1
|
Lei J, Zhao Z, Wu Q, Lu H. Graphene Oxide/TiO 2 Nanocomposite-Assisted Two-Step Ambient Liquid Extraction Mass Spectrometry Imaging for Comprehensively Enhancing Lipid Coverage in Spatial Lipidomics. Anal Chem 2024; 96:19456-19465. [PMID: 39593233 DOI: 10.1021/acs.analchem.4c03955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
It is challenging to have comprehensive spatial lipidomic analysis by mass spectrometry imaging (MSI) due to the strong ion suppression and peak interference from high-abundance polar lipids to low-abundance poorly ionizable lipids. In this work, we proposed a new MSI approach via ambient liquid extraction techniques assisted by a new mixed-mode adsorptive material, graphene oxide (GO)/TiO2 nanocomposite. The material combines chelation affinity from TiO2 and hydrophobic interaction from GO. By finely tuning the adsorption solvent as 9% H2O-6% ammonia-85% methanol/acetonitrile (1:1, v/v), simultaneous enrichment of poorly ionizable glycolipids and glycerides with separation from high-abundance phospholipids was achieved on the material. In 10 mg/mL glucose-6% ammonia-94% methanol, all of the adsorbed glycolipids and glycerides could be desorbed from the material efficiently. Then, GO/TiO2 nanocomposite was coated onto the sample plate for thaw-mounting the tissue section, and ambient liquid extraction probe was used to have pixel-to-pixel desorption of the lipids on the section in two steps with the above two solvents. The results show that most of the phospholipids were imaged in the first step MSI, and glycolipids and glycerides were selectively imaged in the second step MSI, largely reducing ion suppression and peak interference. Compared with direct ambient liquid extraction MSI, much more glycolipid species (22 vs 9), glyceride species (10 vs 5), phosphatidylethanolamines (11 vs 3), and lysophospholipids (12 vs 2) were detected via GO/TiO2 nanocomposite-assisted two-step MSI. The ion images of most lipids show much higher signals and imaging quality with the new method than with the traditional method. Thus, comprehensive enhancement of lipid coverage in MSI by on-tissue separation was achieved here for the first time, providing more information about spatial lipidomics studies.
Collapse
Affiliation(s)
- Jiawei Lei
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Zhihao Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
2
|
Zhou Y, Zhao Z, Wu Q, Lei J, Cui H, Pan J, Li R, Lu H. Photoinduced Online Enrichment-Deglycosylation of Glycolipids for Enhancing Lipid Coverage and Identification in Single-Cell Mass Spectrometry. Anal Chem 2024; 96:17576-17585. [PMID: 39435868 DOI: 10.1021/acs.analchem.4c03343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Single-cell lipidomics provides important information for molecular mechanisms of living processes and diseases at the individual cell level. However, single-cell lipidomic mass spectrometry (MS) techniques suffer from low lipid coverage and incomplete structural elucidation, especially for poorly ionizable glycosphingolipids (GSLs). Herein, a photoinduced enrichment-deglycosylation method of GSLs was developed and introduced into an ambient liquid extraction MS system for enhancing detection coverage and identification accuracy of GSLs in single-cell MS. GSL standards were selectively adsorbed on TiO2 in ammonia-added protic solvents. Under UV irradiation, the adsorbed GSLs would lose one hexosyl group (deglycosylation), and the products (>70% conversion efficiency) were desorbed from TiO2. By coating porous TiO2 into the capillary of the ambient liquid extraction MS system, online adsorption of GSLs and their separation from high-abundance phospholipids were achieved, largely reducing ion suppression. By UV irradiation, captured GSLs were rapidly deglycosylated and photodesorbed from TiO2 coating without solvent switching, resulting in 6-fold enrichment. With the new method, the detection coverage of GSLs was enhanced 9-fold without losing other lipidomes, compared with the conventional method. Moreover, deglycosylated GSLs from photodesorption had more MS/MS fragments than intact GSLs, facilitating detailed fatty acyl and sphingosine chain elucidation. Seven deglycosylated GSL peaks were identified with the confirmed hydroxyl group location in the fatty acyl chain, while only 1 was identified for intact GSL. The new method was applied to the single-cell lipidomics study of two types of nerve cells. Totally, 31 lipids including 11 GSLs were identified in a single cell, and 5 hexosylceramides were found significantly altered after neuron injury.
