1
|
Lieu LB, Nagy C, Huang J, Mullen C, McAlister GC, Zabrouskov V, Srzentić K, Durbin KR, Melani RD, Fornelli L. Enhanced Payload Localization in Antibody-Drug Conjugates Using a Middle-Down Mass Spectrometry Approach with Proton Transfer Charge Reduction. Anal Chem 2024. [PMID: 39511732 DOI: 10.1021/acs.analchem.4c03872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a novel class of immunoconjugates with growing therapeutic relevance, since they combine the efficacy of cytotoxic drugs with the specificity of antibodies. However, by design, ADCs introduce structural features into the monoclonal antibody scaffold that complicate their analysis. Payload attachment to cysteine or lysine residues can often result in product heterogeneity, regarding both the number of attached drug molecules and their conjugation site, necessitating the use of state-of-the-art MS instrumentation to elucidate their complexity. In middle-down mass spectrometry (MD MS), the gas-phase sequencing of ∼25 kDa ADC subunits with different ion activation techniques generally produces rich fragmentation mass spectra; however, spectral congestion can cause some fragment ions to go undetected, including those that can pinpoint the exact location of payload conjugation sites. Proton transfer charge reduction (PTCR) can substantially simplify fragment ion spectra, thereby unveiling the presence of product ions whose signals were previously suppressed. Herein, we present an MD MS strategy relying on the use of PTCR to investigate a cysteine-based ADC mimic with a variable drug-to-antibody ratio, targeting the unambiguous localization of payload conjugation sites. Unlike traditional tandem MS experiments (MS2), which could not provide a complete map of conjugation sites, a single PTCR-based experiment (MS3) proved to be sufficient to achieve this goal across all variably modified ADC subunits, including isomeric ones. Combining the results obtained from orthogonal ion activation techniques followed by PTCR further strengthened the confidence in the assignments.
Collapse
Affiliation(s)
- Linda B Lieu
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, Oklahoma 73109, United States
| | - Cynthia Nagy
- University of Oklahoma, School of Biological Sciences, 730 Van Vleet Oval, Norman, Oklahoma 73109, United States
| | - Jingjing Huang
- Thermo Fisher Scientific, 355 River Oaks pkwy, San Jose, California 35134, United States
| | - Christopher Mullen
- Thermo Fisher Scientific, 355 River Oaks pkwy, San Jose, California 35134, United States
| | - Graeme C McAlister
- Thermo Fisher Scientific, 355 River Oaks pkwy, San Jose, California 35134, United States
| | - Vlad Zabrouskov
- Thermo Fisher Scientific, 355 River Oaks pkwy, San Jose, California 35134, United States
| | - Kristina Srzentić
- Thermo Fisher Scientific, 11 Neuhofstrasse, 4153 Reinach, Switzerland
| | | | - Rafael D Melani
- Thermo Fisher Scientific, 355 River Oaks pkwy, San Jose, California 35134, United States
| | - Luca Fornelli
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, Oklahoma 73109, United States
- University of Oklahoma, School of Biological Sciences, 730 Van Vleet Oval, Norman, Oklahoma 73109, United States
| |
Collapse
|
2
|
Roberts DS, Loo JA, Tsybin YO, Liu X, Wu S, Chamot-Rooke J, Agar JN, Paša-Tolić L, Smith LM, Ge Y. Top-down proteomics. NATURE REVIEWS. METHODS PRIMERS 2024; 4:38. [PMID: 39006170 PMCID: PMC11242913 DOI: 10.1038/s43586-024-00318-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
Proteoforms, which arise from post-translational modifications, genetic polymorphisms and RNA splice variants, play a pivotal role as drivers in biology. Understanding proteoforms is essential to unravel the intricacies of biological systems and bridge the gap between genotypes and phenotypes. By analysing whole proteins without digestion, top-down proteomics (TDP) provides a holistic view of the proteome and can decipher protein function, uncover disease mechanisms and advance precision medicine. This Primer explores TDP, including the underlying principles, recent advances and an outlook on the future. The experimental section discusses instrumentation, sample preparation, intact protein separation, tandem mass spectrometry techniques and data collection. The results section looks at how to decipher raw data, visualize intact protein spectra and unravel data analysis. Additionally, proteoform identification, characterization and quantification are summarized, alongside approaches for statistical analysis. Various applications are described, including the human proteoform project and biomedical, biopharmaceutical and clinical sciences. These are complemented by discussions on measurement reproducibility, limitations and a forward-looking perspective that outlines areas where the field can advance, including potential future applications.
