1
|
Xu F, Chen M, Lin Y, Zhou S, Li J, Yu Y, Xu J, Wu W, Chen Y, Zhang H, Wei Y, Wang W. Functional Three-Dimensional Zeolitic Imidazolate Framework with an Ordered Macroporous Structure for the Isolation of Extracellular Vesicles. Anal Chem 2024; 96:17640-17648. [PMID: 39440634 DOI: 10.1021/acs.analchem.4c03566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) and their cargoes are increasingly being recognized as noninvasive diagnostic markers, necessitating the isolation of EVs from complex biological samples. Herein, a distearoyl phospholipid ethanolamine-functionalized single-crystal ordered macroporous three-dimensional zeolitic imidazolate framework (SOM-ZIF-8-DSPE) was developed, which combines the surface charge interaction of ZIF-8 with the synergistic effect of DSPE insertion into the phospholipid membrane of EVs to improve the isolating selectivity of EV capture. The materials have porous structures larger than 300 nm in diameter, providing enough space and active sites to trap EVs. Benefiting from this feature, the entire isolation process takes only 10 min and is well compatible with the subsequent analysis of RNA in EVs. Consequently, 10 upregulated miRNA of plasma EVs in the primary colorectal cancer (pCRC) patients is found over the healthy donors, and 6 upregulated miRNA of plasma EVs in the metastatic colorectal cancer (mCRC) patients over pCRC patients. These findings suggest that the isolation of EV-based SOM-ZIF-8-DSPE is a promising strategy to identify biomarkers for disease diagnosis, such as miRNAs in plasma EVs for the early detection of CRC.
Collapse
Affiliation(s)
- Fang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mengxi Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yujie Lin
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Shenyue Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jiaxi Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yuanyuan Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jiayu Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wen Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yinshuang Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Haiyang Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Cui H, Zheng T, Qian N, Fu X, Li A, Xing S, Wang XF. Aptamer-Functionalized Magnetic Ti 3C 2 Based Nanoplatform for Simultaneous Enrichment and Detection of Exosomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402434. [PMID: 38970554 DOI: 10.1002/smll.202402434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/11/2024] [Indexed: 07/08/2024]
Abstract
Exosomes are nanovesicles secreted by cells, which play a crucial role in various pathological processes. Exosomes have shown great promise as tumor biomarkers because of the abundant secretion during tumor formation. The development of a convenient, efficient, and cost-effective method for simultaneously enriching and detecting exosomes is of utmost importance for both basic research and clinical applications. In this study, an aptamer-functionalized magnetic Ti3C2 composite material (Fe3O4@Ti3C2@PEI@DSP@aptamer@FAM-ssDNA) is prepared for the simultaneous enrichment and detection of exosomes. CD63 aptamers are utilized to recognize and capture the exosomes, followed by magnetic separation. The exosomes are then released by cleaving the disulfide bonds of DSP. Compared to traditional methods, Fe3O4@Ti3C2@PEI@DSP@aptamer@FAM-ssDNA exhibited superior efficiency in enriching exosomes while preserving their structural and functional integrity. Detection of exosome concentration is achieved through the fluorescence quenching of Ti3C2 and the competitive binding between the exosomes and a fluorescently labeled probe. This method exhibited a low detection limit of 4.21 × 104 particles mL-1, a number that is comparable to the state-of-the-art method in the detection of exosomes. The present study demonstrates a method of simultaneous enrichment and detection of exosomes with a high sensitivity, accuracy, specificity, and cost-effectiveness providing significant potential for clinical research and diagnosis.
