV subpopulations demonstrated the high accuracy of the proposed approach toward prostate cancer diagnosis (AUC > 0.99). More importantly, several proteins involved in focal adhesion and antigen processing and presentation pathways were found to be upregulated in prostate cancer patients, which may serve as potential biomarkers of prostate cancer. These results suggest that the sEV subpopulation-based AAO nanoarray is of great value in facilitating the early diagnosis and prognosis of cancer and opens a new avenue for sEVs in liquid biopsy.
Collapse
Affiliation(s)
- Shurong Wang
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Ying He
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Tongtong Tian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiayin Lu
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Yanwei Lu
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Yan Zou
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Lei Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoni Fang
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
15
|
Jiang D, Wu S, Li Y, Qi R, Liu J. Effective Enrichment of Phosphopeptides Using Magnetic Polyoxometalate-Based Metal-Organic Frameworks. ACS Biomater Sci Eng 2023; 9:5632-5638. [PMID: 37694584 DOI: 10.1021/acsbiomaterials.3c00986] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
In this study, magnetic polyoxometalate-based metal-organic frameworks (Fe3O4-POMOFs) were designed and applied to the enrichment of phosphopeptides. Thanks to the abundant metal oxide and metal ion sites, the material had a strong affinity for phosphopeptides. Simultaneously, the high amount of amino and guanidyl groups provided hydrophilicity and positive charge for phosphopeptide capture. By coupling with MS detection, the established platform possessed good reusability, high sensitivity (0.01 fmol), and high selectivity (α-casein/β-casein/bovine serum albumin = 1:1:5000). Furthermore, the method was successfully used for the detection of phosphopeptides in nonfat milk, human serum, saliva, and A549 cell lysate, showing great potential for practical application.
Collapse
Affiliation(s)
- Dandan Jiang
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, PR China
| | - Siyu Wu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, PR China
| | - Yangyang Li
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, PR China
| | - Ruixue Qi
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, PR China
| | - Jinghai Liu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, PR China
| |
Collapse
|
16
|
Pourali G, Zafari N, Fiuji H, Batra J, Nazari E, Khazaei M, Hassanian SM, Vahabi M, Kiani M, Ghayour-Mobarhan M, Peters GJ, Ferns GA, Lam AKY, Giovannetti E, Avan A. Extracellular vesicles: Emerging mediators of cell communication in gastrointestinal cancers exhibiting metabolic abnormalities. Cytokine Growth Factor Rev 2023; 73:101-113. [PMID: 37573251 DOI: 10.1016/j.cytogfr.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
There is a complex interaction between pro-tumoural and anti-tumoural networks in the tumour microenvironment (TME). Throughout tumourigenesis, communication between malignant cells and various cells of the TME contributes to metabolic reprogramming. Tumour Dysregulation of metabolic pathways offer an evolutional advantage in the TME and enhance the tumour progression, invasiveness, and metastasis. Therefore, understanding these interactions within the TME is crucial for the development of innovative cancer treatments. Extracellular vesicles (EVs) serve as carriers of various materials that include microRNAs, proteins, and lipids that play a vital role in the communication between tumour cells and non-tumour cells. EVs are actively involved in the metabolic reprogramming process. This review summarized recent findings regarding the involvement of EVs in the metabolic reprogramming of various cells in the TME of gastrointestinal cancers. Additionally, we highlight identified microRNAs involved in the reprogramming process in this group of cancers and explained the abnormal tumour metabolism targeted by exosomal cargos as well as the novel potential therapeutic approaches.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Zafari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands
| | - Jyotsna Batra
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Center for genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia
| | - Elham Nazari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahrou Vahabi
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands
| | - MohammadAli Kiani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands; Professor In Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Alfred King-Yin Lam
- Pathology, School of Medicine and Dentistry, Gold Coast campus, Griffith University, Gold Coast, QLD 4222, Australia
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq,; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
17
|
Yang N, Zhao C, Kong L, Zhang B, Han C, Zhang Y, Qian X, Qin W. Absolute Quantification of Dynamic Cellular Uptake of Small Extracellular Vesicles via Lanthanide Element Labeling and ICP-MS. Anal Chem 2023; 95:11934-11942. [PMID: 37527423 DOI: 10.1021/acs.analchem.3c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Small extracellular vesicles (sEVs) are increasingly reported to play important roles in numerous physiological and pathological processes. Cellular uptake of sEVs is of great significance for functional regulation in recipient cells. Although various sEV quantification, labeling, and tracking methods have been reported, it is still highly challenging to quantify the absolute amount of cellular uptake of sEVs and correlate this information with phenotypic variations in the recipient cell. Therefore, we developed a novel strategy using lanthanide element labeling and inductively coupled plasma-mass spectrometry (ICP-MS) for the absolute and sensitive quantification of sEVs. This strategy utilizes the chelation interaction between Eu3+ and the phosphate groups on the sEV membrane for specific labeling. sEVs internalized by cells can then be quantified by ICP-MS using a previously established linear relationship between the europium content and the particle numbers. High Eu labeling efficiency and stability were demonstrated by various evaluations, and no structural or functional alterations in the sEVs were discovered after Eu labeling. Application of this method revealed that 4020 ± 171 sEV particles/cell were internalized by HeLa cells at 37 °C and 61% uptake inhibition at 4 °C. Further investigation led to the quantitative differential analysis of sEV cellular uptake under the treatment of several chemical endocytosis inhibitors. A 23% strong inhibition indicated that HeLa cells uptake sEVs mainly through the macropinocytosis pathway. This facile labeling and absolute quantification strategy of sEVs with ppb-level high sensitivity is expected to become a potential tool for studying the functions of sEVs in intracellular communication and cargo transportation.
