1
|
Cheng D, Guo Y, Lyu J, Liu Y, Xu W, Zheng W, Wang Y, Qiao P. Advances and challenges in preparing membrane proteins for native mass spectrometry. Biotechnol Adv 2025; 78:108483. [PMID: 39571766 DOI: 10.1016/j.biotechadv.2024.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Native mass spectrometry (nMS) is becoming a crucial tool for analyzing membrane proteins (MPs), yet challenges remain in solubilizing and stabilizing their native conformations while resolving and characterizing the heterogeneity introduced by post-translational modifications and ligand binding. This review highlights recent advancements and persistent challenges in preparing MPs for nMS. Optimizing detergents and additives can significantly reduce sample heterogeneity and surface charge, enhancing MP signal quality and structural preservation in nMS. A strategic workflow incorporating affinity capture, stabilization agents, and size-exclusion chromatography to remove unfolded species demonstrates success in improving nMS characterization. Continued development of customized detergents and reagents tailored for specific MPs may further minimize heterogeneity and boost signals. Instrumental advances are also needed to elucidate more dynamically complex and labile MPs. Effective sample preparation workflows may provide insights into MP structures, dynamics, and interactions underpinning membrane biology. With ongoing methodological innovation, nMS shows promise to complement biophysical studies and facilitate drug discovery targeting this clinically important yet technically demanding protein class.
Collapse
Affiliation(s)
- Di Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yi Guo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Yang Liu
- Regenxbox In., Rockville, MD 20850, USA
| | - Wenhao Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Weiyi Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuchen Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
2
|
Walker JN, Gautam AKS, Matouschek A, Brodbelt JS. Structural Analysis of the 20S Proteasome Using Native Mass Spectrometry and Ultraviolet Photodissociation. J Proteome Res 2024; 23:5438-5448. [PMID: 39475212 DOI: 10.1021/acs.jproteome.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Owing to the role of the 20S proteasome in a wide spectrum of pathologies, including neurodegenerative disorders, proteasome-associated autoinflammatory syndromes (PRAAS), and cardiovascular diseases, understanding how its structure and composition contribute to dysfunction is crucial. As a 735 kDa protein assembly, the 20S proteasome facilitates normal cellular proteostasis by degrading oxidized and misfolded proteins. Declined proteasomal activity, which can be attributed to perturbations in the structural integrity of the 20S proteasome, is considered one of the main contributors to multiple proteasome-related diseases. Devising methods to characterize the structures of 20S proteasomes provides necessary insight for the development of drugs and inhibitors that restore proper proteasomal function. Here, native mass spectrometry was combined with multiple dissociation techniques, including ultraviolet photodissociation (UVPD), to identify the protein subunits comprising the 20S proteasome. UVPD, demonstrating an ability to uncover structural features of large (>300 kDa) macromolecular complexes, provided complementary information to conventional collision-based methods. Additionally, variable-temperature electrospray ionization was combined with UV photoactivation to study the influence of solution temperature on the stability of the 20S proteasome.
Collapse
Affiliation(s)
- Jada N Walker
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Amit K S Gautam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Lantz C, Xi Z, Rider RL, Walker TE, Hebert M, Russell DH. Temperature-Dependent Trimethylamine N-Oxide Induced the Formation of Substance P Dimers. J Phys Chem B 2024; 128:11369-11378. [PMID: 39504981 PMCID: PMC11586895 DOI: 10.1021/acs.jpcb.4c04951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Interactions of the peptide substance P (SP) (RPKPQQFFGLM-NH2) with trimethylamine N-oxide (TMAO) were investigated by using cryo-ion mobility-mass spectrometry (cryo-IM-MS), variable-temperature (278-358 K) electrospray ionization (vT-ESI) MS, and molecular dynamics (MD) simulations. Cryo-IM-MS provides evidence that cold solutions containing SP and TMAO yield abundant hydrated SP dimer ions, but dimer formation is inhibited in solutions that also contain urea. In addition, we show that SP dimer formation at cold solution temperatures (<298 K) is favored when TMAO interacts with the hydrophobic C-terminus of SP and is subject to reduced entropic penalty when compared to warmer solution conditions (>298 K). MD simulations show that TMAO lowers the free energy barrier for dimerization and that monomers dimerize by forming hydrogen bonds (HBs). Moreover, differences in oligomer abundances for SP mutants (P4A, P2,4A, G9P, and P2,4A/G9P) provide evidence that oligomerization facilitated by TMAO is sensitive to the cis/trans orientation of residues at positions 2, 4, and 9.