Collapse
Affiliation(s)
- Hongyuan Cui
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Tianfang Zheng
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Nana Qian
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Aijun Li
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Shu Xing
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Xiao-Feng Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
3
|
Lu F, Cheng X, Qi X, Li D, Hu L. Metabolic landscaping of extracellular vesicles from body fluids by phosphatidylserine imprinted polymer enrichment and mass spectrometry analysis. Talanta 2024; 282:126940. [PMID: 39341064 DOI: 10.1016/j.talanta.2024.126940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
Extracellular vesicles (EVs) are emerging as new source of biomarkers discovery in liquid biopsy due to their stabilization in body fluids, protected by phospholipid bilayers. However, the metabolomics study of EVs is very little reported due to the lack of efficient and high-throughput isolation methods for clinical samples. In this study, phosphatidylserine imprinted polymers were employed for rapid and efficient EVs isolation from five human body fluids, including plasma, urine, amniotic fluid, cerebrospinal fluid, and saliva. The isolated EVs were subsequently analyzed for metabolomic studies by high-resolution mass spectrometry. Metabolic landscaping was conducted between the body fluids and their EVs, indicating EVs contain a large number of metabolites that are completely specific to the body fluid source. Finally, quantitative metabolomic analysis of EVs was carried out with plasma samples of hepatocellular carcinoma. Several differentially expressed exosomal metabolites were revealed including the upregulation of sphingosine (d18:1), taurochenodeoxycholic acid (TCDCA), pipecolic acid (PA), and 4-hydroxynonenal (4-HNE) and down-regulation of piperine, caffeine, and indole. We believe the proposed methodology will provide a deeper understanding of the molecular composition and functions of EVs as an alternative source for biomarker discovery.
Collapse
Affiliation(s)
- Feng Lu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xianhui Cheng
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xiulei Qi
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Dejun Li
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
4
|
Uğurlu Ö, Man E, Gök O, Ülker G, Soytürk H, Özyurt C, Evran S. A review of aptamer-conjugated nanomaterials for analytical sample preparation: Classification according to the utilized nanomaterials. Anal Chim Acta 2024; 1287:342001. [PMID: 38182359 DOI: 10.1016/j.aca.2023.342001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Sample extraction before detection is a critical step in analysis. Since targets of interest are often found in complex matrices, the sample can not be directly introduced to the analytical instrument. Nanomaterials with unique physical-chemical properties are excellent supports for use in sorbent-based extraction. However, they lack selectivity and thus need to be functionalized with target-capturing molecules. Antibodies and molecularly imprinted polymers (MIPs) can be used for this purpose, but they have some problems that limit their practical applications. Hence, functionalization of nanomaterials for selectivity remains a problem. RESULTS Nucleic acid aptamers are affinity reagents that can provide superiority to antibodies since they can be selected in vitro and at a lower cost. Moreover, aptamers can be chemically synthesized and easily modified with different functional groups. Hence, aptamers are good candidates to impart selectivity to the nanomaterials. Recent studies focus on the integration of aptamers with magnetic nanoparticles, carbon-based nanomaterials, metal-organic frameworks, gold nanoparticles, gold nanorods, silica nanomaterials, and nanofibers. The unique properties of nanomaterials and aptamers make the aptamer-conjugated nanomaterials attractive for use in sample preparation. Aptamer-functionalized nanomaterials have been successfully used for selective extraction of proteins, small molecules, and cells from different types of complex samples such as serum, urine, and milk. In particular, magnetic nanoparticles have a wider use due to the rapid extraction of the sample under magnetic field. SIGNIFICANCE In this review, we aim to emphasize how beneficial features of nanomaterials and aptamers could be combined for extraction or enrichment of the analytes from complex samples. We aim to highlight that the benefits are twofold in terms of selectivity and efficiency when employing nanomaterials and aptamers together as a single platform.
Collapse
Affiliation(s)
- Özge Uğurlu
- Department of Medical Services and Techniques, Hatay Vocational School of Health Services, Hatay Mustafa Kemal University, Tayfur Sökmen Campus, 31060, Alahan-Antakya, Hatay, Turkey; Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Ezgi Man
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey; EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, 35100, İzmir, Turkey
| | - Oğuz Gök
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Gözde Ülker
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Hakan Soytürk
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Canan Özyurt
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey.
| |
Collapse
|
5
|
Wu G, Lu F, Zhao J, Feng X, Ren Y, Hu S, Yu W, Dong B, Hu L. Investigation of rare earth-based magnetic nanocomposites for specific enrichment of exosomes from human plasma. J Chromatogr A 2024; 1714:464543. [PMID: 38065027 DOI: 10.1016/j.chroma.2023.464543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Exosomes, also known as small extracellular vesicles, are widely present in a variety of body fluids (e.g., blood, urine, and saliva). Exosomes are becoming an alternative promising source of diagnostic markers for disease rich in cargo of metabolites, proteins, and nucleic acids. However, due to the low abundance and structure similarity with protein complex, the efficient isolation of exosomes is one of the most important issues for biomedical applications. With a higher order of f-orbitals in rare earth element, it will have strong adsorption toward the phosphate group on the surface of the phospholipid bilayer of exosomes. In this study, we systematically investigated the ability of various rare earths interacting with phosphate-containing molecules and plasma exosomes. One of the best binding europium was selected and used to synthesize core-shell magnetic nanomaterials (Fe3O4@SiO2@Eu2O3) for the enrichment of exosomes from human plasma. The developed nanomaterials exhibited higher enrichment capacity, less time consumption and more convenient handling compared to commonly used ultracentrifugation method. The nanomaterials were applied to separate exosomes from the plasma of patients with hepatocellular carcinoma and healthy controls for metabolomics study with high-resolution mass spectrometry, where 70 differentially expressed metabolites were identified, involving amino acid and lipid metabolic pathway. We anticipated the rare earth-based materials to be an alternative approach on exosome isolation for disease diagnosis or postoperative clinical monitoring.