Collapse
Affiliation(s)
- Ningli Yang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Chuanping Zhao
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Linlin Kong
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Baoying Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Chunguang Han
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Yangjun Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Xiaohong Qian
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
18
|
Li Q, Zhang J, Fang Y, Dai Y, Jia P, Shen Z, Xu S, Ding X, Zhou F. Phosphoproteome Profiling of uEVs Reveals p-AQP2 and p-GSK3β as Potential Markers for Diabetic Nephropathy. Molecules 2023; 28:5605. [PMID: 37513479 PMCID: PMC10383182 DOI: 10.3390/molecules28145605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic nephropathy (DN) contributes to increased morbidity and mortality among patients with diabetes and presents a considerable global health challenge. However, reliable biomarkers of DN have not yet been established. Phosphorylated proteins are crucial for disease progression. However, their diagnostic potential remains unexplored. In this study, we used ultra-high-sensitivity quantitative phosphoproteomics to identify phosphoproteins in urinary extracellular vesicles (uEVs) as potential biomarkers of DN. We detected 233 phosphopeptides within the uEVs, with 47 phosphoproteins exhibiting significant alterations in patients with DN compared to those in patients with diabetes. From these phosphoproteins, we selected phosphorylated aquaporin-2 (p-AQP2[S256]) and phosphorylated glycogen synthase kinase-3β (p-GSK3β[Y216]) for validation, as they were significantly overrepresented in pathway analyses and previously implicated in DN pathogenesis. Both phosphoproteins were successfully confirmed through Phos-tag western blotting in uEVs and immunohistochemistry staining in kidney sections, suggesting that phosphoprotein alterations in uEVs reflect corresponding changes within the kidney and their potential as candidate biomarkers for DN. Our research proposes the utilization of phosphoproteins in uEVs as a liquid biopsy, presenting a highly feasible diagnostic tool for kidney disease.
Collapse
Affiliation(s)
- Qing Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Disease, University of Electronic Science and Technology, Chengdu 610072, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Yan Dai
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Ping Jia
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Ziyan Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Sujuan Xu
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Feng Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Minister of Education, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
19
|
Yan S, Zheng H, Zhao J, Gao M, Zhang X. Quantification of GPC1(+) Exosomes Based on MALDI-TOF MS In Situ Signal Amplification for Pancreatic Cancer Discrimination and Evaluation. Anal Chem 2023. [PMID: 37368911 DOI: 10.1021/acs.analchem.3c00193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Pancreatic cancer (PC) has a high mortality, with a fairly low five-year survival rate, because of its delayed diagnosis. Recently, liquid biopsy, especially based on exosomes, has attracted vast attention, thanks to its low invasiveness. Herein, we constructed a protocol for pancreatic cancer related Glypican 1 (GPC1) exosome quantification, based on in situ mass spectrometry signal amplification, by utilizing mass tag molecules on gold nanoparticles (AuNPs). Exosomes were extracted and purified by size-exclusion chromatography (SEC), captured by TiO2 modified magnetic nanoparticles, and then targeted specifically by anti-GPC1 antibody modified on AuNPs. With matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), the signal of PC biomarker, GPC1, was converted to a mass tag signal and amplified. With addition of a certain amount of internal standard molecules modified on AuNPs, the relative intensity ratio of mass tag to internal standard was proportional to the concentration of GPC1(+) exosomes derived from pancreatic cancer cell lines, PANC-1, with good linearity (R2 = 0.9945) in a wide dynamic range from 7.1 × 10 to 7.1 × 106 particles/μL. This method was further applied to plasma samples from healthy control (HC) and pancreatic cancer patients with different tumor load, and exhibited a great potential in discriminating diagnosed PC patients from HC, and has the monitoring potential in PC progression.
Collapse
Affiliation(s)
- Shaohan Yan
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Haoyang Zheng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Jiandong Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
20
|
Chen J, Wang B, Luo Y, Wang W, Ding CF, Yan Y. Facile preparation of porphyrin-based porous organic polymers for specific enrichment and isolation of phosphopeptides and phosphorylated exosomes. Talanta 2023; 264:124771. [PMID: 37311329 DOI: 10.1016/j.talanta.2023.124771] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Exosomes, which can be used to investigate various disease processes, are novel disease markers that have been extensively studied in recent years. In this work, zirconium-rich porphyrin-based porous organic polymers (Imi-Pops-Zr) were synthesized by a facile and low-cost strategy for specific enrichment and isolation of phosphorylated peptides and exosomes. The proposed material demonstrates a low detection limit (0.5 fmol), a high selectivity (bovine serum albumin (BSA): β-casein = 1000:1), and a loading capability of 100 mg/g for phosphopeptides. For complex practical samples, after enrichment with Imi-Pops-Zr, 4 characteristic phosphopeptides from human serum, 20 and 12 phosphopeptides from human saliva and defatted milk were detected, respectively. Besides, 74 phosphorylated peptides with 67 phosphorylation sites belonging to 61 phosphoproteins and 67 phosphorylated peptides with 63 phosphorylation sites belonging to 65 phosphoproteins were detected from the serum of normal controls and uremic patients, respectively. Biological processes, cellular components and molecular functions revealed that interleukin-6, tumor necrosis factor, high density lipoprotein and proteases binding may be associated with uremia. Furthermore, Imi-Pops-Zr was successfully used to enrich and isolate exosomes from human serum. The experimental results show that Imi-Pops-Zr has promising application in the specific enrichment of phosphorylated peptides and exosomes in complex bio-samples.