Collapse
Affiliation(s)
- David S Roberts
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California - Los Angeles, Los Angeles, CA, USA
| | | | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, USA
| | | | - Jeffrey N Agar
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ljiljana Paša-Tolić
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Biology, Human Proteomics Program, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
3
|
Watts E, Bashyal A, Dunham SD, Crittenden CM, Brodbelt JS. Enhanced Characterization of Lysine-Linked Antibody Drug Conjugates Enabled by Middle-Down Mass Spectrometry and Higher-Energy Collisional Dissociation-Triggered Electron-Transfer/Higher-Energy Collisional Dissociation and Ultraviolet Photodissociation. Antibodies (Basel) 2024; 13:30. [PMID: 38651410 PMCID: PMC11036284 DOI: 10.3390/antib13020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
As the development of new biotherapeutics advances, increasingly sophisticated tandem mass spectrometry methods are needed to characterize the most complex molecules, including antibody drug conjugates (ADCs). Lysine-linked ADCs, such as trastuzumab-emtansine (T-DM1), are among the most heterogeneous biotherapeutics. Here, we implement a workflow that combines limited proteolysis with HCD-triggered EThcD and UVPD mass spectrometry for the characterization of the resulting middle-down large-sized peptides of T-DM1. Fifty-three payload-containing peptides were identified, ranging in mass from 1.8 to 16.9 kDa, and leading to the unambiguous identification of 46 out of 92 possible conjugation sites. In addition, seven peptides were identified containing multiple payloads. The characterization of these types of heterogeneous peptides represents an important step in unraveling the combinatorial nature of lysine-conjugated ADCs.
Collapse
Affiliation(s)
- Eleanor Watts
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| | - Aarti Bashyal
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| | - Sean D. Dunham
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| |
Collapse
|
4
|
Wei B, Lantz C, Loo RRO, Campuzano IDG, Loo JA. Internal Fragments Enhance Middle-Down Mass Spectrometry Structural Characterization of Monoclonal Antibodies and Antibody-Drug Conjugates. Anal Chem 2024; 96:2491-2499. [PMID: 38294207 PMCID: PMC11001303 DOI: 10.1021/acs.analchem.3c04526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) are important large biotherapeutics (∼150 kDa) and high structural complexity that require extensive sequence and structure characterization. Middle-down mass spectrometry (MD-MS) is an emerging technique that sequences and maps subunits larger than those released by trypsinolysis. It avoids potentially introducing artifactual modifications that may occur in bottom-up MS while achieving higher sequence coverage compared to top-down MS. However, returning complete sequence information by MD-MS is still challenging. Here, we show that assigning internal fragments in direct infusion MD-MS of a mAb and an ADC substantially improves their structural characterization. For MD-MS of the reduced NIST mAb, including internal fragments recovers nearly 100% of the sequence by accessing the middle sequence region that is inaccessible by terminal fragments. The identification of important glycosylations can also be improved after the inclusion of internal fragments. For the reduced lysine-linked IgG1-DM1 ADC, we show that considering internal fragments increases the DM1 conjugation sites coverage to 80%, comparable to the reported 83% coverage achieved by peptide mapping on the same ADC (Luo et al. Anal. Chem. 2016, 88, 695-702). This study expands our work on the application of internal fragment assignments in top-down MS of mAbs and ADCs and can be extended to other heterogeneous therapeutic molecules such as multispecifics and fusion proteins for more widespread applications.