Collapse
Affiliation(s)
- Guangyao Wu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Feng Lu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiali Zhao
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xin Feng
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yujuan Ren
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Songtao Hu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Wenjing Yu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
6
|
Chen H, Qi Y, Yang C, Tai Q, Zhang M, Shen XZ, Deng C, Guo J, Jiang S, Sun N. Heterogeneous MXene Hybrid-Oriented Exosome Isolation and Metabolic Profiling for Early Screening, Subtyping and Follow-up Evaluation of Bladder Cancer. ACS NANO 2023; 17:23924-23935. [PMID: 38039354 DOI: 10.1021/acsnano.3c08391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Exosome metabolite-based noninvasive liquid biopsy is an emerging research hotspot that tends to substitute current means in clinics. Nanostructure-based mass spectrometry enables continuous exosome isolation and metabolic profiling with superior analysis speed and high efficiency. Herein, we construct a heterogeneous MXene hybrid that possesses ternary binding sites for exosome capture and outstanding matrix performance for metabolite analysis. Upon optimizing experimental conditions, the average extraction of exosomes and their metabolic patterns from a 60 mL urine sample is completed within 45 s (40 samples per batch for 30 min). According to the exosomal metabolic patterns and the subsequently established biomarker panel, we distinguish early bladder cancer (BCa) from healthy controls with an area under the curve (AUC) value greater than 0.995 in model training and validation sets. As well, we realize subtype classification of BCa in the blind test on metabolic patterns, with an AUC value of 0.867. We also explore the significant biomarkers that are sensitive to follow-up patients, which indeed present reverse change levels compared with pathological progression. This study has the potential to guide the development of the liquid biopsy approach.
Collapse
Affiliation(s)
- Haolin Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Yu Qi
- Department of Urology, Zhongshan Hospital, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200032, P. R. China
| | - Chenyu Yang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Qunfei Tai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Man Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Chunhui Deng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200032, P. R. China
| | - Shuai Jiang
- Department of Urology, Zhongshan Hospital, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200032, P. R. China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
7
|
Guo R, Zhong Q, Liu J, Bai P, Wang Z, Kou J, Chen P, Zhang J, Zhang B. Polarity-extended liquid chromatography-triple quadrupole mass spectrometry for simultaneous hydrophilic and hydrophobic metabolite analysis. Anal Chim Acta 2023; 1277:341655. [PMID: 37604610 DOI: 10.1016/j.aca.2023.341655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/02/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023]
Abstract
Although various metabolomic methods have been reported in recent years, simultaneous detection of hydrophilic and hydrophobic metabolites in a single analysis remains a technical challenge. In this study, based on the combination of hydrophilic interaction liquid chromatography (HILIC) and reversed phase liquid chromatography (RPLC), an online two-dimensional liquid chromatography/triple quadrupole mass spectrometry method (2D-LC/TQMS) was developed for the simultaneous analysis of hydrophilic and hydrophobic metabolites of various biological samples. The method can measure 417 biologically important metabolites (e.g., amino acids and peptides, pyrimidines, purines, monosaccharides, fatty acids and conjugates, organic dicarboxylic acids, and others) with logP values ranging from -10.3 to 21.9. The metabolites are involved in a variety of metabolic pathways (e.g., purine metabolism, pyrimidine metabolism, tyrosine metabolism, galactose metabolism, gluconeogenesis, and TCA cycle). The developed method has good intra- and inter-day reproducibility (RSD of retention time <2%, RSD of peak area <30%), good linearity (R2 > 0.9) and wide linear range (from 0.0025 μg/mL to 5 μg/mL). The applicability of the method was tested using different biological samples (i.e., plasma, serum, urine, fecal, seminal plasma and liver) and it was found that 208 (out of 417) identical metabolites were detected in all biological samples. Furthermore, the metabolomic method was applied to a case/control study of urinary of bladder cancer. Thirty differential metabolites were identified that were involved in carbohydrate and amino acid metabolism.
