1
|
Tomioka R, Tomioka A, Ogata K, Chan HJ, Chen LY, Guzman UH, Xuan Y, Olsen JV, Chen YJ, Ishihama Y. Extending the Coverage of Lys-C/Trypsin-Based Bottom-up Proteomics by Cysteine S-Aminoethylation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:386-396. [PMID: 38287222 DOI: 10.1021/jasms.3c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
To improve the coverage in bottom-up proteomics, S-aminoethylation of cysteine residues (AE-Cys) was carried out with 2-bromoethylamine, followed by cleavage with lysyl endopeptidase (Lys-C) or Lys-C/trypsin. A model study with bovine serum albumin showed that the C-terminal side of AE-Cys was successfully cleaved by Lys-C. The frequency of side reactions at amino acids other than Cys was less than that in the case of carbamidomethylation of Cys with iodoacetamide. Proteomic analysis of A549 cell extracts in the data-dependent acquisition mode after AE-Cys modification afforded a greater number of identified protein groups, especially membrane proteins. In addition, label-free quantification of proteins in mouse nonsmall cell lung cancer (NSCLC) tissue in the data-independent acquisition mode after AE-Cys modification showed improved NSCLC pathway coverage and greater reproducibility. Furthermore, the AE-Cys method could identify an epidermal growth factor receptor peptide containing the T790 M mutation site, a well-established lung-cancer-related mutation site that has evaded conventional bottom-up methods. Finally, AE-Cys was found to fully mimic Lys in terms of collision-induced dissociation fragmentation, ion mobility separation, and cleavage by Lys-C/trypsin, except for sulfoxide formation during sample preparation.
Collapse
Affiliation(s)
- Ryota Tomioka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Biopharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka 561-0825, Osaka, Japan
| | - Ayana Tomioka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kosuke Ogata
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hsin-Ju Chan
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Li-Yu Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ulises H Guzman
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Yue Xuan
- Thermo Fisher Scientific GmbH, Bremen 28199, Germany
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki 567-0085, Osaka, Japan
| |
Collapse
|
2
|
O’Flaherty R, Amez Martín M, Gardner RA, Jennings PM, Rudd PM, Spencer DIR, Falck D. Erythropoietin N-glycosylation of Therapeutic Formulations Quantified and Characterized: An Interlab Comparability Study of High-Throughput Methods. Biomolecules 2024; 14:125. [PMID: 38254725 PMCID: PMC10813422 DOI: 10.3390/biom14010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Recombinant human erythropoietin (EPO) is a biopharmaceutical frequently used in the treatment of anemia. It is a heavily glycosylated protein with a diverse and complex glycome. EPO N-glycosylation influences important pharmacological parameters, prominently serum half-life. Therefore, EPO N-glycosylation analysis is of the utmost importance in terms of controlling critical quality attributes. In this work, we performed an interlaboratory study of glycoanalytical techniques for profiling and in-depth characterization, namely (1) hydrophilic interaction liquid chromatography with fluorescence detection after 2-aminobenzamide labeling (HILIC-FLD(2AB)) and optional weak anion exchange chromatography (WAX) fractionation and exoglycosidase digestion, (2) HILIC-FLD after procainamide labeling (PROC) optionally coupled to electrospray ionization-MS and (3) matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-MS). All techniques showed good precision and were able to differentiate the unique N-glycosylation profiles of the various EPO preparations. HILIC-FLD showed higher precision, while MALDI-TOF-MS covered the most analytes. However, HILIC-FLD differentiated isomeric N-glycans, i.e., N-acetyllactosamine repeats and O-acetylation regioisomers. For routine profiling, HILIC-FLD methods are more accessible and cover isomerism in major structures, while MALDI-MS covers more minor analytes with an attractively high throughput. For in-depth characterization, MALDI-MS and HILIC-FLD(2AB)/WAX give a similar amount of orthogonal information. HILIC-FLD(PROC)-MS is attractive for covering isomerism of major structures with a significantly less extensive workflow compared to HILIC-FLD(2AB)/WAX.
Collapse
Affiliation(s)
- Róisín O’Flaherty
- National Institute for Bioprocessing, Research and Training, Fosters Avenue, Blackrock, A94 X099 Dublin, Ireland (P.M.J.)
- Department of Chemistry, Maynooth University, W23 F2K8 Maynooth, Ireland
| | - Manuela Amez Martín
- Ludger Ltd., Culham Science Centre, Abingdon OX14 3EB, UK; (M.A.M.); (R.A.G.); (D.I.R.S.)
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Richard A. Gardner
- Ludger Ltd., Culham Science Centre, Abingdon OX14 3EB, UK; (M.A.M.); (R.A.G.); (D.I.R.S.)
| | - Patrick M. Jennings
- National Institute for Bioprocessing, Research and Training, Fosters Avenue, Blackrock, A94 X099 Dublin, Ireland (P.M.J.)
| | - Pauline M. Rudd
- National Institute for Bioprocessing, Research and Training, Fosters Avenue, Blackrock, A94 X099 Dublin, Ireland (P.M.J.)
| | - Daniel I. R. Spencer
- Ludger Ltd., Culham Science Centre, Abingdon OX14 3EB, UK; (M.A.M.); (R.A.G.); (D.I.R.S.)