Collapse
Affiliation(s)
- Carter Lantz
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zhenyu Xi
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Robert L. Rider
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas E. Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael Hebert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Kumar S, Stover L, Wang L, Bahramimoghaddam H, Zhou M, Russell DH, Laganowsky A. Native Mass Spectrometry of Membrane Protein-Lipid Interactions in Different Detergent Environments. Anal Chem 2024; 96:16768-16776. [PMID: 39394983 PMCID: PMC11503522 DOI: 10.1021/acs.analchem.4c03312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Native mass spectrometry (MS) reveals the role of specific lipids in modulating membrane protein structure and function. Membrane proteins solubilized in detergents are often introduced into the mass spectrometer. However, detergents commonly used for structural studies, such as dodecylmaltoside, tend to generate highly charged ions, leading to protein unfolding, thereby diminishing their utility in characterizing protein-lipid interactions. Thus, there is a critical need to develop approaches to investigate protein-lipid interactions in different detergents. Here, we demonstrate how charge-reducing molecules, such as spermine and trimethylamine-N-oxide, enable the opportunity to characterize lipid binding to the bacterial water channel (AqpZ) and ammonia channel (AmtB) in complex with regulatory protein GlnK in different detergent environments. We find that protein-lipid interactions not only are protein-dependent but also can be influenced by the detergent and type of charge-reducing molecule. AqpZ-lipid interactions are enhanced in LDAO (n-dodecyl-N,N-dimethylamine-N-oxide), whereas the interaction of AmtB-GlnK with lipids is comparable among different detergents. A fluorescent lipid binding assay also shows detergent dependence for AqpZ-lipid interactions, consistent with results from native MS. Taken together, native MS will play a pivotal role in establishing optimal experimental parameters that will be invaluable for various applications, such as drug discovery as well as biochemical and structural investigations.
Collapse
Affiliation(s)
- Smriti Kumar
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lauren Stover
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lie Wang
- Department
of Biochemistry and Molecular Biology, Baylor
College of Medicine, Houston, Texas 77030, United States
| | | | - Ming Zhou
- Department
of Biochemistry and Molecular Biology, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - David H. Russell
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Kumar S, Stover L, Wang L, Bahramimoghaddam H, Zhou M, Russell DH, Laganowsky A. Native mass spectrometry of membrane protein-lipid interactions in different detergent environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601044. [PMID: 38979331 PMCID: PMC11230385 DOI: 10.1101/2024.06.27.601044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Native mass spectrometry (MS) is revealing the role of specific lipids in modulating membrane protein structure and function. Membrane proteins solubilized in detergents are often introduced into the mass spectrometer; however, commonly used detergents for structural studies, such as dodecylmaltoside, tend to generate highly charged ions, leading to protein unfolding, thereby diminishing their utility for characterizing protein-lipid interactions. Thus, there is a critical need to develop approaches to investigate protein-lipid interactions in different detergents. Here, we demonstrate how charge-reducing molecules, such as spermine and trimethylamine-N-oxide, enable characterization of lipid binding to the bacterial water channel (AqpZ) and ammonia channel (AmtB) in complex with regulatory protein GlnK in different detergent environments. We find protein-lipid interactions are not only protein-dependent but can also be influenced by the detergent and type of charge-reducing molecule. AqpZ-lipid interactions are enhanced in LDAO (n-dodecyl-N,N-dimethylamine-N-oxide), whereas the interaction of AmtB-GlnK with lipids is comparable among different detergents. A fluorescent lipid binding assay also shows detergent dependence for AqpZ-lipid interactions, consistent with results from native MS. Taken together, native MS will play a pivotal role in establishing optimal experimental parameters that will be invaluable for various applications, such as drug discovery, as well as biochemical and structural investigations.
Collapse
Affiliation(s)
- Smriti Kumar
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lauren Stover
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lie Wang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | | | - Ming Zhou
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Gozzo TA, Bush MF. Effects of charge on protein ion structure: Lessons from cation-to-anion, proton-transfer reactions. MASS SPECTROMETRY REVIEWS 2024; 43:500-525. [PMID: 37129026 DOI: 10.1002/mas.21847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Collision cross-section values, which can be determined using ion mobility experiments, are sensitive to the structures of protein ions and useful for applications to structural biology and biophysics. Protein ions with different charge states can exhibit very different collision cross-section values, but a comprehensive understanding of this relationship remains elusive. Here, we review cation-to-anion, proton-transfer reactions (CAPTR), a method for generating a series of charge-reduced protein cations by reacting quadrupole-selected cations with even-electron monoanions. The resulting CAPTR products are analyzed using a combination of ion mobility, mass spectrometry, and collisional activation. We compare CAPTR to other charge-manipulation strategies and review the results of various CAPTR-based experiments, exploring their contribution to a deeper understanding of the relationship between protein ion structure and charge state.