Collapse
Affiliation(s)
- Yongchang Zhou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Zhihao Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Jiawei Lei
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Hao Cui
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Junnan Pan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Ruiying Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
3
|
Takeda H, Takeuchi M, Hasegawa M, Miyamoto J, Tsugawa H. A Procedure for Solid-Phase Extractions Using Metal-Oxide-Coated Silica Column in Lipidomics. Anal Chem 2024; 96:17065-17070. [PMID: 39410762 DOI: 10.1021/acs.analchem.4c03230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Lipid enrichment is indispensable for enhancing the coverage of targeted molecules in mass spectrometry (MS)-based lipidomics studies. In this study, we developed a simple stepwise fractionation method using a titanium- and zirconium-dioxide-coated solid-phase extraction (SPE) silica column that separates neutral lipids, phospholipids, and other lipids, including fatty acids (FAs) and glycolipids. Chloroform was used to dissolve the lipids, and neutral lipids, including steryl esters, diacylglycerols, and triacylglycerols, were collected in the loading fraction. Second, methanol with formic acid (99:1, v/v) was used to retrieve FAs, ceramides, and glycolipids, including glycosylated ceramides and glycosylated diacylglycerols, by competing for affinity with the Lewis acid sites on the metal oxide surface. Finally, phospholipids strongly retained via chemoaffinity interactions were eluted using a solution containing 5% ammonia and high water content (45:50 v/v, 2-propanol:water), which canceled the electrostatic and chelating interactions with the SPE column. High average reproducibility of <10% and coverage of ∼100% compared to those of the non-SPE samples were demonstrated by untargeted lipidomics of human plasma and mouse brain, testis, and feces. The advantage of our procedure was showcased by characterizing minor lipid subclasses, including dihexosylceramides containing very long-chain polyunsaturated FA in the testis, monogalactosyl and digalactosyl monoacylglycerols in feces, and acetylated and glycolylated derivatives of gangliosides in the brain that were not detected using conventional solvent extraction methods. Likewise, the value of our method in biology is maximized during glycolipidome profiling in the absence of neutral lipids and phospholipids that cover more than 80% of the chromatographic peaks.
Collapse
Affiliation(s)
- Hiroaki Takeda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Manami Takeuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Mayu Hasegawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Junki Miyamoto
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hiroshi Tsugawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Molecular and Cellular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
4
|
Wang Z, Xia Y. Selective Enrichment via TiO 2 Magnetic Nanoparticles Enables Deep Profiling of Circulating Neutral Glycosphingolipids. Anal Chem 2024; 96:16955-16963. [PMID: 39392172 DOI: 10.1021/acs.analchem.4c04094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Circulating neutral glycosphingolipids (neutral GSLs (nGSLs)) are a unique subset of nGSLs that detach from organs or cell membranes and enter the bloodstream. Altered molecular distribution of circulating nGSL is increasingly associated with diseases. However, profiling of circulating nGSLs presents a lasting challenge due to their low abundances and structural complexity. Although TiO2 magnetic nanoparticles (TiO2 MNPs) were effective for the enrichment of nGSLs in brain tissue, the protocol showed limited selectivity for circulating nGSLs because their abundances were 100-times lower in human plasma than in brain tissue. In this work, we optimized the key parameters of selective enrichment by TiO2 MNPs and achieved 1:10,000 selectivity for nGSLs over interfering phospholipids, while maintaining ∼70% recovery for different subclasses of nGSLs. By integrating TiO2 MNP-based selective enrichment with reversed-phase liquid chromatography mass spectrometry and charge-tagging Paternò-Büchi derivatization, we achieved deep profiling of over 300 structures of nGSLs and sulfatides across 5 orders of magnitude in relative abundances, a significant leap regarding lipid coverage. We also depicted the structural atlas of nGSLs with defined headgroup, long-chain base, N-acyl chain, the location of desaturation, and 2-hydroxylation. Such information provides a valuable resource for lipidomic studies concerning the roles of circulating nGSLs in health and diseases.