Collapse
Affiliation(s)
- Rui Guo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qisheng Zhong
- Guangzhou Analytical Center Analytical & Measuring Instruments Division, Shimadzu (China) Co., LTD, Guangzhou, 510656, China
| | - Jiaqi Liu
- Guangzhou Analytical Center Analytical & Measuring Instruments Division, Shimadzu (China) Co., LTD, Guangzhou, 510656, China
| | - Peiming Bai
- Zhongshan Hospital Affiliated of Xiamen University, Xiamen, 361004, China
| | - Zongpeng Wang
- Jinjiang Jingchun Technology Ltd., Quanzhou, 362200, China
| | - Jieling Kou
- ScienceLife (Xiamen) Technology Co., Ltd., Xiamen, 361000, China
| | - Peijie Chen
- Zhongshan Hospital Affiliated of Xiamen University, Xiamen, 361004, China.
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Bo Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
8
|
Danilushkina AA, Emene CC, Barlev NA, Gomzikova MO. Strategies for Engineering of Extracellular Vesicles. Int J Mol Sci 2023; 24:13247. [PMID: 37686050 PMCID: PMC10488046 DOI: 10.3390/ijms241713247] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released by cells into the extracellular space. EVs mediate cell-to-cell communication through local and systemic transportation of biomolecules such as DNA, RNA, transcription factors, cytokines, chemokines, enzymes, lipids, and organelles within the human body. EVs gained a particular interest from cancer biology scientists because of their role in the modulation of the tumor microenvironment through delivering bioactive molecules. In this respect, EVs represent an attractive therapeutic target and a means for drug delivery. The advantages of EVs include their biocompatibility, small size, and low immunogenicity. However, there are several limitations that restrict the widespread use of EVs in therapy, namely, their low specificity and payload capacity. Thus, in order to enhance the therapeutic efficacy and delivery specificity, the surface and composition of extracellular vesicles should be modified accordingly. In this review, we describe various approaches to engineering EVs, and further discuss their advantages and disadvantages to promote the application of EVs in clinical practice.
Collapse
Affiliation(s)
- Anna A. Danilushkina
- Laboratory of Intercellular Communications, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
| | - Charles C. Emene
- Laboratory of Intercellular Communications, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
| | - Nicolai A. Barlev
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Biomedicine, Nazarbayev University School of Medicine, Astana 001000, Kazakhstan
| | - Marina O. Gomzikova
- Laboratory of Intercellular Communications, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
9
|
Ye S, You Q, Song S, Wang H, Wang C, Zhu L, Yang Y. Nanostructures and Nanotechnologies for the Detection of Extracellular Vesicle. Adv Biol (Weinh) 2023; 7:e2200201. [PMID: 36394211 DOI: 10.1002/adbi.202200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/17/2022] [Indexed: 11/19/2022]
Abstract
Liquid biopsy has been taken as a minimally invasive examination and a promising surrogate to the clinically applied tissue-based test for the diagnosis and molecular analysis of cancer. Extracellular vesicles (EVs) carry complex molecular information from the tumor, allowing for the multicomponent analysis of cancer and would be beneficial to personalized medicine. In this review, the advanced nanomaterials and nanotechniques for the detection and molecular profiling of EVs, highlight the advantages of nanotechnology in the high-purity isolation and the high-sensitive and high-specific identification of EVs, are summarized. An outlook on the clinical application of nanotechnology-based liquid biopsy in the diagnosis, prognostication, and surveillance of cancer is also provided. It provides information for developing liquid biopsy based on EVs by discussing the advantages and challenges of functionalized nanomaterials and various nanotechnologies.