Collapse
Affiliation(s)
- Theresa A Gozzo
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Skjærvø Ø, Togle A, Sutton H, Han X, Rauniyar N. Dimethyl sulfoxide as a gas phase charge-reducing agent for the determination of PEGylated proteins' intact mass. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38685882 DOI: 10.1039/d4ay00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Determination of PEGylated proteins' intact mass by mass spectrometry is challenging due to the molecules' large size, excessive charges, and instrument limitations. Previous efforts have been reported. However, signal variability, ion coalescence, and a generally low degree of robustness have been observed. In this work, we have explored the capabilities of post-column infusion of dimethyl sulfoxide (DMSO) following reversed-phase liquid chromatography-mass spectrometry (RP-LCMS) to determine PEG-filgrastim' intact mass, and to characterize its PEG moiety. The method was optimized around reproducibility (six preparations, and three injection replicates) with an in-house prepared PEG-filgrastim standard. The method showed a mass accuracy of ≤1.2 Da. The average molecular weight (MWEO=483) was 40 147.9 Da. The number average molecular weight (Mn) and the weight average molecular weight (Mw) were observed to be 40 101.1 and 40 113.9 Da, respectively, both with an RSD of 0.03%. The molecular weight distribution of ethylene oxide (EO), the polydispersity index (PDI), was 1.0003 for all preparations with a minimum and maximum number of EO units of 448 ± 2 and 516 ± 2, respectively. The method was finally applied to commercially available Neulasta® lots where the Mn and Mw were 39 995.8 and 40 008.8 Da, respectively, both with an RSD of 0.1%. The minimum and maximum EO units across the lots were observed to be 444.5 ± 1.5 and 514 ± 3, respectively. The PDI for all Neulasta® lots was 1.0003. This study provides an insightful characterization of Neulasta® and describes a robust LC-MS methodology for the characterization of the PEGylated proteins.
Collapse
Affiliation(s)
- Øystein Skjærvø
- Tanvex BioPharma USA, Inc., 10394 Pacific Center Ct, San Diego, CA 92121, USA.
| | - Alyssa Togle
- Tanvex BioPharma USA, Inc., 10394 Pacific Center Ct, San Diego, CA 92121, USA.
| | - Haley Sutton
- Tanvex BioPharma USA, Inc., 10394 Pacific Center Ct, San Diego, CA 92121, USA.
| | - Xuemei Han
- Tanvex BioPharma USA, Inc., 10394 Pacific Center Ct, San Diego, CA 92121, USA.
| | - Navin Rauniyar
- Tanvex BioPharma USA, Inc., 10394 Pacific Center Ct, San Diego, CA 92121, USA.
| |
Collapse
|
8
|
Zhu Y, Yun SD, Zhang T, Chang JY, Stover L, Laganowsky A. Native mass spectrometry of proteoliposomes containing integral and peripheral membrane proteins. Chem Sci 2023; 14:14243-14255. [PMID: 38098719 PMCID: PMC10718073 DOI: 10.1039/d3sc04938h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Cellular membranes are critical to the function of membrane proteins, whether they are associated (peripheral) or embedded (integral) within the bilayer. While detergents have contributed to our understanding of membrane protein structure and function, there remains challenges in characterizing protein-lipid interactions within the context of an intact membrane. Here, we developed a method to prepare proteoliposomes for native mass spectrometry (MS) studies. We first use native MS to detect the encapsulation of soluble proteins within liposomes. We then find the peripheral Gβ1γ2 complex associated with the membrane can be ejected and analyzed using native MS. Four different integral membrane proteins (AmtB, AqpZ, TRAAK, and TREK2), all of which have previously been characterized in detergent, eject from the proteoliposomes as intact complexes bound to lipids that have been shown to tightly associate in detergent, drawing a correlation between the two approaches. We also show the utility of more complex lipid environments, such as a brain polar lipid extract, and show TRAAK ejects from liposomes of this extract bound to lipids. These findings underscore the capability to eject protein complexes from membranes bound to both lipids and metal ions, and this approach will be instrumental in the identification of key protein-lipid interactions.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Sangho D Yun
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Tianqi Zhang
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Jing-Yuan Chang
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Lauren Stover
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| |
Collapse
|
9
|
Han Z, Omata N, Chen LC. Probing Acid-Induced Compaction of Denatured Proteins by High-Pressure Electrospray Mass Spectrometry. Anal Chem 2023; 95:14816-14821. [PMID: 37733605 DOI: 10.1021/acs.analchem.3c03183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Further increase in the acidity in the most denaturing acidic solution is known to induce compaction of the fully unfolded protein into a compact molten globule. The phenomenon of "acid-induced folding of proteins" takes place at pH ∼1 in strong acid aqueous solutions with high electrical conductivity and surface tension, a condition that is difficult to handle using conventional electrospray ionization methods for mass spectrometry. Here, high-pressure electrospray ionization (HP-ESI) is used to produce well-resolved mass spectra for proteins in strong acids with pH as low as 1. The compaction of protein conformation is indicated by a large shift in the charge state from high charges to native-like low charges. The addition of salt to the protein in the most denaturing condition also reproduces the compaction effect, thereby supporting the role of anions in this phenomenon. Similar compaction of proteins is also observed in organic solvent/acid mixtures. The charge state of the compacted protein depends on the type of anions that formed ion pairs with a positive charge on the protein. The dissociation of ion pairs during the ionization process forms neutral acids that can be observed by HP-ESI using a soft ion introduction configuration.