Collapse
Affiliation(s)
- Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Iain D. G. Campuzano
- Center for Research Acceleration by Digital Innovation, Molecular Analytics, Amgen Research, Thousand Oaks, CA, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Wei B, Lantz C, Liu W, Viner R, Loo RRO, Campuzano IDG, Loo JA. Added Value of Internal Fragments for Top-Down Mass Spectrometry of Intact Monoclonal Antibodies and Antibody-Drug Conjugates. Anal Chem 2023; 95:9347-9356. [PMID: 37278738 PMCID: PMC10954349 DOI: 10.1021/acs.analchem.3c01426] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) are two of the most important therapeutic drug classes that require extensive characterization, whereas their large size and structural complexity make them challenging to characterize and demand the use of advanced analytical methods. Top-down mass spectrometry (TD-MS) is an emerging technique that minimizes sample preparation and preserves endogenous post-translational modifications (PTMs); however, TD-MS of large proteins suffers from low fragmentation efficiency, limiting the sequence and structure information that can be obtained. Here, we show that including the assignment of internal fragments in native TD-MS of an intact mAb and an ADC can improve their molecular characterization. For the NIST mAb, internal fragments can access the sequence region constrained by disulfide bonds to increase the TD-MS sequence coverage to over 75%. Important PTM information, including intrachain disulfide connectivity and N-glycosylation sites, can be revealed after including internal fragments. For a heterogeneous lysine-linked ADC, we show that assigning internal fragments improves the identification of drug conjugation sites to achieve a coverage of 58% of all putative conjugation sites. This proof-of-principle study demonstrates the potential value of including internal fragments in native TD-MS of intact mAbs and ADCs, and this analytical strategy can be extended to bottom-up and middle-down MS approaches to achieve even more comprehensive characterization of important therapeutic molecules.
Collapse
Affiliation(s)
- Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
| | - Weijing Liu
- Thermo Fisher Scientific, San Jose, CA, 95134 USA
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, 95134 USA
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
| | - Iain D. G. Campuzano
- Amgen Research, Center for Research Acceleration and Digital Innovation, Molecular Analytics, Thousand Oaks, CA, 91320 USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
| |
Collapse
|
6
|
Deschamps E, Calabrese V, Schmitz I, Hubert-Roux M, Castagnos D, Afonso C. Advances in Ultra-High-Resolution Mass Spectrometry for Pharmaceutical Analysis. Molecules 2023; 28:2061. [PMID: 36903305 PMCID: PMC10003995 DOI: 10.3390/molecules28052061] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Pharmaceutical analysis refers to an area of analytical chemistry that deals with active compounds either by themselves (drug substance) or when formulated with excipients (drug product). In a less simplistic way, it can be defined as a complex science involving various disciplines, e.g., drug development, pharmacokinetics, drug metabolism, tissue distribution studies, and environmental contamination analyses. As such, the pharmaceutical analysis covers drug development to its impact on health and the environment. Moreover, due to the need for safe and effective medications, the pharmaceutical industry is one of the most heavily regulated sectors of the global economy. For this reason, powerful analytical instrumentation and efficient methods are required. In the last decades, mass spectrometry has been increasingly used in pharmaceutical analysis both for research aims and routine quality controls. Among different instrumental setups, ultra-high-resolution mass spectrometry with Fourier transform instruments, i.e., Fourier transform ion cyclotron resonance (FTICR) and Orbitrap, gives access to valuable molecular information for pharmaceutical analysis. In fact, thanks to their high resolving power, mass accuracy, and dynamic range, reliable molecular formula assignments or trace analysis in complex mixtures can be obtained. This review summarizes the principles of the two main types of Fourier transform mass spectrometers, and it highlights applications, developments, and future perspectives in pharmaceutical analysis.