Collapse
Affiliation(s)
- Jiakai Chen
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Bing Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Yiting Luo
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Weimin Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
21
|
Fan S, Poetsch A. Proteomic Research of Extracellular Vesicles in Clinical Biofluid. Proteomes 2023; 11:proteomes11020018. [PMID: 37218923 DOI: 10.3390/proteomes11020018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Extracellular vesicles (EVs), the lipid bilayer membranous structures of particles, are produced and released from almost all cells, including eukaryotes and prokaryotes. The versatility of EVs has been investigated in various pathologies, including development, coagulation, inflammation, immune response modulation, and cell-cell communication. Proteomics technologies have revolutionized EV studies by enabling high-throughput analysis of their biomolecules to deliver comprehensive identification and quantification with rich structural information (PTMs, proteoforms). Extensive research has highlighted variations in EV cargo depending on vesicle size, origin, disease, and other features. This fact has sparked activities to use EVs for diagnosis and treatment to ultimately achieve clinical translation with recent endeavors summarized and critically reviewed in this publication. Notably, successful application and translation require a constant improvement of methods for sample preparation and analysis and their standardization, both of which are areas of active research. This review summarizes the characteristics, isolation, and identification approaches for EVs and the recent advances in EVs for clinical biofluid analysis to gain novel knowledge by employing proteomics. In addition, the current and predicted future challenges and technical barriers are also reviewed and discussed.
Collapse
Affiliation(s)
- Shipan Fan
- School of Basic Medical Sciences, Nanchang University, Nanchang 330021, China
| | - Ansgar Poetsch
- Queen Mary School, Medical College, Nanchang University, Nanchang 330021, China
| |
Collapse
|
22
|
Zhang E, Phan P, Zhao Z. Cellular nanovesicles for therapeutic immunomodulation: A perspective on engineering strategies and new advances. Acta Pharm Sin B 2023; 13:1789-1827. [PMID: 37250173 PMCID: PMC10213819 DOI: 10.1016/j.apsb.2022.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases. Here we review emerging concepts and new advances in leveraging cellular nanovesicles to activate or suppress immune responses, with the aim to explicate their applications for immunomodulation. We overview the general considerations and principles for the design of engineered cellular nanovesicles with tailored immunomodulatory activities. We also discuss new advances in engineering cellular nanovesicles as immunotherapies for treating major diseases.
Collapse
Affiliation(s)
- Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
23
|
Heidarzadeh M, Zarebkohan A, Rahbarghazi R, Sokullu E. Protein corona and exosomes: new challenges and prospects. Cell Commun Signal 2023; 21:64. [PMID: 36973780 PMCID: PMC10041507 DOI: 10.1186/s12964-023-01089-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Recent advances in extracellular vesicle (EVs) detection and isolation methods have led to the development of novel therapeutic modalities. Among different types of EVs, exosomes (Exos) can transfer different signaling biomolecules and exhibit several superior features compared to whole-cell-based therapies. Therapeutic factors are normally loaded into the Exo lumen or attached to their surface for improving the on-target delivery rate and regenerative outcomes. Despite these advantages, there are several limitations in the application of Exos in in vivo conditions. It was suggested that a set of proteins and other biological compounds are adsorbed around Exos in aqueous phases and constitute an external layer named protein corona (PC). Studies have shown that PC can affect the physicochemical properties of synthetic and natural nanoparticles (NPs) after introduction in biofluids. Likewise, PC is generated around EVs, especially Exos in in vivo conditions. This review article is a preliminary attempt to address the interfering effects of PC on Exo bioactivity and therapeutic effects. Video Abstract.
Collapse
Affiliation(s)
- Morteza Heidarzadeh
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Emel Sokullu
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| |
Collapse
|
24
|
Zheng F, Wang J, Wang D, Yang Q. Clinical Application of Small Extracellular Vesicles in Gynecologic Malignancy Treatments. Cancers (Basel) 2023; 15:cancers15071984. [PMID: 37046644 PMCID: PMC10093031 DOI: 10.3390/cancers15071984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Small extracellular vesicles (sEVs) are the key mediators of intercellular communication. They have the potential for clinical use as diagnostic or therapeutic biomarkers and have been explored as vectors for drug delivery. Identification of reliable and noninvasive biomarkers, such as sEVs, is important for early diagnosis and precise treatment of gynecologic diseases to improve patient prognosis. Previous reviews have summarized routine sEVs isolation and identification methods; however, novel and unconventional methods have not been comprehensively described. This review summarizes a convenient method of isolating sEVs from body fluids and liquid biopsy-related sEV markers for early, minimally invasive diagnosis of gynecologic diseases. In addition, the characteristics of sEVs as drug carriers and in precision treatment and drug resistance are introduced, providing a strong foundation for identifying novel and potential therapeutic targets for sEV therapy. We propose potential directions for further research on the applications of sEVs in the diagnosis and treatment of gynecologic diseases.
Collapse
|
25
|
Hu L, Liu X, Zheng Q, Chen W, Xu H, Li H, Luo J, Yang R, Mao X, Wang S, Chen T, Lee LP, Liu F. Interaction network of extracellular vesicles building universal analysis via eye tears: iNEBULA. SCIENCE ADVANCES 2023; 9:eadg1137. [PMID: 36921051 PMCID: PMC10017052 DOI: 10.1126/sciadv.adg1137] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Discovering the secrets of diseases from tear extracellular vesicles (EVs) is well-recognized and appreciated. However, a precise understanding of the interaction network between EV populations and their biogenesis from our body requires more in-depth and systematic analysis. Here, we report the biological profiles of different-size tear EV subsets from healthy individuals and the origins of EV proteins. We have identified about 1800 proteins and revealed the preferential differences in the biogenesis among distinct subsets. We observe that eye-related proteins that maintain retinal homeostasis and regulate inflammation are preferentially enriched in medium-size EVs (100 to 200 nm) fractions. Using universal analysis in combination with the Human Protein Atlas consensus dataset, we found the genesis of tear EV proteins with 37 tissues and 79 cell types. The proteins related to retinal neuronal cells, glial cells, and blood and immune cells are selectively enriched among EV subsets. Our studies in heterogeneous tear EVs provide building blocks for future transformative precision molecular diagnostics and therapeutics.