Collapse
Affiliation(s)
- Zhongbao Han
- Faculty of Engineering, University of Yamanashi, 4-3-11, Takeda, Kofu, Yamanashi400-8511, Japan
| | - Nozomu Omata
- Faculty of Engineering, University of Yamanashi, 4-3-11, Takeda, Kofu, Yamanashi400-8511, Japan
| | - Lee Chuin Chen
- Faculty of Engineering, University of Yamanashi, 4-3-11, Takeda, Kofu, Yamanashi400-8511, Japan
| |
Collapse
|
10
|
Zhu Y, Peng BJ, Kumar S, Stover L, Chang JY, Lyu J, Zhang T, Schrecke S, Azizov D, Russell DH, Fang L, Laganowsky A. Polyamine detergents tailored for native mass spectrometry studies of membrane proteins. Nat Commun 2023; 14:5676. [PMID: 37709761 PMCID: PMC10502129 DOI: 10.1038/s41467-023-41429-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Native mass spectrometry (MS) is a powerful technique for interrogating membrane protein complexes and their interactions with other molecules. A key aspect of the technique is the ability to preserve native-like structures and noncovalent interactions, which can be challenging depending on the choice of detergent. Different strategies have been employed to reduce charge on protein complexes to minimize activation and preserve non-covalent interactions. Here, we report the synthesis of a class of polyamine detergents tailored for native MS studies of membrane proteins. These detergents, a series of spermine covalently attached to various alkyl tails, are exceptional charge-reducing molecules, exhibiting a ten-fold enhanced potency over spermine. Addition of polyamine detergents to proteins solubilized in maltoside detergents results in improved, charge-reduced native mass spectra and reduced dissociation of subunits. Polyamine detergents open new opportunities to investigate membrane proteins in different detergent environments that have thwarted previous native MS studies.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Bo-Ji Peng
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Smriti Kumar
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Lauren Stover
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jing-Yuan Chang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Tianqi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Djavdat Azizov
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Lei Fang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
11
|
Zhu Y, Odenkirk MT, Qiao P, Zhang T, Schrecke S, Zhou M, Marty MT, Baker ES, Laganowsky A. Combining native mass spectrometry and lipidomics to uncover specific membrane protein-lipid interactions from natural lipid sources. Chem Sci 2023; 14:8570-8582. [PMID: 37593000 PMCID: PMC10430552 DOI: 10.1039/d3sc01482g] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
While it is known that lipids play an essential role in regulating membrane protein structure and function, it remains challenging to identify specific protein-lipid interactions. Here, we present an innovative approach that combines native mass spectrometry (MS) and lipidomics to identify lipids retained by membrane proteins from natural lipid extracts. Our results reveal that the bacterial ammonia channel (AmtB) enriches specific cardiolipin (CDL) and phosphatidylethanolamine (PE) from natural headgroup extracts. When the two extracts are mixed, AmtB retains more species, wherein selectivity is tuned to bias headgroup selection. Using a series of natural headgroup extracts, we show TRAAK, a two-pore domain K+ channel (K2P), retains specific acyl chains that is independent of the headgroup. A brain polar lipid extract was then combined with the K2Ps, TRAAK and TREK2, to understand lipid specificity. More than a hundred lipids demonstrated affinity for each protein, and both channels were found to retain specific fatty acids and lysophospholipids known to stimulate channel activity, even after several column washes. Natural lipid extracts provide the unique opportunity to not only present natural lipid diversity to purified membrane proteins but also identify lipids that may be important for membrane protein structure and function.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Melanie T Odenkirk
- Department of Chemistry, North Carolina State University Raleigh NC 27695 USA
| | - Pei Qiao
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Tianqi Zhang
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Ming Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine Houston TX 77030 USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry, The University of Arizona Tucson AZ 85721 USA
| | - Erin S Baker
- Department of Chemistry, University of North Carolina Chapel Hill NC 27514 USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| |
Collapse
|
12
|
Emergence of mass spectrometry detergents for membrane proteomics. Anal Bioanal Chem 2023:10.1007/s00216-023-04584-z. [PMID: 36808272 PMCID: PMC10328889 DOI: 10.1007/s00216-023-04584-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/21/2023]
Abstract
Detergents enable the investigation of membrane proteins by mass spectrometry. Detergent designers aim to improve underlying methodologies and are confronted with the challenge to design detergents with optimal solution and gas-phase properties. Herein, we review literature related to the optimization of detergent chemistry and handling and identify an emerging research direction: the optimization of mass spectrometry detergents for individual applications in mass spectrometry-based membrane proteomics. We provide an overview about qualitative design aspects including their relevance for the optimization of detergents in bottom-up proteomics, top-down proteomics, native mass spectrometry, and Nativeomics. In addition to established design aspects, such as charge, concentration, degradability, detergent removal, and detergent exchange, it becomes apparent that detergent heterogeneity is a promising key driver for innovation. We anticipate that rationalizing the role of detergent structures in membrane proteomics will serve as an enabling step for the analysis of challenging biological systems.