Collapse
Affiliation(s)
- Zidan Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Wang Z, Zhang D, Wu J, Zhang W, Xia Y. Illuminating the dark space of neutral glycosphingolipidome by selective enrichment and profiling at multi-structural levels. Nat Commun 2024; 15:5627. [PMID: 38965283 PMCID: PMC11224418 DOI: 10.1038/s41467-024-50014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Glycosphingolipids (GSLs) are essential components of cell membranes, particularly enriched in the nervous system. Altered molecular distributions of GSLs are increasingly associated with human diseases, emphasizing the significance of lipidomic profiling. Traditional GSL analysis methods are hampered by matrix effect from phospholipids and the difficulty in distinguishing structural isomers. Herein, we introduce a highly sensitive workflow that harnesses magnetic TiO2 nanoparticle-based selective enrichment, charge-tagging Paternò-Büchi reaction, and liquid chromatography-tandem mass spectrometry. This approach enables mapping over 300 distinct GSLs in brain tissues by defining sugar types, long chain bases, N-acyl chains, and the locations of desaturation and hydroxylation. Relative quantitation of GSLs across multiple structural levels provides evidence of dysregulated gene and protein expressions of FA2H and CerS2 in human glioma tissue. Based on the structural features of GSLs, our method accurately differentiates human glioma with/without isocitrate dehydrogenase genetic mutation, and normal brain tissue.
Collapse
Affiliation(s)
- Zidan Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Donghui Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Department of Precision Instrument, Beijing, 100084, China
| | - Junhan Wu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Department of Precision Instrument, Beijing, 100084, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Department of Precision Instrument, Beijing, 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Zhou Y, Wu Q, Zhao Z, Wang Y, Lu H. Photocatalytic degradation-based ambient mass spectrometry imaging for enhancing detection coverage of poorly-ionizable lipidomes. Talanta 2024; 270:125564. [PMID: 38159350 DOI: 10.1016/j.talanta.2023.125564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Localization of lipidomes and tracking their spatial changes in tissues by mass spectrometry imaging (MSI) plays an important role in unveiling the mechanisms of living processes, diseases and therapeutic treatments. However, it is always challenging to achieve direct MSI of poorly-ionizable lipids, such as glycolipids and glycerolipids, due to the strong ion suppression and isobaric peaks interference from high-abundance phosphatidylcholines (PCs) in tissues. Here we developed a photocatalytic degradation-based ambient liquid extraction MSI method to largely enhance the detection coverage of poorly-ionizable lipids by rapid online removal of PCs in MSI. Phospholipids were found to be selectively photodegraded on TiO2 surface in acidic conditions in the presence of water under UV irradiation, while other poorly-ionizable lipids remained. Sulfate ion could largely improve the degradation efficiencies. Anatase nanoparticles-embedded TiO2 monolith was in-situ synthesized in the capillary of ambient liquid extraction system, and rapid online photodegradation of PCs was achieved during MSI with efficiency >80 %, largely reducing ion suppression. The pathway analysis showed that PC was oxidatively degraded starting from hydroxylation of C=C bonds. With intense UV irradiation, PCs were completely degraded into small molecules<200 Da without interference on the detection of endogenous lipids. With the new MSI method, detection coverage to cerebrosides, ceramides and diglycerides was enhanced by 2-9 times comparing with traditional MSI. Clearer localizations were observed for poorly-ionizable lipids via the new method than traditional method. Thus, this work provided a complementary MSI method for traditional MSI to address the issues on direct imaging of poorly ionizable lipids in ambient conditions.