Collapse
Affiliation(s)
- Liang Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoling Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qiaolan Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wuhe Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hao Xu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hengrui Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiaxin Luo
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Rui Yang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xulong Mao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Siyao Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Tucan Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Luke P. Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Fei Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
26
|
Zhou X, Zhang H, Wang L, Lv L, Wu R. Simultaneous enrichment optimization of glycopeptides and phosphopeptides with the highly hydrophilic DZMOF-FDP. Analyst 2023; 148:1483-1491. [PMID: 36876469 DOI: 10.1039/d2an02004a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Protein glycosylation and phosphorylation play essential roles in biological systems. The crosstalk of both glycosylation and phosphorylation on one protein represents an unveiled biological function. To realize the analyses of both glycopeptides and phosphopeptides, a simultaneous enrichment method of N-glycopeptides, mono-phosphopeptides and multi-phosphopeptides was developed based on a multi-functional dual-metal centered zirconium metal-organic framework that provided multiple interactions for HILIC, IMAC, and MOAC for glycopeptides and phosphopeptides. Based on a careful optimization of sample loading and elution conditions for the simultaneous enrichment of glycopeptides and phosphopeptides with the zirconium metal-organic framework, a total of 1011 N-glycopeptides derived from 410 glycoproteins and 1996 phosphopeptides including 741 multi-phosphopeptides derived from 1189 phosphoproteins could be identified from a HeLa cell digest. The simultaneous enrichment approach for glycopeptides and mono-/multi-phosphopeptides demonstrates the great potential of the combined interactions for HILIC, IMAC, and MOAC in integrated post-translational modification proteomics research.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Zhang
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Li Wang
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Liting Lv
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ren'an Wu
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
27
|
Chen M, Lin S, Zhou C, Cui D, Haick H, Tang N. From Conventional to Microfluidic: Progress in Extracellular Vesicle Separation and Individual Characterization. Adv Healthc Mater 2023; 12:e2202437. [PMID: 36541411 DOI: 10.1002/adhm.202202437] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles, which contain a wide variety of cargo such as proteins, miRNAs, and lipids. A growing body of evidence suggests that EVs are promising biomarkers for disease diagnosis and therapeutic strategies. Although the excellent clinical value, their use in personalized healthcare practice is not yet feasible due to their highly heterogeneous nature. Taking the difficulty of isolation and the small size of EVs into account, the characterization of EVs at a single-particle level is both imperative and challenging. In a bid to address this critical point, more research has been directed into a microfluidic platform because of its inherent advantages in sensitivity, specificity, and throughput. This review discusses the biogenesis and heterogeneity of EVs and takes a broad view of state-of-the-art advances in microfluidics-based EV research, including not only EV separation, but also the single EV characterization of biophysical detection and biochemical analysis. To highlight the advantages of microfluidic techniques, conventional technologies are included for comparison. The current status of artificial intelligence (AI) for single EV characterization is then presented. Furthermore, the challenges and prospects of microfluidics and its combination with AI applications in single EV characterization are also discussed. In the foreseeable future, recent breakthroughs in microfluidic platforms are expected to pave the way for single EV analysis and improve applications for precision medicine.
Collapse
Affiliation(s)
- Mingrui Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Cheng Zhou
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ning Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
28
|
Taylor ML, Giacalone AG, Amrhein KD, Wilson RE, Wang Y, Huang X. Nanomaterials for Molecular Detection and Analysis of Extracellular Vesicles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:524. [PMID: 36770486 PMCID: PMC9920192 DOI: 10.3390/nano13030524] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a novel resource of biomarkers for cancer and certain other diseases. Probing EVs in body fluids has become of major interest in the past decade in the development of a new-generation liquid biopsy for cancer diagnosis and monitoring. However, sensitive and specific molecular detection and analysis are challenging, due to the small size of EVs, low amount of antigens on individual EVs, and the complex biofluid matrix. Nanomaterials have been widely used in the technological development of protein and nucleic acid-based EV detection and analysis, owing to the unique structure and functional properties of materials at the nanometer scale. In this review, we summarize various nanomaterial-based analytical technologies for molecular EV detection and analysis. We discuss these technologies based on the major types of nanomaterials, including plasmonic, fluorescent, magnetic, organic, carbon-based, and certain other nanostructures. For each type of nanomaterial, functional properties are briefly described, followed by the applications of the nanomaterials for EV biomarker detection, profiling, and analysis in terms of detection mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
29
|
Chen Y, Deng C, Sun N. A protocol of carbonized on-column enrichment for urinary exosomal N-glycans profiling. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123586. [PMID: 36592588 DOI: 10.1016/j.jchromb.2022.123586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
As a widely present vesicle, exosome plays an important role in lots of biological processes due to its inclusive cargos. In particular, exosome glycan cargo is attracting attentions since its aberrant alteration is closely related to many progressions in diseases. In this work, a novel carbonized packing capillary trap column for urinary exosomal N-glycan enrichment was proposed. The carbonized packing exhibited large specific surface area, mesoporous structure with narrow pore size distribution and abundant carbon for specially interacting with oligosaccharides. Benefitting from all these advantages, the N-glycans deriving from standard glycoproteins or complex human urine exosomes could be identified with high sensitivity and selectivity. Finally, from the glycans identified in healthy volunteers and patients with bladder carcinoma, we observed that 10 of glycans shared by two groups were obvious downregulation and the 18 were upregulation. These results show great potential of capillary trap column as a tool for the enrichment and detection of glycans in exosomal, attracting more attention on disease progression monitoring and biomarker discovery.