Collapse
|
13
|
Kumar S, Zhu Y, Stover L, Laganowsky A. Step toward Probing the Nonannular Belt of Membrane Proteins. Anal Chem 2022; 94:13906-13912. [PMID: 36170465 DOI: 10.1021/acs.analchem.2c02811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Integral membrane proteins are embedded in the biological membrane, where they carry out numerous biological processes. Although lipids present in the membrane are crucial for membrane protein function, it remains difficult to characterize many lipid binding events to membrane proteins, such as those that form the annular belt. Here, we use native mass spectrometry along with the charge-reducing properties of trimethylamine N-oxide (TMAO) to characterize a large number of lipid binding events to the bacterial ammonia channel (AmtB). In the absence of TMAO, significant peak overlap between neighboring charge states is observed, resulting in erroneous abundances for different molecular species. With the addition of TMAO, the weighted average charge state (Zavg) was decreased. In addition, the increased spacing between nearby charge states enabled a higher number of lipid binding species to be observed while minimizing mass spectral peak overlap. These conditions helped us to determine the equilibrium binding constants (Kd) for up to 16 lipid binding events. The binding constants for the first few lipid binding events display the highest affinity, whereas the binding constants for higher lipid binding events converge to a similar value. These findings suggest a transition from nonannular to annular lipid binding to AmtB.
Collapse
Affiliation(s)
- Smriti Kumar
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yun Zhu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lauren Stover
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
14
|
Walker TE, Laganowsky A, Russell DH. Surface Activity of Amines Provides Evidence for the Combined ESI Mechanism of Charge Reduction for Protein Complexes. Anal Chem 2022; 94:10824-10831. [PMID: 35862200 PMCID: PMC9357154 DOI: 10.1021/acs.analchem.2c01814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Charge reduction reactions are important for native mass spectrometry (nMS) because lower charge states help retain native-like conformations and preserve noncovalent interactions of protein complexes. While mechanisms of charge reduction reactions are not well understood, they are generally achieved through the addition of small molecules, such as polyamines, to traditional nMS buffers. Here, we present new evidence that surface-active, charge reducing reagents carry away excess charge from the droplet after being emitted due to Coulombic repulsion, thereby reducing the overall charge of the droplet. Furthermore, these processes are directly linked to two mechanisms for electrospray ionization, specifically the charge residue and ion evaporation models (CRM and IEM). Selected protein complexes were analyzed in solutions containing ammonium acetate and selected trialkylamines or diaminoalkanes of increasing alkyl chain lengths. Results show that amines with higher surface activity have increased propensities for promoting charge reduction of the protein ions. The electrospray ionization (ESI) emitter potential was also found to be a major contributing parameter to the prevalence of charge reduction; higher emitter potentials consistently coincided with lower average charge states among all protein complexes analyzed. These results offer experimental evidence for the mechanism of charge reduction in ESI and also provide insight into the final stages of the ESI and their impact on biological ions.
Collapse
Affiliation(s)
- Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
15
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
16
|
Yen HY, Abramsson ML, Agasid MT, Lama D, Gault J, Liko I, Kaldmäe M, Saluri M, Qureshi AA, Suades A, Drew D, Degiacomi MT, Marklund EG, Allison TM, Robinson CV, Landreh M. Electrospray ionization of native membrane proteins proceeds via a charge equilibration step. RSC Adv 2022; 12:9671-9680. [PMID: 35424940 PMCID: PMC8972943 DOI: 10.1039/d2ra01282k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
Electrospray ionization mass spectrometry is increasingly applied to study the structures and interactions of membrane protein complexes. However, the charging mechanism is complicated by the presence of detergent micelles during ionization. Here, we show that the final charge of membrane proteins can be predicted by their molecular weight when released from the non-charge reducing saccharide detergents. Our data indicate that PEG detergents lower the charge depending on the number of detergent molecules in the surrounding micelle, whereas fos-choline detergents may additionally participate in ion–ion reactions after desolvation. The supercharging reagent sulfolane, on the other hand, has no discernible effect on the charge of detergent-free membrane proteins. Taking our observations into the context of protein-detergent interactions in the gas phase, we propose a charge equilibration model for the generation of native-like membrane protein ions. During ionization of the protein-detergent complex, the ESI charges are distributed between detergent and protein according to proton affinity of the detergent, number of detergent molecules, and surface area of the protein. Charge equilibration influenced by detergents determines the final charge state of membrane proteins. This process likely contributes to maintaining a native-like fold after detergent release and can be harnessed to stabilize particularly labile membrane protein complexes in the gas phase. The electrospray ionization mechanism contributes to preserving the structures and interactions of membrane protein complexes in native mass spectrometry.![]()
Collapse
Affiliation(s)
- Hsin-Yung Yen
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK .,Institute of Biological Chemistry, Academia Sinica 128, Academia Road Sec. 2, Nankang Taipei 115 Taiwan
| | - Mia L Abramsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Tomtebodavägen 23A 17165 Stockholm Sweden
| | - Mark T Agasid
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Tomtebodavägen 23A 17165 Stockholm Sweden
| | - Joseph Gault
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Idlir Liko
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Margit Kaldmäe
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Tomtebodavägen 23A 17165 Stockholm Sweden
| | - Mihkel Saluri
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Tomtebodavägen 23A 17165 Stockholm Sweden
| | - Abdul Aziz Qureshi
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK .,Department of Biochemistry and Biophysics, Stockholm University 10691 Stockholm Sweden