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
3
|
Lippold S, Mistry K, Lenka S, Whang K, Liu P, Pitschi S, Kuhne F, Reusch D, Cadang L, Knaupp A, Izadi S, Dunkle A, Yang F, Schlothauer T. Function-structure approach reveals novel insights on the interplay of Immunoglobulin G 1 proteoforms and Fc gamma receptor IIa allotypes. Front Immunol 2023; 14:1260446. [PMID: 37790943 PMCID: PMC10544997 DOI: 10.3389/fimmu.2023.1260446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
Human Fc gamma receptor IIa (FcγRIIa) or CD32a has two major allotypes with a single amino acid difference at position 131 (histidine or arginine). Differences in FcγRIIa allotypes are known to impact immunological responses such as the clinical outcome of therapeutic monoclonal antibodies (mAbs). FcγRIIa is involved in antibody-dependent cellular phagocytosis (ADCP), which is an important contributor to the mechanism-of-action of mAbs by driving phagocytic clearance of cancer cells. Hence, understanding the impact of individual mAb proteoforms on the binding to FcγRIIa, and its different allotypes, is crucial for defining meaningful critical quality attributes (CQAs). Here, we report a function-structure based approach guided by novel FcγRIIa affinity chromatography-mass spectrometry (AC-MS) assays to assess individual IgG1 proteoforms. This allowed to unravel allotype-specific differences of IgG1 proteoforms on FcγRIIa binding. FcγRIIa AC-MS confirmed and refined structure-function relationships of IgG1 glycoform interactions. For example, the positive impact of afucosylation was higher than galactosylation for FcγRIIa Arg compared to FcγRIIa His. Moreover, we observed FcγRIIa allotype-opposing and IgG1 proteoform integrity-dependent differences in the binding response of stress-induced IgG1 proteoforms comprising asparagine 325 deamidation. The FcγRIIa-allotype dependent binding differences resolved by AC-MS were in line with functional ADCP-surrogate bioassay models. The molecular basis of the observed allotype specificity and proteoform selectivity upon asparagine 325 deamidation was elucidated using molecular dynamics. The observed differences were attributed to the contributions of an inter-molecular salt bridge between IgG1 and FcγRIIa Arg and the contribution of an intra-molecular hydrophobic pocket in IgG1. Our work highlights the unprecedented structural and functional resolution of AC-MS approaches along with predictive biological significance of observed affinity differences within relevant cell-based methods. This makes FcγRIIa AC-MS an invaluable tool to streamline the CQA assessment of therapeutic mAbs.
Collapse
Affiliation(s)
- Steffen Lippold
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Karishma Mistry
- Biological Technologies, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Sunidhi Lenka
- Pharmaceutical Development, Genentech, A Member of The Roche Group, South San Francisco, CA, United States
| | - Kevin Whang
- Biological Technologies, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Peilu Liu
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Sebastian Pitschi
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Felix Kuhne
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Dietmar Reusch
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Lance Cadang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Alexander Knaupp
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Saeed Izadi
- Pharmaceutical Development, Genentech, A Member of The Roche Group, South San Francisco, CA, United States
| | - Alexis Dunkle
- Biological Technologies, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Feng Yang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Tilman Schlothauer
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
4
|
Cao W, Bruening ML. Analysis of Protein Glycosylation after Rapid Digestion Using Protease-Containing Membranes in Spin Columns. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37127550 DOI: 10.1021/jasms.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glycosylation is an important protein post-translational modification that plays a pivotal role in the bioactivity of therapeutic proteins and in the infectivity of viral proteins. Liquid chromatography with tandem mass spectrometry readily identifies protein glycans with site specificity. However, the overnight incubation used in conventional in-solution proteolysis leads to high turnaround times for glycosylation analysis, particularly when sequential in-solution digestions are needed for site-specific glycan identification. Using bovine fetuin as a model glycoprotein, this work first shows that in-membrane digestion in ∼3 min yields similar glycan identification and quantitation when compared to overnight in-solution digestion. Protease-containing membranes in a spin column enable digestion of therapeutic proteins (trastuzumab and erythropoietin) and a viral protein (SARS-CoV-2 receptor binding domain) in ∼30 s. Glycan identification is similar after in-solution and in-membrane digestion, and limited in-membrane digestion enhances the identification of high-mannose glycans in trastuzumab. Finally, stacked membranes containing trypsin and chymotrypsin allow fast sequential proteolytic digestion to site-specifically identify the glycans of SARS-CoV-2 receptor binding domain. One can easily assemble the protease-containing membranes in commercial spin columns, and spinning multiple columns simultaneously will facilitate parallel analyses.