Collapse
Affiliation(s)
- Yijie Chen
- Department of Chemistry, Institutes of Biomedical Sciences, and Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Chunhui Deng
- Department of Chemistry, Institutes of Biomedical Sciences, and Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
| | - Nianrong Sun
- Department of Chemistry, Institutes of Biomedical Sciences, and Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
| |
Collapse
|
30
|
A soluble pH-responsive host-guest-based nanosystem for homogeneous exosomes capture with high-efficiency. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
32
|
Xu H, Ye BC. Integrated microfluidic platforms for tumor-derived exosome analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Xu Z, Wu Y, Hu X, Deng C, Sun N. Inherently hydrophilic mesoporous channel coupled with metal oxide for fishing endogenous salivary glycopeptides and phosphopeptides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Wang S, He Y, Lu J, Wang Y, Wu X, Yan G, Fang X, Liu B. All-in-One Strategy for Downstream Molecular Profiling of Tumor-Derived Exosomes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36341-36352. [PMID: 35916896 DOI: 10.1021/acsami.2c07143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In light of the significance of exosomes in cancer diagnosis and treatment, it is important to understand the components and functions of exosomes. Herein, an all-in-one strategy has been proposed for comprehensive characterization of exosomal proteins based on nanoporous TiO2 clusters acting as both an extractor for exosome isolation and a nanoreactor for downstream molecular profiling. With the improved hydrophilicity and inherent properties of TiO2, exosomes can be captured by a versatile nanodevice through the specific binding and hydrophilicity interaction synergistically. The strong concerted effect between exosomes and nanodevices ensured high efficiency and specificity of exosome isolation with high recovery and low contaminations. Meanwhile, highly efficient downstream proteomic analysis of the purified exosomes was also enabled by the nanoporous TiO2 clusters. Benefiting from the porous structure of the nanodevice, the lysed exosomal proteins are highly concentrated in the nanopore to achieve high-efficiency in situ proteolytic digestion. Therefore, the unique features of the TiO2 clusters ensured that all the complex steps about isolation and analysis of exosomes were completed efficiently in one simple nanodevice. The concept was first proved with exosomes from cell culture medium, where a high number of identified total proteins and protein groups in exosomes were obtained. Taking advantage of these attractive merits, the first example of the integrated platform has been successfully applied to the analysis of exosomes in complex real-case samples. Not only 196 differential protein biomarker candidates were discovered, but also many more significant cellular components and functions related to gastric cancer were found. These results suggest that the nanoporous TiO2 cluster-based all-in-one strategy can serve as a simple, cost-effective, and integrated platform to facilitate comprehensive analysis of exosomes. Such an approach will provide a valuable tool for the study of exosome markers and their functions.
Collapse
Affiliation(s)
- Shurong Wang
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Ying He
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Jiayin Lu
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Yuqing Wang
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Guoquan Yan
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoni Fang
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
35
|
Bioprobes-regulated precision biosensing of exosomes: From the nanovesicle surface to the inside. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
A Comparison of Blood Plasma Small Extracellular Vesicle Enrichment Strategies for Proteomic Analysis. Proteomes 2022; 10:proteomes10020019. [PMID: 35736799 PMCID: PMC9229025 DOI: 10.3390/proteomes10020019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Proteomic analysis of small extracellular vesicles (sEVs) poses a significant challenge. A ‘gold-standard’ method for plasma sEV enrichment for downstream proteomic analysis is yet to be established. Methods were evaluated for their capacity to successfully isolate and enrich sEVs from plasma, minimise the presence of highly abundant plasma proteins, and result in the optimum representation of sEV proteins by liquid chromatography tandem mass spectrometry. Plasma from four cattle (Bos taurus) of similar physical attributes and genetics were used. Three methods of sEV enrichment were utilised: ultracentrifugation (UC), size-exclusion chromatography (SEC), and ultrafiltration (UF). These methods were combined to create four groups for methodological evaluation: UC + SEC, UC + SEC + UF, SEC + UC and SEC + UF. The UC + SEC method yielded the highest number of protein identifications (IDs). The SEC + UC method reduced plasma protein IDs compared to the other methods, but also resulted in the lowest number of protein IDs overall. The UC + SEC + UF method decreased sEV protein ID, particle number, mean and mode particle size, particle yield, and did not improve purity compared to the UC + SEC method. In this study, the UC + SEC method was the best method for sEV protein ID, purity, and overall particle yield. Our data suggest that the method and sequence of sEV enrichment strategy impacts protein ID, which may influence the outcome of biomarker discovery studies.
Collapse
|
37
|
Proteomics and Phosphoproteomics of Circulating Extracellular Vesicles Provide New Insights into Diabetes Pathobiology. Int J Mol Sci 2022; 23:ijms23105779. [PMID: 35628588 PMCID: PMC9147902 DOI: 10.3390/ijms23105779] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to define the proteomic and phosphoproteomic landscape of circulating extracellular vesicles (EVs) in people with normal glucose tolerance (NGT), prediabetes (PDM), and diabetes (T2DM). Archived serum samples from 30 human subjects (n = 10 per group, ORIGINS study, NCT02226640) were used. EVs were isolated using EVtrap®. Mass spectrometry-based methods were used to detect the global EV proteome and phosphoproteome. Differentially expressed features, correlation, enriched pathways, and enriched tissue-specific protein sets were identified using custom R scripts. Phosphosite-centric analyses were conducted using directPA and PhosR software packages. A total of 2372 unique EV proteins and 716 unique EV phosphoproteins were identified among all samples. Unsupervised clustering of the differentially expressed (fold change ≥ 2, p < 0.05, FDR < 0.05) proteins and, particularly, phosphoproteins showed excellent discrimination among the three groups. CDK1 and PKCδ appear to drive key upstream phosphorylation events that define the phosphoproteomic signatures of PDM and T2DM. Circulating EVs from people with diabetes carry increased levels of specific phosphorylated kinases (i.e., AKT1, GSK3B, LYN, MAP2K2, MYLK, and PRKCD) and could potentially distribute activated kinases systemically. Among characteristic changes in the PDM and T2DM EVs, “integrin switching” appeared to be a central feature. Proteins involved in oxidative phosphorylation (OXPHOS), known to be reduced in various tissues in diabetes, were significantly increased in EVs from PDM and T2DM, which suggests that an abnormally elevated EV-mediated secretion of OXPHOS components may underlie the development of diabetes. A highly enriched signature of liver-specific markers among the downregulated EV proteins and phosphoproteins in both PDM and T2DM groups was also detected. This suggests that an alteration in liver EV composition and/or secretion may occur early in prediabetes. This study identified EV proteomic and phosphoproteomic signatures in people with prediabetes and T2DM and provides novel insight into the pathobiology of diabetes.