Collapse
Affiliation(s)
- Siyuan Ye
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Shuya Song
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huayi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,Translational Medicine Center, Chinese Institute for Brain Research (CIBR), Beijing, 102206, P. R. China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Zhang Y, Liang F, Zhang D, Qi S, Liu Y. Metabolites as extracellular vesicle cargo in health, cancer, pleural effusion, and cardiovascular diseases: An emerging field of study to diagnostic and therapeutic purposes. Biomed Pharmacother 2023; 157:114046. [PMID: 36469967 DOI: 10.1016/j.biopha.2022.114046] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Extracellular vesicles (EVs) are highly diverse nanoscale membrane-bound structures released from different cell types into the extracellular environment. They play essential functions in cell signaling by transporting their cargo, such as proteins, RNA, DNA, lipids, metabolites, and small molecules, to recipient cells. It has recently been shown that EVs might modulate carcinogenesis by delivering cargo to recipient cells. Furthermore, recent discoveries revealed that changes in plasma-derived EV levels and cargo in subjects with metabolic diseases were documented by many researchers, suggesting that EVs might be a promising source of disease biomarkers. One of the cargos of EVs that has recently attracted the most attention is metabolites. The metabolome of these vesicles introduces a plethora of disease indicators; hence, examining the metabolomics of EVs detected in human biofluids would be an effective approach. On the other hand, metabolites have various roles in biological systems, including the production of energies, synthesizing macromolecules, and serving as signaling molecules and hormones. Metabolome rewiring in cancer and stromal cells is a characteristic of malignancy, but the current understanding of how this affects the metabolite composition and activity of tumor-derived EVs remains in its infancy. Since new findings and studies in the field of exosome biology and metabolism are constantly being published, it is likely that diagnostic and treatment techniques, including the use of exosome metabolites, will be launched in the coming years. Recent years have seen increased interest in the EV metabolome as a possible source for biomarker development. However, our understanding of the role of these molecules in health and disease is still immature. In this work, we have provided the latest findings regarding the role of metabolites as EV cargoes in the pathophysiology of diseases, including cancer, pleural effusion (PE), and cardiovascular disease (CVD). We also discussed the significance of metabolites as EV cargoes of microbiota and their role in host-microbe interaction. In addition, the latest findings on metabolites in the form of EV cargoes as biomarkers for disease diagnosis and treatment are presented in this study.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Feng Liang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Shuang Qi
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
11
|
Fan Y, Wu W, Xie N, Huang Y, Wu H, Zhang J, Guo X, Ding S, Guo B. Biocompatible engineered erythrocytes as plasmonic sensor initiators for high-sensitive screening of non-small cell lung cancer-derived exosomal miRNA in an integrated system. Biosens Bioelectron 2023; 219:114802. [PMID: 36270080 DOI: 10.1016/j.bios.2022.114802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
The development of a holistic solution is crucial for exosome-based liquid biopsy, which is a significant advancement from basic research to clinical application for the early and non-invasive diagnosis of disease. However, the challenge of current technology is how to facilitate the separation and quickly connect with the detection. Herein, employing miRNA-155 as a target, a novel integrated concentration and determination system of exosomes (ICDSE) was fabricated for the targeted enrichment of exosomes from the plasma of patients with non-small cell lung cancer and instant downstream analysis of exosomal miRNA. This ICDSE consists of aptamer-engineered erythrocytes with a supramolecular plasmonic biosensor. The streamlined analytical procedure benefited from engineered erythrocytes as an interlinkage, needlessly removing them before extracting total RNA due to the lack of nuclei. With the assistance of a specific aptamer and simple centrifugation, engineered erythrocytes achieved exceptional enrichment of exosomes within 30 min. The LOD of the biosensor for miR-155 approached 2.03 fM due to the substantially high refractive index of the quadruplet supramolecular dendrimer and zirconium metal-organic framework. Impressively, the developed ICDSE successfully isolated and evaluated exosomes from clinical specimens of patients with NSCLC, which can also be promising for other diseases with identifiable exosome signatures. Thus, our ICDSE is expected to have widespread biomedical applications, as it is economical and well-accepted.