Collapse
Affiliation(s)
- Yongchang Zhou
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha, 410083, PR China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha, 410083, PR China.
| | - Zhihao Zhao
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha, 410083, PR China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Hunan, Changsha, 410008, PR China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha, 410083, PR China
| |
Collapse
|
7
|
Cui X, Yang Y, Zhang M, Bao L, Jiao F, Liu S, Wang H, Wei X, Qian W, Shi X, Su C, Qian Y. Mulberry leaves supplementation alters lipid metabolism and promotes fatty acid β oxidation in growing mutton sheep. J Anim Sci 2024; 102:skae076. [PMID: 38908013 PMCID: PMC11196999 DOI: 10.1093/jas/skae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/21/2024] [Indexed: 06/24/2024] Open
Abstract
Mulberry leaves (MLs) are an unconventional feed with fiber and various active ingredients, and are acknowledged as likely to regulate lipid metabolism, while the molecular mechanism remains undefined. Therefore, our objective was to define the role of MLs on the overall lipid metabolism. We conducted a feeding experiment of three groups on growing mutton sheep fed with dried mulberry leaves (DMLs), with fermented mulberry leaves (FMLs), or without MLs (as control). Analyses of transcriptome and widely target lipids demonstrated the addition of MLs triggered big perturbations in genes and metabolites related to glycerolipid, phospholipid, ether lipid, and sphingolipid metabolism. Additionally, the variations of the above lipids in the treatment of MLs possibly facilitate immunity enhancement of growing mutton sheep via the activation of complement and coagulation cascades. Furthermore, treatments with MLs could expedite proceedings of lipid degradation and fatty acid β oxidation in mitochondria, thereby to achieve the effect of lipid reduction. Besides, added DMLs also fuel fatty acid β-oxidation in peroxisomes and own much stronger lipolysis than added FMLs, possibly attributed to high fiber content in DMLs. These findings establish the novel lipid-lowering role and immune protection of MLs, which lays the foundation for the medicinal application of MLs.
Collapse
Affiliation(s)
- Xiaopeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212000, China
| | - Yuxin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Minjuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijun Bao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Feng Jiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hexin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinlan Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Qian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiang Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Su
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yonghua Qian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shenzhen Fengnong Holding Co., Ltd, Shenzhen, Guangdong 518000, China
| |
Collapse
|
8
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
9
|
Nagasawa H, Miyazaki S, Kyogashima M. Simple separation of glycosphingolipids in the lower phase of a Folch's partition from crude lipid fractions using zirconium dioxide. Glycoconj J 2022; 39:789-795. [PMID: 36103104 DOI: 10.1007/s10719-022-10080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
A simple method was developed for the separation of glycosphingolipids (GSLs) from lipid mixtures, including phospholipids and cholesterol, using zirconium dioxide (zirconia, ZrO2). Although this procedure does not incorporate a mild alkali treatment, which is commonly used for eliminating glycerophospholipids, it can be used to remove both alkali-resistant sphingomyelin and glycerophospholipids possessing ether bonds. Importantly, when GSLs were dissolved in organic solvent together with cholesterol (Chol) and phospholipids, and loaded onto ZrO2, Chol did not bind to the ZrO2 but both the GSLs and phospholipids did. When eluted with 5 mg/mL of 2,5-dihydroxybenzoic acid in methanol, GSLs but not phospholipids were recovered, leaving the phospholipids bound to the ZrO2 particles. This method is particularly applicable for GSLs such as triglycosylceramides, tetraglycosylceramides and some pentaglycosylceramides, sulfatide and GM3 located in the lower phase of a Folch's partition, where significant amounts of phospholipids, Chol and neutral lipids reside along with GSLs. This method was successfully used to easily isolate GSLs from biological materials for their subsequent analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry with high resolution.