Collapse
|
38
|
Yang L, Patel KD, Rathnam C, Thangam R, Hou Y, Kang H, Lee KB. Harnessing the Therapeutic Potential of Extracellular Vesicles for Biomedical Applications Using Multifunctional Magnetic Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104783. [PMID: 35132796 PMCID: PMC9344859 DOI: 10.1002/smll.202104783] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/12/2022] [Indexed: 04/14/2023]
Abstract
Extracellular vesicles (e.g., exosomes) carrying various biomolecules (e.g., proteins, lipids, and nucleic acids) have rapidly emerged as promising platforms for many biomedical applications. Despite their enormous potential, their heterogeneity in surfaces and sizes, the high complexity of cargo biomolecules, and the inefficient uptake by recipient cells remain critical barriers for their theranostic applications. To address these critical issues, multifunctional nanomaterials, such as magnetic nanomaterials, with their tunable physical, chemical, and biological properties, may play crucial roles in next-generation extracellular vesicles (EV)-based disease diagnosis, drug delivery, tissue engineering, and regenerative medicine. As such, one aims to provide cutting-edge knowledge pertaining to magnetic nanomaterials-facilitated isolation, detection, and delivery of extracellular vesicles and their associated biomolecules. By engaging the fields of extracellular vesicles and magnetic nanomaterials, it is envisioned that their properties can be effectively combined for optimal outcomes in biomedical applications.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Kapil D. Patel
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Pis cataway, NJ 08854, USA
| |
Collapse
|
39
|
Hu Z, Chen Z, Chen X, Wang J. Advances in the adsorption/enrichment of proteins/peptides by metal-organic frameworks-affinity adsorbents. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Fathi-Karkan S, Banimohamad-Shotorbani B, Saghati S, Rahbarghazi R, Davaran S. A critical review of fibrous polyurethane-based vascular tissue engineering scaffolds. J Biol Eng 2022; 16:6. [PMID: 35331305 PMCID: PMC8951709 DOI: 10.1186/s13036-022-00286-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Certain polymeric materials such as polyurethanes (PUs) are the most prevalent class of used biomaterials in regenerative medicine and have been widely explored as vascular substitutes in several animal models. It is thought that PU-based biomaterials possess suitable hemo-compatibility with comparable performance related to the normal blood vessels. Despite these advantages, the possibility of thrombus formation and restenosis limits their application as artificial functional vessels. In this regard, various surface modification approaches have been developed to enhance both hemo-compatibility and prolong patency. While critically reviewing the recent advances in vascular tissue engineering, mainly PU grafts, this paper summarizes the application of preferred cell sources to vascular regeneration, physicochemical properties, and some possible degradation mechanisms of PU to provide a more extensive perspective for future research.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Golgasht St, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Banimohamad-Shotorbani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soodabeh Davaran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
41
|
Chen Y, Chen H, Yang C, Wu Y, Deng C, Sun N. Specific enrichment of urinary exosomes and exosomal glycopeptides by coefficient affinity of integrated L-cysteine and titania. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
42
|
Xu K, Jin Y, Li Y, Huang Y, Zhao R. Recent Progress of Exosome Isolation and Peptide Recognition-Guided Strategies for Exosome Research. Front Chem 2022; 10:844124. [PMID: 35281563 PMCID: PMC8908031 DOI: 10.3389/fchem.2022.844124] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are membrane extracellular vesicles secreted by almost all kinds of cells, which are rich in proteins, lipids, and nucleic acids. As a medium of intercellular communication, exosomes play important roles in biological processes and are closely related to the occurrence, and development of many diseases. The isolation of exosomes and downstream analyses can provide important information to the accurate diagnosis and treatment of diseases. However, exosomes are various in a size range from 30 to 200 nm and exist in complex bio-systems, which provide significant challenges for the isolation and enrichment of exosomes. Different methods have been developed to isolate exosomes, such as the “gold-standard” ultracentrifugation, size-exclusion chromatography, and polymer precipitation. In order to improve the selectivity of isolation, affinity capture strategies based on molecular recognition are becoming attractive. In this review, we introduced the main strategies for exosome isolation and enrichment, and compared their strengths and limitations. Furthermore, combined with the excellent performance of targeted peptides, we summarized the application of peptide recognition in exosome isolation and engineering modification.