| | - Albert Suades
- Department of Biochemistry and Biophysics, Stockholm University 10691 Stockholm Sweden
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University 10691 Stockholm Sweden
| | | | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University Box 576 75123 Uppsala Sweden
| | - Timothy M Allison
- Biomolecular Interaction Centre, School of Physical and Chemical Sciences, University of Canterbury Christchurch 8140 New Zealand
| | - Carol V Robinson
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Tomtebodavägen 23A 17165 Stockholm Sweden
| |
Collapse
|
17
|
Bailey AO, Huguet R, Mullen C, Syka JEP, Russell WK. Ion-Ion Charge Reduction Addresses Multiple Challenges Common to Denaturing Intact Mass Analysis. Anal Chem 2022; 94:3930-3938. [PMID: 35189062 DOI: 10.1021/acs.analchem.1c04973] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Complete LC-MS-based protein primary sequence characterization requires measurement of intact protein profiles under denaturing and/or reducing conditions. To address issues of protein overcharging of unstructured proteins under acidic, denaturing conditions and sample heterogeneity (macro- and micro-scales) which often confound denaturing intact mass analysis of a wide variety of protein samples, we propose the use of broadband isolation of entire charge state distributions of intact proteins followed by ion-ion proton transfer charge reduction, which we have termed "full scan PTCR" (fsPTCR). Using rapid denaturing size exclusion chromatography coupled to fsPTCR-Orbitrap MS and time-resolved deconvolution data analysis, we demonstrate a strategy for method optimization, leading to significant analytical advantages over conventional MS1. Denaturing analysis of the flexible bacterial translation initiation factor 2 (91 kDa) using fsPTCR reduced overcharging and showed an 11-fold gain in S/N compared to conventional MS1. Analysis by fsPTCR-MS of the microheterogeneous glycoprotein fetuin revealed twice as many proteoforms as MS1 (112 vs 56). In a macroheterogeneous mixture of proteins ranging from 14 to 148 kDa, fsPTCR provided more than 10-fold increased sensitivity and quantitative accuracy for diluted bovine serum albumin (66 kDa). Finally, our analysis shows that collisional gas pressure is a key parameter which can be utilized during fsPTCR to retain or remove larger proteins from acquired spectra.
Collapse
Affiliation(s)
- Aaron O Bailey
- University of Texas Medical Branch, 301 University Drive, Galveston, Texas 77551, United States
| | - Romain Huguet
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - Christopher Mullen
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - John E P Syka
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - William K Russell
- University of Texas Medical Branch, 301 University Drive, Galveston, Texas 77551, United States
| |
Collapse
|
18
|
McCabe JW, Jones BJ, Walker TE, Schrader RL, Huntley AP, Lyu J, Hoffman NM, Anderson GA, Reilly PTA, Laganowsky A, Wysocki VH, Russell DH. Implementing Digital-Waveform Technology for Extended m/ z Range Operation on a Native Dual-Quadrupole FT-IM-Orbitrap Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2812-2820. [PMID: 34797072 PMCID: PMC9026758 DOI: 10.1021/jasms.1c00245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Here, we describe a digital-waveform dual-quadrupole mass spectrometer that enhances the performance of our drift tube FT-IMS high-resolution Orbitrap mass spectrometer (MS). The dual-quadrupole analyzer enhances the instrument capabilities for studies of large protein and protein complexes. The first quadrupole (q) provides a means for performing low-energy collisional activation of ions to reduce or eliminate noncovalent adducts, viz., salts, buffers, detergents, and/or endogenous ligands. The second quadrupole (Q) is used to mass-select ions of interest for further interrogation by ion mobility spectrometry and/or collision-induced dissociation (CID). Q is operated using digital-waveform technology (DWT) to improve the mass selection compared to that achieved using traditional sinusoidal waveforms at floated DC potentials (>500 V DC). DWT allows for increased precision of the waveform for a fraction of the cost of conventional RF drivers and with readily programmable operation and precision (Hoffman, N. M. . A comparison-based digital-waveform generator for high-resolution duty cycle. Review of Scientific Instruments 2018, 89, 084101).
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Benjamin J Jones
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Robert L Schrader
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Adam P Huntley
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Nathan M Hoffman
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | | | - Peter T A Reilly
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
19
|
Bennett JL, Nguyen GTH, Donald WA. Protein-Small Molecule Interactions in Native Mass Spectrometry. Chem Rev 2021; 122:7327-7385. [PMID: 34449207 DOI: 10.1021/acs.chemrev.1c00293] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Small molecule drug discovery has been propelled by the continual development of novel scientific methodologies to occasion therapeutic advances. Although established biophysical methods can be used to obtain information regarding the molecular mechanisms underlying drug action, these approaches are often inefficient, low throughput, and ineffective in the analysis of heterogeneous systems including dynamic oligomeric assemblies and proteins that have undergone extensive post-translational modification. Native mass spectrometry can be used to probe protein-small molecule interactions with unprecedented speed and sensitivity, providing unique insights into polydisperse biomolecular systems that are commonly encountered during the drug discovery process. In this review, we describe potential and proven applications of native MS in the study of interactions between small, drug-like molecules and proteins, including large multiprotein complexes and membrane proteins. Approaches to quantify the thermodynamic and kinetic properties of ligand binding are discussed, alongside a summary of gas-phase ion activation techniques that have been used to interrogate the structure of protein-small molecule complexes. We additionally highlight some of the key areas in modern drug design for which native mass spectrometry has elicited significant advances. Future developments and applications of native mass spectrometry in drug discovery workflows are identified, including potential pathways toward studying protein-small molecule interactions on a whole-proteome scale.