Collapse
Affiliation(s)
- Yunpeng Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Wenwen Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ning Xie
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China; Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China; Department of Medical Laboratory Science, Research Center of Translational Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Yi Huang
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China; Department of Medical Laboratory Science, Research Center of Translational Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Juan Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Xiaolan Guo
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China; Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China; Department of Medical Laboratory Science, Research Center of Translational Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Bin Guo
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China; Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China; Department of Medical Laboratory Science, Research Center of Translational Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637000, China.
| |
Collapse
|
12
|
Shefer A, Yalovaya A, Tamkovich S. Exosomes in Breast Cancer: Involvement in Tumor Dissemination and Prospects for Liquid Biopsy. Int J Mol Sci 2022; 23:8845. [PMID: 36012109 PMCID: PMC9408748 DOI: 10.3390/ijms23168845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/03/2022] Open
Abstract
In women, breast cancer (BC) is the most commonly diagnosed cancer (24.5%) and the leading cause of cancer death (15.5%). Understanding how this heterogeneous disease develops and the confirm mechanisms behind tumor progression is of utmost importance. Exosomes are long-range message vesicles that mediate communication between cells in physiological conditions but also in pathology, such as breast cancer. In recent years, there has been an exponential rise in the scientific studies reporting the change in morphology and cargo of tumor-derived exosomes. Due to the transfer of biologically active molecules, such as RNA (microRNA, long non-coding RNA, mRNA, etc.) and proteins (transcription factors, enzymes, etc.) into recipient cells, these lipid bilayer 30-150 nm vesicles activate numerous signaling pathways that promote tumor development. In this review, we attempt to shed light on exosomes' involvement in breast cancer pathogenesis (including epithelial-to-mesenchymal transition (EMT), tumor cell proliferation and motility, metastatic processes, angiogenesis stimulation, and immune system repression). Moreover, the potential use of exosomes as promising diagnostic biomarkers for liquid biopsy of breast cancer is also discussed.
Collapse
Affiliation(s)
- Aleksei Shefer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alena Yalovaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Svetlana Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
13
|
Affinity-based isolation of extracellular vesicles and the effects on downstream molecular analysis. Anal Bioanal Chem 2022; 414:7051-7067. [PMID: 35732746 DOI: 10.1007/s00216-022-04178-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/01/2022]
Abstract
Extracellular vesicles (EVs) are transport vesicles with diameters ranging from 30 to 1000 nm, secreted by cells in both physiological and pathological conditions. By using the EV shuttling system, biomolecular cargo such as proteins and genetic materials travels between cells resulting in intercellular communication and epigenetic regulation. Because the presence of EVs and cargo molecules in body fluids can predict the state of the parental cells, EV isolation techniques from complex biofluids have been developed. Further exploration of EVs through downstream molecular analysis depends heavily on those isolation technologies. Methodologies based either on physical separation or on affinity binding have been used to isolate EVs. Affinity-based methods for EV isolation are known to produce highly specific and efficient isolation results. However, so far, there is a lack of literature summarizing these methods and their effects on downstream EV molecular analysis. In the present work, we reviewed recent efforts on developing affinity-based methods for the isolation of EVs, with an emphasis on comparing their effects on downstream analysis of EV molecular cargo. Antibody-based isolation techniques produce highly pure EVs, but the harsh eluents damage the EV structure, and some antibodies stay bound to the EVs after elution. Aptamer-based methods use relatively mild elution conditions and release EVs in their native form, but their isolation efficiencies need to be improved. The membrane affinity-based method and other affinity-based methods based on the properties of the EV lipid bilayer also isolate intact EVs, but they can also result in contaminants. From the perspective of affinity-based methods, we investigated the influence of the isolation methods of choice on downstream EV molecular analysis.
Collapse
|
14
|
Zheng L, Wang H, Zuo P, Liu Y, Xu H, Ye BC. Rapid On-Chip Isolation of Cancer-Associated Exosomes and Combined Analysis of Exosomes and Exosomal Proteins. Anal Chem 2022; 94:7703-7712. [PMID: 35575685 DOI: 10.1021/acs.analchem.2c01187] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Exosomes are lipid bilayer extracellular vesicles secreted by various types of cells and inherit abundant molecular information from parental cells. Tumor-derived exosomes have been widely recognized as noninvasive biomarkers for early cancer diagnosis and surveillance, but the separation of intact exosomes and detection of exosomal proteins remain challenging. Herein, we proposed a microfluidic chip for specific exosome isolation, integrated with sensitive quantification by a novel PTCDI-aptamer signal switch strategy. To enhance the capture efficiency, an alternating drop-shaped micropillar array was designed to assist the capture of tumor-derived exosomes by Tim4-modified magnetic beads (Tim4 beads) on the chip. Following capture, a chelating agent can easily elute intact exosomes which were further used for profiling exosomal surface proteins by the multiplexed fluorescence turn-on approach. Profiting from the efficient on-chip enrichment of the Tim4 beads and superior fluorescence signal transduction strategy, the detection limit of the analysis platform for HepG2 exosomes is as low as 8.69 × 103 particles/mL with a wide linear range spanning 6 orders of magnitude. Meanwhile, the proposed platform could recognize subtle changes in protein levels on the exosomal surface from various cell lines. More importantly, this strategy is successfully applied to analyze exosomes in human serum to distinguish liver cancer patients from healthy individuals. Combined analysis of different types of biomarkers on the exosomal membrane surface can greatly improve the accuracy of cancer type identification and disease monitoring. We hope that this convenient, rapid, and sensitive platform may become a powerful tool in the field of exosome analysis and early cancer screening.