Collapse
Affiliation(s)
- Kun Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yulong Jin, ; Rui Zhao,
| | - Yongming Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yulong Jin, ; Rui Zhao,
| |
Collapse
|
43
|
Chen H, Zhang N, Wu Y, Yang C, Xie Q, Deng C, Sun N. Investigation of Urinary Exosome Metabolic Patterns in Membranous Nephropathy by Titania‐Assisted Intact Exosome Mass Spectrometry. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202100118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Haolin Chen
- Department of Chemistry and Institutes of Biomedical Sciences Fudan University Shanghai 200433 P. R. China
| | - Ning Zhang
- Department of Chemistry and Institutes of Biomedical Sciences Fudan University Shanghai 200433 P. R. China
| | - Yonglei Wu
- Department of Chemistry and Institutes of Biomedical Sciences Fudan University Shanghai 200433 P. R. China
| | - Chenjie Yang
- Department of Chemistry and Institutes of Biomedical Sciences Fudan University Shanghai 200433 P. R. China
| | - Qionghong Xie
- Division of Nephrology Huashan Hospital Fudan University Shanghai 200040 P. R. China
| | - Chunhui Deng
- Department of Chemistry and Institutes of Biomedical Sciences Fudan University Shanghai 200433 P. R. China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology Zhongshan Hospital Fudan University Shanghai 200032 China
| |
Collapse
|
44
|
Fang P, Ji Y, Oellerich T, Urlaub H, Pan KT. Strategies for Proteome-Wide Quantification of Glycosylation Macro- and Micro-Heterogeneity. Int J Mol Sci 2022; 23:ijms23031609. [PMID: 35163546 PMCID: PMC8835892 DOI: 10.3390/ijms23031609] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/03/2022] Open
Abstract
Protein glycosylation governs key physiological and pathological processes in human cells. Aberrant glycosylation is thus closely associated with disease progression. Mass spectrometry (MS)-based glycoproteomics has emerged as an indispensable tool for investigating glycosylation changes in biological samples with high sensitivity. Following rapid improvements in methodologies for reliable intact glycopeptide identification, site-specific quantification of glycopeptide macro- and micro-heterogeneity at the proteome scale has become an urgent need for exploring glycosylation regulations. Here, we summarize recent advances in N- and O-linked glycoproteomic quantification strategies and discuss their limitations. We further describe a strategy to propagate MS data for multilayered glycopeptide quantification, enabling a more comprehensive examination of global and site-specific glycosylation changes. Altogether, we show how quantitative glycoproteomics methods explore glycosylation regulation in human diseases and promote the discovery of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Pan Fang
- Department of Biochemistry and Molecular Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China;
| | - Yanlong Ji
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany;
- Frankfurt Cancer Institute, Johann Wolfgang Goethe University, 60596 Frankfurt am Main, Germany
| | - Thomas Oellerich
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany;
- Frankfurt Cancer Institute, Johann Wolfgang Goethe University, 60596 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
- Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
- Correspondence: (H.U.); (K.-T.P.)
| | - Kuan-Ting Pan
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany;
- Frankfurt Cancer Institute, Johann Wolfgang Goethe University, 60596 Frankfurt am Main, Germany
- Correspondence: (H.U.); (K.-T.P.)
| |
Collapse
|
45
|
Xiong F, Jia J, Ma J, Jia Q. Glutathione-functionalized magnetic thioether-COFs for the simultaneous capture of urinary exosomes and enrichment of exosomal glycosylated and phosphorylated peptides. NANOSCALE 2022; 14:853-864. [PMID: 34985482 DOI: 10.1039/d1nr06587d] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exosomes play an irreplaceable role in physiological and pathological processes, and the study of proteomics (especially protein post-translational modifications, PTMs) in exosomes can reveal the pathogenesis of diseases and screen therapeutic disease targets. The separation and enrichment process is an essential step in mass spectroscopy-based exosomal PTMs studies to reduce sample complexity and ionization-suppression effects. Herein, we designed a novel magnetic zwitterionic material, namely glutathione-functionalized thioether covalent organic frameworks (Fe3O4@Thio-COF@Au@GSH), possessing fast magnetic responsiveness, regular porosity, and a suitable surface area. Thanks to the hydrophilicity and charge-switchable feature of GSH, for the first time, both the capture of exosomes from biological fluids and enrichment of the inherent glycoproteins/phosphoproteins in the exosomes were achieved with the same material. Furthermore, the high enrichment capacity was validated by theoretical calculations. The low detection limits (0.2/0.4 fmol for HRP/β-casein), high selectivity (1 : 1000 for HRP/β-casein : BSA molar ratio), and high exosomal glycoproteomics/phosphoproteomics profiling capability proved the feasibility of the developed method. This work provides a new heuristic strategy to solve the problems of exosomal capture and glycoproteins/phosphoproteins pretreatment in exosomal proteomics.
Collapse
Affiliation(s)
- Fangfang Xiong
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Jiaxin Jia
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiutong Ma
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
46
|
Zheng H, Zhao J, Wang X, Yan S, Chu H, Gao M, Zhang X. Integrated Pipeline of Rapid Isolation and Analysis of Human Plasma Exosomes for Cancer Discrimination Based on Deep Learning of MALDI-TOF MS Fingerprints. Anal Chem 2022; 94:1831-1839. [PMID: 35025210 DOI: 10.1021/acs.analchem.1c04762] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plasma exosomes have shown great potential for liquid biopsy in clinical cancer diagnosis. Herein, we present an integrated strategy for isolating and analyzing exosomes from human plasma rapidly and then discriminating different cancers excellently based on deep learning fingerprints of plasma exosomes. Sequential size-exclusion chromatography (SSEC) was developed efficiently for separating exosomes from human plasma. SSEC isolated plasma exosomes, taking as less as 2 h for a single sample with high purity such that the discard rates of high-density lipoproteins and low/very low-density lipoproteins were 93 and 85%, respectively. Benefitting from the rapid and high-purity isolation, the contents encapsulated in exosomes, covered by plasma proteins, were well profiled by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS). We further analyzed 220 clinical samples, including 79 breast cancer patients, 57 pancreatic cancer patients, and 84 healthy controls. After MS data pre-processing and feature selection, the extracted MS feature peaks were utilized as inputs for constructing a multi-classifier artificial neural network (denoted as Exo-ANN) model. The optimized model avoided overfitting and performed well in both training cohorts and test cohorts. For the samples in the independent test cohort, it realized a diagnosed accuracy of 80.0% with an area under the curve of 0.91 for the whole group. These results suggest that our integrated pipeline may become a generic tool for liquid biopsy based on the analysis of plasma exosomes in clinics.