Collapse
Affiliation(s)
- Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
20
|
Campuzano IDG, Sandoval W. Denaturing and Native Mass Spectrometric Analytics for Biotherapeutic Drug Discovery Research: Historical, Current, and Future Personal Perspectives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1861-1885. [PMID: 33886297 DOI: 10.1021/jasms.1c00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mass spectrometry (MS) plays a key role throughout all stages of drug development and is now as ubiquitous as other analytical techniques such as surface plasmon resonance, nuclear magnetic resonance, and supercritical fluid chromatography, among others. Herein, we aim to discuss the history of MS, both electrospray and matrix-assisted laser desorption ionization, specifically for the analysis of antibodies, evolving through to denaturing and native-MS analysis of newer biologic moieties such as antibody-drug conjugates, multispecific antibodies, and interfering nucleic acid-based therapies. We discuss challenging therapeutic target characterization such as membrane protein receptors. Importantly, we compare and contrast the MS and hyphenated analytical chromatographic methods used to characterize these therapeutic modalities and targets within biopharmaceutical research and highlight the importance of appropriate MS deconvolution software and its essential contribution to project progression. Finally, we describe emerging applications and MS technologies that are still predominantly within either a development or academic stage of use but are poised to have significant impact on future drug development within the biopharmaceutic industry once matured. The views reflected herein are personal and are not meant to be an exhaustive list of all relevant MS performed within biopharmaceutical research but are what we feel have been historically, are currently, and will be in the future the most impactful for the drug development process.
Collapse
MESH Headings
- Antibodies, Monoclonal/analysis
- Automation, Laboratory
- Biopharmaceutics/methods
- Chromatography, Liquid
- Drug Discovery/methods
- Drug Industry/history
- History, 20th Century
- History, 21st Century
- Humans
- Immunoconjugates/analysis
- Immunoconjugates/chemistry
- Protein Denaturation
- Protein Processing, Post-Translational
- Proteins/analysis
- Spectrometry, Mass, Electrospray Ionization/history
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/history
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Iain D G Campuzano
- Discovery Attribute Sciences, Amgen Research, 1 Amgen Center Drive, Thousand Oaks, California 92130, United States
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
21
|
McCabe JW, Shirzadeh M, Walker TE, Lin CW, Jones BJ, Wysocki VH, Barondeau DP, Clemmer DE, Laganowsky A, Russell DH. Variable-Temperature Electrospray Ionization for Temperature-Dependent Folding/Refolding Reactions of Proteins and Ligand Binding. Anal Chem 2021; 93:6924-6931. [PMID: 33904705 DOI: 10.1021/acs.analchem.1c00870] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stabilities and structure(s) of proteins are directly coupled to their local environment or Gibbs free energy landscape as defined by solvent, temperature, pressure, and concentration. Solution pH, ionic strength, cofactors, chemical chaperones, and osmolytes perturb the chemical potential and induce further changes in structure, stability, and function. At present, no single analytical technique can monitor these effects in a single measurement. Mass spectrometry and ion mobility-mass spectrometry play increasingly essential roles in studies of proteins, protein complexes, and even membrane protein complexes; however, with few exceptions, the effects of the solution temperature on the stability and structure(s) of analytes have not been thoroughly investigated. Here, we describe a new variable-temperature electrospray ionization (vT-ESI) source that utilizes a thermoelectric chip to cool and heat the solution contained within the static ESI emitter. This design allows for solution temperatures to be varied from ∼5 to 98 °C with short equilibration times (<2 min) between precisely controlled temperature changes. The performance of the apparatus for vT-ESI-mass spectrometry and vT-ESI-ion mobility-mass spectrometry studies of cold- and heat-folding reactions is demonstrated using ubiquitin and frataxin. Instrument performance for studies on temperature-dependent ligand binding is shown using the chaperonin GroEL.