Collapse
Affiliation(s)
- Weikai Cao
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Merlin L Bruening
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
6
|
Yu Y, Shen H, Wang X, Gibril ME, Kong F, Wang S. Spherical nanoparticle-modified bacterial cellulose drives SH−SY5Y cell differentiation and inhibits bacterial proliferation. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
de Haan N, Pučić-Baković M, Novokmet M, Falck D, Lageveen-Kammeijer G, Razdorov G, Vučković F, Trbojević-Akmačić I, Gornik O, Hanić M, Wuhrer M, Lauc G. Developments and perspectives in high-throughput protein glycomics: enabling the analysis of thousands of samples. Glycobiology 2022; 32:651-663. [PMID: 35452121 PMCID: PMC9280525 DOI: 10.1093/glycob/cwac026] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
Glycans expand the structural complexity of proteins by several orders of magnitude, resulting in a tremendous analytical challenge when including them in biomedical research. Recent glycobiological research is painting a picture in which glycans represent a crucial structural and functional component of the majority of proteins, with alternative glycosylation of proteins and lipids being an important regulatory mechanism in many biological and pathological processes. Since interindividual differences in glycosylation are extensive, large studies are needed to map the structures and to understand the role of glycosylation in human (patho)physiology. Driven by these challenges, methods have emerged, which can tackle the complexity of glycosylation in thousands of samples, also known as high-throughput (HT) glycomics. For facile dissemination and implementation of HT glycomics technology, the sample preparation, analysis, as well as data mining, need to be stable over a long period of time (months/years), amenable to automation, and available to non-specialized laboratories. Current HT glycomics methods mainly focus on protein N-glycosylation and allow to extensively characterize this subset of the human glycome in large numbers of various biological samples. The ultimate goal in HT glycomics is to gain better knowledge and understanding of the complete human glycome using methods that are easy to adapt and implement in (basic) biomedical research. Aiming to promote wider use and development of HT glycomics, here, we present currently available, emerging, and prospective methods and some of their applications, revealing a largely unexplored molecular layer of the complexity of life.
Collapse
Affiliation(s)
- Noortje de Haan
- Copenhagen Center for Glycomics, University of Copenhagen, Blegdamsvej 3 Copenhagen 2200, Denmark
| | - Maja Pučić-Baković
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - Mislav Novokmet
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Guinevere Lageveen-Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Genadij Razdorov
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - Frano Vučković
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | | | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1, Zagreb 10000, Croatia
| | - Maja Hanić
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, The Netherlands
| | - Gordan Lauc
- Genos, Glycoscience Research Laboratory, Borongajska cesta 83h, Zagreb 10000, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1, Zagreb 10000, Croatia
| |
Collapse
|
8
|
Lippold S, Thavarajah R, Reusch D, Wuhrer M, Nicolardi S. Glycoform analysis of intact erythropoietin by MALDI FT-ICR mass spectrometry. Anal Chim Acta 2021; 1185:339084. [PMID: 34711323 DOI: 10.1016/j.aca.2021.339084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
Recombinant human erythropoietin (EPO) is a complex therapeutic glycoprotein with three N- and one O-glycosylation sites. Glycosylation of EPO influences its safety and efficacy and is defined as a critical quality attribute. Thus, analytical methods for profiling EPO glycosylation are highly demanded. Owing to the complexity of the intact protein, information about EPO glycosylation is commonly derived from released glycan and glycopeptide analysis using mass spectrometry (MS). Alternatively, comprehensive insights into the glycoform heterogeneity of intact EPO are obtained using ESI MS-based methods with or without upfront separation of EPO glycoforms. MALDI MS, typically performed with TOF mass analyzers, has been also used for the analysis of intact EPO but, due to the poor glycoform resolution, has only provided limited glycoform information. Here, we present a MALDI FT-ICR MS method for the glycosylation profiling of intact EPO with improved glycoform resolution and without loss of sialic acid residues commonly observed in MALDI analysis. Three EPO variants were characterized in-depth and up to 199 glycoform compositions were assigned from the evaluation of doubly-charged ions, without any deconvolution of the mass spectra. Key glycosylation features such as sialylation, acetylation, and N-acetyllactosamine repeats were determined and found to agree with previously reported data obtained from orthogonal analyses. The developed method allowed for a fast and straightforward data acquisition and evaluation and can be potentially used for the high-throughput comparison of EPO samples throughout its manufacturing process.
Collapse
Affiliation(s)
- Steffen Lippold
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Raashina Thavarajah
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Dietmar Reusch
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
9
|
Abstract
Glycoproteomics is unquestionably on the rise and its current development benefits from past experience in proteomics, in particular when attending to bioinformatics needs. An extensive range of software solutions is available, but the reproducibility of mass spectrometry data processing remains challenging. One of the key issues in running automated glycopeptide identification software is the selection of a reference glycan composition file. The default choices are often too broad, and a fastidious literature search to properly target this selection can be avoided. This chapter suggests the use of GlyConnect Compozitor to collect relevant information on glycosylation in a given tissue or cell line and shape an appropriate glycan composition set that can be input in the majority of search engines accommodating user-defined compositions.
Collapse
|