Collapse
Affiliation(s)
- Estelle Deschamps
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, CEDEX, 76821 Mont-Saint-Aignan, France
- ORIL Industrie, Servier Group, 13 r Auguste Desgenétais, 76210 Bolbec, France
| | - Valentina Calabrese
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, CEDEX, 76821 Mont-Saint-Aignan, France
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 Rue de La Doua, F-69100 Villeurbanne, France
| | - Isabelle Schmitz
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, CEDEX, 76821 Mont-Saint-Aignan, France
| | - Marie Hubert-Roux
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, CEDEX, 76821 Mont-Saint-Aignan, France
| | - Denis Castagnos
- ORIL Industrie, Servier Group, 13 r Auguste Desgenétais, 76210 Bolbec, France
| | - Carlos Afonso
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, CEDEX, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
7
|
Jin Y, Edalatian Zakeri S, Bahal R, Wiemer AJ. New Technologies Bloom Together for Bettering Cancer Drug Conjugates. Pharmacol Rev 2022; 74:680-711. [PMID: 35710136 PMCID: PMC9553120 DOI: 10.1124/pharmrev.121.000499] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug conjugates, including antibody-drug conjugates, are a step toward realizing Paul Ehrlich's idea from over 100 years ago of a "magic bullet" for cancer treatment. Through balancing selective targeting molecules with highly potent payloads, drug conjugates can target specific tumor microenvironments and kill tumor cells. A drug conjugate consists of three parts: a targeting agent, a linker, and a payload. In some conjugates, monoclonal antibodies act as the targeting agent, but new strategies for targeting include antibody derivatives, peptides, and even small molecules. Linkers are responsible for connecting the payload to the targeting agent. Payloads impact vital cellular processes to kill tumor cells. At present, there are 12 antibody-drug conjugates on the market for different types of cancers. Research on drug conjugates is increasing year by year to solve problems encountered in conjugate design, such as tumor heterogeneity, poor circulation, low drug loading, low tumor uptake, and heterogenous expression of target antigens. This review highlights some important preclinical research on drug conjugates in recent years. We focus on three significant areas: improvement of antibody-drug conjugates, identification of new conjugate targets, and development of new types of drug conjugates, including nanotechnology. We close by highlighting the critical barriers to clinical translation and the open questions going forward. SIGNIFICANCE STATEMENT: The development of anticancer drug conjugates is now focused in three broad areas: improvements to existing antibody drug conjugates, identification of new targets, and development of new conjugate forms. This article focuses on the exciting preclinical studies in these three areas and advances in the technology that improves preclinical development.
Collapse
Affiliation(s)
- Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | | | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
8
|
Liu T, Tao Y, Xia X, Zhang Y, Deng R, Wang Y. Analytical tools for antibody–drug conjugates: from in vitro to in vivo. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Morgan TE, Jakes C, Brouwer HJ, Millán-Martín S, Chervet JP, Cook K, Carillo S, Bones J. Inline electrochemical reduction of NISTmAb for middle-up subunit liquid chromatography-mass spectrometry analysis. Analyst 2021; 146:6547-6555. [PMID: 34585175 DOI: 10.1039/d1an01184g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Disulfide bond reduction within antibody mass spectrometry workflows is typically carried out using chemical reducing agents to produce antibody subunits for middle-down and middle-up analysis. In this contribution we offer an online electrochemical reduction method for the reduction of antibodies coupled with liquid chromatography (LC) and mass spectrometry (MS), reducing the disulfide bonds present in the antibody without the need for chemical reducing agents. An electrochemical cell placed before the analytical column and mass spectrometer facilitated complete reduction of NISTmAb inter- and intrachain disulfide bonds. Reduction and analysis were carried out under optimal solvent conditions using a trapping column and switching valve to facilitate solvent exchange during analysis. The level of reduction was shown to be affected by electrochemical potential, temperature and solvent organic content, but with optimization, complete disulfide bond cleavage was achieved. The use of an inline electrochemical cell offers a simple, rapid, workflow solution for liquid chromatography mass spectrometry analysis of antibody subunits.
Collapse
Affiliation(s)
- Tomos E Morgan
- Characterisation and Comparability Laboratory, NIBRT - the National Institute for bioprocessing research and training, Foster Avenue, Mount Merrion, Blackrock, Co., Dublin, A94 X099, Ireland.
| | - Craig Jakes
- Characterisation and Comparability Laboratory, NIBRT - the National Institute for bioprocessing research and training, Foster Avenue, Mount Merrion, Blackrock, Co., Dublin, A94 X099, Ireland. .,School of Chemical Engineering and Bioprocessing, University College of Dublin, Belfield, Dublin 4, Ireland
| | | | - Silvia Millán-Martín
- Characterisation and Comparability Laboratory, NIBRT - the National Institute for bioprocessing research and training, Foster Avenue, Mount Merrion, Blackrock, Co., Dublin, A94 X099, Ireland.
| | | | - Ken Cook
- Thermo Fisher Scientific, Hemel Hempstead, Herts, HP2 7GE, UK
| | - Sara Carillo
- Characterisation and Comparability Laboratory, NIBRT - the National Institute for bioprocessing research and training, Foster Avenue, Mount Merrion, Blackrock, Co., Dublin, A94 X099, Ireland.