Collapse
Affiliation(s)
- Hideharu Nagasawa
- Division of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, 10281 Komuro, Inamachi, Saitama, 362-0806, Japan
| | - Shota Miyazaki
- GL Sciences Inc., 237-2 Sayamagahara, Saitama, 358-0032, Japan
| | - Mamoru Kyogashima
- Division of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, 10281 Komuro, Inamachi, Saitama, 362-0806, Japan.
| |
Collapse
|
10
|
Cui H, Wu Q, Zhao Z, Wang Y, Lu H. Selective Capture-Based Single-Cell Mass Spectrometry for Enhancing Sphingolipid Profiling of Neurons with Differentiation of Cell Body from Synapse. Anal Chem 2022; 94:15729-15737. [DOI: 10.1021/acs.analchem.2c03336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Cui
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P.R. China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P.R. China
| | - Zhihao Zhao
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P.R. China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Hunan, Changsha 410008, P.R. China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P.R. China
| |
Collapse
|
11
|
Luo S, Zhao Z, Wu Q, Wang Y, Lu H. Porous Graphitic Carbon-Based Imprint Mass Spectrometry Imaging with an Ambient Liquid Extraction Technique for Enhancing Coverage of Glycerolipids and Sphingolipids in Brain Tissue. Anal Chem 2022; 94:13753-13761. [PMID: 36173256 DOI: 10.1021/acs.analchem.2c01991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Localization of lipidomes and tracking their spatial changes by mass spectrometry imaging (MSI) is critical for the mechanism studies on living process, disease, and therapeutic treatment. However, due to the strong ion suppression in complex biotissue, the imaging coverage for lipids with low polarity or low abundances, such as glycerolipids and sphingolipids, is usually limited. To address this issue, we utilized a porous graphitic carbon (PGC) material to imprint brain tissue sections for selective enrichment of neutral lipids with polar phospholipids removed. Then, the tissue imprint was scanned for desorption by the ambient liquid extraction MSI system. It was found that on the PGC surface, hydrophobic interaction dominates in protic solvents, and polar interaction dominates in aprotic solvents. Accordingly, methanol was selected as the spray solvent for tissue imprinting, and 75% acetonitrile-methanol was selected as the desorption solvent for the ambient liquid extraction MSI system. The results showed that glycerides had high recoveries after the imprinting-desorption process (recovery ∼ 70%) with phospholipids eliminated (recovery < 7%). To increase the transferring efficiencies of lipids from tissue onto PGC, electrospray was used for solvent application during imprinting, and the signals of diglycerides (DGs) in the imprint MSI of brain tissue increased by 2-3 times as compared to those via air spray. Finally, the new imprint MSI approach was applied to the imaging of the rat cerebellum and was compared with direct tissue MSI. The results showed that with imprint MSI, the coverage of DGs, sphingomyelins (SMs), and ceramides was enhanced by 4-5-fold (32 vs 6, 4 vs 1, and 5 vs 0). The ion images showed that with imprint MSI, higher signal intensities and clearer spatial distribution of DGs and SMs were obtained without interference from phosphatidylcholine signals compared with tissue MSI. This new method provides a complementary approach for traditional MSI to address the issues in imaging poorly ionizable or low-abundance lipids.