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Cheng-Wei Lin
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Benjamin J Jones
- Department of Chemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Vicki H Wysocki
- Department of Chemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - David P Barondeau
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
22
|
Ieritano C, Rickert D, Featherstone J, Honek JF, Campbell JL, Blanc JCYL, Schneider BB, Hopkins WS. The Charge-State and Structural Stability of Peptides Conferred by Microsolvating Environments in Differential Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:956-968. [PMID: 33733774 DOI: 10.1021/jasms.0c00469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The presence of solvent vapor in a differential mobility spectrometry (DMS) cell creates a microsolvating environment that can mitigate complications associated with field-induced heating. In the case of peptides, the microsolvation of protonation sites results in a stabilization of charge density through localized solvent clustering, sheltering the ion from collisional activation. Seeding the DMS carrier gas (N2) with a solvent vapor prevented nearly all field-induced fragmentation of the protonated peptides GGG, AAA, and the Lys-rich Polybia-MP1 (IDWKKLLDAAKQIL-NH2). Modeling the microsolvation propensity of protonated n-propylamine [PrNH3]+, a mimic of the Lys side chain and N-terminus, with common gas-phase modifiers (H2O, MeOH, EtOH, iPrOH, acetone, and MeCN) confirms that all solvent molecules form stable clusters at the site of protonation. Moreover, modeling populations of microsolvated clusters indicates that species containing protonated amine moieties exist as microsolvated species with one to six solvent ligands at all effective ion temperatures (Teff) accessible during a DMS experiment (ca. 375-600 K). Calculated Teff of protonated GGG, AAA, and Polybia-MPI using a modified two-temperature theory approach were up to 86 K cooler in DMS environments seeded with solvent vapor compared to pure N2 environments. Stabilizing effects were largely driven by an increase in the ion's apparent collision cross section and by evaporative cooling processes induced by the dynamic evaporation/condensation cycles incurred in the presence of an oscillating electric separation field. When the microsolvating partner was a protic solvent, abstraction of a proton from [MP1 + 3H]3+ to yield [MP1 + 2H]2+ was observed. This result was attributed to the proclivity of protic solvents to form hydrogen-bond networks with enhanced gas-phase basicity. Collectively, microsolvation provides analytes with a solvent "air bag," whereby charge reduction and microsolvation-induced stabilization were shown to shelter peptides from the fragmentation induced by field heating and may play a role in preserving native-like ion configurations.
Collapse
Affiliation(s)
- Christian Ieritano
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Daniel Rickert
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Joshua Featherstone
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - John F Honek
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - J Larry Campbell
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- Watermine Innovation, Waterloo N0B 2T0, Ontario, Canada
- Bedrock Scientific, Milton L6T 6J9, Ontario, Canada
| | | | | | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- Watermine Innovation, Waterloo N0B 2T0, Ontario, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- Centre for Eye and Vision Research, Hong Kong Science Park, New Territories 999077, Hong Kong
| |
Collapse
|
23
|
Affiliation(s)
- James E. Keener
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Guozhi Zhang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
24
|
Mallis CS, Zheng X, Qiu X, McCabe JW, Shirzadeh M, Lyu J, Laganowsky A, Russell DH. Development of Native MS Capabilities on an Extended Mass Range Q-TOF MS. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2020; 458:116451. [PMID: 33162786 PMCID: PMC7641504 DOI: 10.1016/j.ijms.2020.116451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Native mass spectrometry (nMS) is increasingly used for studies of large biomolecules (>100 kDa), especially proteins and protein complexes. The growth in this area can be attributed to advances in native electrospray ionization as well as instrumentation that is capable of accessing high mass-to-charge (m/z) regimes without significant losses in sensitivity and resolution. Here, we describe modifications to the ESI source of an Agilent 6545XT Q-TOF MS that is tailored for analysis of large biomolecules. The modified ESI source was evaluated using both soluble and membrane protein complexes ranging from ~127 to ~232 kDa and the ~801 kDa protein chaperone GroEL. The increased mass resolution of the instrument affords the ability to resolve small molecule adducts and analyze collision-induced dissociation products of the native complexes.
Collapse
Affiliation(s)
| | - Xueyun Zheng
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Xi Qiu
- Agilent Technologies, Inc., Wilmington, DE 19808
| | - Jacob W. McCabe
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX 77843
- Correspondence to David H. Russell;
| |
Collapse
|
25
|
Selective regulation of human TRAAK channels by biologically active phospholipids. Nat Chem Biol 2020; 17:89-95. [PMID: 32989299 PMCID: PMC7746637 DOI: 10.1038/s41589-020-00659-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
TRAAK is an ion channel from the two-pore domain potassium (K2P) channel family with roles in maintaining the resting membrane potential and fast action potential conduction. Regulated by a wide range of physical and chemical stimuli, the affinity and selectivity of K2P4.1 towards lipids remains poorly understood. Here we show the two isoforms of K2P4.1 have distinct binding preferences for lipids dependent on acyl chain length and position on the glycerol backbone. Unexpectedly, the channel can also discriminate the fatty acid linkage at the sn-1 position. Of the 33 lipids interrogated using native mass spectrometry, phosphatidic acid (PA) had the lowest equilibrium dissociation constants for both isoforms of K2P4.1. Liposome potassium flux assays with K2P4.1 reconstituted in defined lipid environments show that those containing PA activate the channel in a dose-dependent fashion. Our results begin to define the molecular requirements for the specific binding of lipids to K2P4.1.
Collapse
|