| | - Jonathan Bones
- Characterisation and Comparability Laboratory, NIBRT - the National Institute for bioprocessing research and training, Foster Avenue, Mount Merrion, Blackrock, Co., Dublin, A94 X099, Ireland. .,School of Chemical Engineering and Bioprocessing, University College of Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
10
|
Larson EJ, Roberts DS, Melby JA, Buck KM, Zhu Y, Zhou S, Han L, Zhang Q, Ge Y. High-Throughput Multi-attribute Analysis of Antibody-Drug Conjugates Enabled by Trapped Ion Mobility Spectrometry and Top-Down Mass Spectrometry. Anal Chem 2021; 93:10013-10021. [PMID: 34258999 PMCID: PMC8319120 DOI: 10.1021/acs.analchem.1c00150] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibody-drug conjugates (ADCs) are one of the fastest growing classes of anticancer therapies. Combining the high targeting specificity of monoclonal antibodies (mAbs) with cytotoxic small molecule drugs, ADCs are complex molecular entities that are intrinsically heterogeneous. Primary sequence variants, varied drug-to-antibody ratio (DAR) species, and conformational changes in the starting mAb structure upon drug conjugation must be monitored to ensure the safety and efficacy of ADCs. Herein, we have developed a high-throughput method for the analysis of cysteine-linked ADCs using trapped ion mobility spectrometry (TIMS) combined with top-down mass spectrometry (MS) on a Bruker timsTOF Pro. This method can analyze ADCs (∼150 kDa) by TIMS followed by a three-tiered top-down MS characterization strategy for multi-attribute analysis. First, the charge state distribution and DAR value of the ADC are monitored (MS1). Second, the intact mass of subunits dissociated from the ADC by low-energy collision-induced dissociation (CID) is determined (MS2). Third, the primary sequence for the dissociated subunits is characterized by CID fragmentation using elevated collisional energies (MS3). We further automate this workflow by directly injecting the ADC and using MS segmentation to obtain all three tiers of MS information in a single 3-min run. Overall, this work highlights a multi-attribute top-down MS characterization method that possesses unparalleled speed for high-throughput characterization of ADCs.
Collapse
Affiliation(s)
- Eli J Larson
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David S Roberts
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jake A Melby
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kevin M Buck
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, 1111 Highland Avenue., Madison, Wisconsin 53705, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, 1111 Highland Avenue., Madison, Wisconsin 53705, United States
| | - Shiyue Zhou
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Linjie Han
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Qunying Zhang
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, 1111 Highland Avenue., Madison, Wisconsin 53705, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, 1111 Highland Avenue., Madison, Wisconsin 53705, United States
| |
Collapse
|
11
|
Brown KA, Melby JA, Roberts DS, Ge Y. Top-down proteomics: challenges, innovations, and applications in basic and clinical research. Expert Rev Proteomics 2020; 17:719-733. [PMID: 33232185 PMCID: PMC7864889 DOI: 10.1080/14789450.2020.1855982] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
Introduction- A better understanding of the underlying molecular mechanism of diseases is critical for developing more effective diagnostic tools and therapeutics toward precision medicine. However, many challenges remain to unravel the complex nature of diseases. Areas covered- Changes in protein isoform expression and post-translation modifications (PTMs) have gained recognition for their role in underlying disease mechanisms. Top-down mass spectrometry (MS)-based proteomics is increasingly recognized as an important method for the comprehensive characterization of proteoforms that arise from alternative splicing events and/or PTMs for basic and clinical research. Here, we review the challenges, technological innovations, and recent studies that utilize top-down proteomics to elucidate changes in the proteome with an emphasis on its use to study heart diseases. Expert opinion- Proteoform-resolved information can substantially contribute to the understanding of the molecular mechanisms underlying various diseases and for the identification of novel proteoform targets for better therapeutic development . Despite the challenges of sequencing intact proteins, top-down proteomics has enabled a wealth of information regarding protein isoform switching and changes in PTMs. Continuous developments in sample preparation, intact protein separation, and instrumentation for top-down MS have broadened its capabilities to characterize proteoforms from a range of samples on an increasingly global scale.
Collapse
Affiliation(s)
- Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Jake A. Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|