Collapse
Affiliation(s)
- Shifen Luo
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P. R. China
| | - Zhihao Zhao
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P. R. China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P. R. China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Hunan, Changsha 410008, P. R. China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Hunan, Changsha 410083, P. R. China
| |
Collapse
|
12
|
Song Z, Li J, Lu W, Li B, Liu J, Wang Y, Wang Y, Zhang Z, Chen L. Synthesis and evaluation of fosfomycin group end-capped packing materials for hydrophilic interaction liquid chromatography. J Chromatogr A 2021; 1656:462529. [PMID: 34520890 DOI: 10.1016/j.chroma.2021.462529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023]
Abstract
Hydrophilic interaction liquid chromatography (HILIC) plays an important role in the analysis of compounds having high polarity. In this study, fosfomycin (F) was chosen as a new end-capping reagent, owing to the facile hydrolysis reaction of its epoxy group. Zirconia coated silica (ZrO2/SiO2) materials having good chemical and physical stability were prepared. D-glucose-6-phosphate (G) and D-fructose1,6-bisphosphate (FDP) were modified onto the inner and outer surfaces of the ZrO2/SiO2 microbeads. The new end-capping reagent (F) was then bonded onto the surface of the modified material through Lewis acid-base interactions. The properties (morphology, Zr content, pore size, pore volume, and carbon content) of the stationary phases (SPs) were characterized. Finally, the resulting end-capped SPs were employed to separate alkaloids and benzoic acids. Multiple interactions, including HILIC, electrostatic repulsion, ion exchange and hydrogen bonding, contributed to the retention of the analytes on the SPs. On the F-FDP-ZrO2/SiO2 column, a theoretical plate number of 31,700 plates/m and an asymmetry factor of 1.63 were achieved for berberine, exhibiting good chromatographic performance. Furthermore, the FDP-ZrO2/SiO2 column showed good acid-base stability and good potential for the analysis of benzoic acid in Sprite and ginsenoside separations. Thus, the results indicated the significant potential of using F as an end-capping reagent.
Collapse
Affiliation(s)
- Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, PR China.
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Wenhui Lu
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jinqiu Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, PR China
| | - Yaqi Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, PR China
| | - Yumeng Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, PR China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, PR China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
13
|
Zhang X, Wang W, Zare RN, Min Q. Peptide and protein assays using customizable bio-affinity arrays combined with ambient ionization mass spectrometry. Chem Sci 2021; 12:10810-10816. [PMID: 34476062 PMCID: PMC8372322 DOI: 10.1039/d1sc02311j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
High-throughput identification and quantification of protein/peptide biomarkers from biofluids in a label-free manner is achieved by interfacing bio-affinity arrays (BAAs) with nano-electrospray desorption electrospray ionization mass spectrometry (nano-DESI-MS). A wide spectrum of proteins and peptides ranging from phosphopeptides to cis-diol biomolecules as well as thrombin can be rapidly extracted via arbitrarily predefined affinity interactions including coordination chemistry, covalent bonding, and biological recognition. An integrated MS platform allows continuous interrogation. Profiling and quantitation of dysregulated phosphopeptides from small-volume (∼5 μL) serum samples has been successfully demonstrated. As a front-end device adapted to any mass spectrometer, this MS platform might hold much promise in protein/peptide analysis in point-of-care (POC) diagnostics and clinical applications. Customizable bio-affinity arrays were interfaced with ambient ionization mass spectrometry for high-throughput assays of protein/peptide biomarkers in biofluids.![]()
Collapse
Affiliation(s)
- Xuemeng Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Richard N Zare
- Department of Chemistry, Stanford University Stanford California 94305 USA
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
14
|
Knodel A, Foest D, Brandt S, Ahlmann N, Marggraf U, Gilbert-López B, Franzke J. Detection and Evaluation of Lipid Classes and Other Hydrophobic Compounds Using a Laser Desorption/Plasma Ionization Interface. Anal Chem 2020; 92:15212-15220. [DOI: 10.1021/acs.analchem.0c03839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alexander Knodel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Daniel Foest
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Sebastian Brandt
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Norman Ahlmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Ulrich Marggraf
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Bienvenida Gilbert-López
- Analytical Chemistry Research Group (FQM-323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Edif. B-3, 23071 Jaén, Spain
| | - Joachim Franzke
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| |
Collapse
|