Collapse
Affiliation(s)
- Haoyang Zheng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Jiandong Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xuantang Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Shaohan Yan
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Huimin Chu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
47
|
Wang Y, Wang S, Chen A, Wang R, Li L, Fang X. Efficient exosome subpopulation isolation and proteomic profiling using a Sub-ExoProfile chip towards cancer diagnosis and treatment. Analyst 2022; 147:4237-4248. [DOI: 10.1039/d2an01268e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deconstruction of the heterogeneity of surface marker-dependent exosome subpopulations by the Sub-ExoProfile chip.
Collapse
Affiliation(s)
- Yuqing Wang
- School of Pharmacy, Fudan University, Shanghai, 200438, China
| | - Shurong Wang
- School of Pharmacy, Fudan University, Shanghai, 200438, China
| | - Aipeng Chen
- School of Pharmacy, Fudan University, Shanghai, 200438, China
| | - Ruoke Wang
- School of Pharmacy, Fudan University, Shanghai, 200438, China
| | - Lanting Li
- Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai, 201208, China
| | - Xiaoni Fang
- School of Pharmacy, Fudan University, Shanghai, 200438, China
| |
Collapse
|
48
|
Li Y, Yang K, Yuan H, Zhang W, Sui Z, Wang N, Lin H, Zhang L, Zhang Y. Surface Nanosieving Polyether Sulfone Particles with Graphene Oxide Encapsulation for the Negative Isolation toward Extracellular Vesicles. Anal Chem 2021; 93:16835-16844. [PMID: 34889606 DOI: 10.1021/acs.analchem.1c03588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) contain specific biomarkers for disease diagnosis. Current EV isolation methods are hampered in important biological applications due to their low recovery and purity. Herein, we first present a novel EV negative isolation strategy based on surface nanosieving polyether sulfone particles with graphene oxide encapsulation (SNAPs) by which the coexisting proteins are irreversibly adsorbed by graphene oxide (GO) inside the particles, while EVs with large sizes are excluded from the outside due to the well-defined surface pore sizes (10-40 nm). By this method, the purity of the isolated EVs from urine could be achieved 4.91 ± 1.01e10 particles/μg, 40.9-234 times higher than those obtained by the ultracentrifugation (UC), size-exclusion chromatography (SEC), and PEG-based precipitation. In addition, recovery ranging from 90.4 to 93.8% could be obtained with excellent reproducibility (RSD < 6%). This was 1.8-4.3 times higher than those obtained via SEC and UC, comparable to that obtained by PEG-based precipitation. Taking advantage of this strategy, we further isolated urinary EVs from IgA nephropathy (IgAN) patients and healthy donors for comparative proteome analysis, by which significantly regulated EV proteins were found to distinguish IgAN patients from healthy donors. All of the results indicated that our strategy would provide a new avenue for highly efficient EV isolation to enable many important clinical applications.
Collapse
Affiliation(s)
- Yilan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiguang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Huiming Yuan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weijie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Nan Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hongli Lin
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
49
|
Abstract
Exosomes are nano-sized extracellular vesicles (30–160 nm diameter) with lipid bilayer membrane secrete by various cells that mediate the communication between cells and tissue, which contain a variety of non-coding RNAs, mRNAs, proteins, lipids and other functional substances. Adipose tissue is important energy storage and endocrine organ in the organism. Recent studies have revealed that adipose tissue-derived exosomes (AT-Exosomes) play a critical role in many physiologically and pathologically functions. Physiologically, AT-Exosomes could regulate the metabolic homoeostasis of various organs or cells including liver and skeletal muscle. Pathologically, they could be used in the treatment of disease and or that they may be involved in the progression of the disease. In this review, we describe the basic principles and methods of exosomes isolation and identification, as well as further summary the specific methods. Moreover, we categorize the relevant studies of AT-Exosomes and summarize the different components and biological functions of mammalian exosomes. Most importantly, we elaborate AT-Exosomes crosstalk within adipose tissue and their functions on other tissues or organs from the physiological and pathological perspective. Based on the above analysis, we discuss what remains to be discovered problems in AT-Exosomes studies and prospect their directions needed to be further explored in the future.
Collapse
Affiliation(s)
- Rui Zhao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Tiantian Zhao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Zhaozhao He
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Rui Cai
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| |
Collapse
|
50
|
Ali N, Hassan Riead MM, Bilal M, Yang Y, Khan A, Ali F, Karim S, Zhou C, Wenjie Y, Sher F, Iqbal HMN. Adsorptive remediation of environmental pollutants using magnetic hybrid materials as platform adsorbents. CHEMOSPHERE 2021; 284:131279. [PMID: 34175517 DOI: 10.1016/j.chemosphere.2021.131279] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
Effective separation and remediation of environmentally hazardous pollutants are burning areas of research because of a constant increase in environmental pollution problems. An extensive number of emerging contaminants in the environmental matrices result in serious health consequences in animals, humans, and plants, even at trace levels. Therefore, it is of paramount significance to quantify these undesirable pollutants, even at a very low concentration, from the natural environment. Magnetic solid-phase extraction (MSPE) has recently achieved huge attention because of its strong magnetic domain and easy separation through an external magnetic field compared with simple solid-phase extraction. Therefore, MSPE appeared the most promising technique for removing and pre-concentration of emerging pollutants at trace level. Compared to the normal solid-phase extraction, MSPE as magnetic hybrid adsorbents offers the unique advantages of distinct nanomaterials and magnetic hybrid materials. It can exhibit efficient dispersion and rapid recycling when applying to a very complex matrix. This review highlights the possible environmental applications of magnetic hybrid nanoscale materials as effective MSPE sorbents to remediate a diverse range of environmentally toxic pollutants. We believe this study tends to evoke a variety of research thrust that may lead to novel remediation approaches in the forthcoming years.
Collapse
Affiliation(s)
- Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China.
| | - Md Mahamudul Hassan Riead
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Shafiul Karim
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Cao Zhou
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Ye Wenjie
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu Province, PR China
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico.
| |
Collapse
|