Collapse
Affiliation(s)
- Lu Zheng
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hua Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Peng Zuo
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yueling Liu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huiying Xu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
15
|
Functionalized nanomaterials in separation and analysis of extracellular vesicles and their contents. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Xu K, Jin Y, Li Y, Huang Y, Zhao R. Recent Progress of Exosome Isolation and Peptide Recognition-Guided Strategies for Exosome Research. Front Chem 2022; 10:844124. [PMID: 35281563 PMCID: PMC8908031 DOI: 10.3389/fchem.2022.844124] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are membrane extracellular vesicles secreted by almost all kinds of cells, which are rich in proteins, lipids, and nucleic acids. As a medium of intercellular communication, exosomes play important roles in biological processes and are closely related to the occurrence, and development of many diseases. The isolation of exosomes and downstream analyses can provide important information to the accurate diagnosis and treatment of diseases. However, exosomes are various in a size range from 30 to 200 nm and exist in complex bio-systems, which provide significant challenges for the isolation and enrichment of exosomes. Different methods have been developed to isolate exosomes, such as the “gold-standard” ultracentrifugation, size-exclusion chromatography, and polymer precipitation. In order to improve the selectivity of isolation, affinity capture strategies based on molecular recognition are becoming attractive. In this review, we introduced the main strategies for exosome isolation and enrichment, and compared their strengths and limitations. Furthermore, combined with the excellent performance of targeted peptides, we summarized the application of peptide recognition in exosome isolation and engineering modification.
Collapse
Affiliation(s)
- Kun Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yulong Jin, ; Rui Zhao,
| | - Yongming Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yulong Jin, ; Rui Zhao,
| |
Collapse
|
17
|
Chen H, Zhang N, Wu Y, Yang C, Xie Q, Deng C, Sun N. Investigation of Urinary Exosome Metabolic Patterns in Membranous Nephropathy by Titania‐Assisted Intact Exosome Mass Spectrometry. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202100118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Haolin Chen
- Department of Chemistry and Institutes of Biomedical Sciences Fudan University Shanghai 200433 P. R. China
| | - Ning Zhang
- Department of Chemistry and Institutes of Biomedical Sciences Fudan University Shanghai 200433 P. R. China
| | - Yonglei Wu
- Department of Chemistry and Institutes of Biomedical Sciences Fudan University Shanghai 200433 P. R. China
| | - Chenjie Yang
- Department of Chemistry and Institutes of Biomedical Sciences Fudan University Shanghai 200433 P. R. China
| | - Qionghong Xie
- Division of Nephrology Huashan Hospital Fudan University Shanghai 200040 P. R. China
| | - Chunhui Deng
- Department of Chemistry and Institutes of Biomedical Sciences Fudan University Shanghai 200433 P. R. China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology Zhongshan Hospital Fudan University Shanghai 200032 China
| |
Collapse
|
18
|
Li Y, Yang K, Yuan H, Zhang W, Sui Z, Wang N, Lin H, Zhang L, Zhang Y. Surface Nanosieving Polyether Sulfone Particles with Graphene Oxide Encapsulation for the Negative Isolation toward Extracellular Vesicles. Anal Chem 2021; 93:16835-16844. [PMID: 34889606 DOI: 10.1021/acs.analchem.1c03588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) contain specific biomarkers for disease diagnosis. Current EV isolation methods are hampered in important biological applications due to their low recovery and purity. Herein, we first present a novel EV negative isolation strategy based on surface nanosieving polyether sulfone particles with graphene oxide encapsulation (SNAPs) by which the coexisting proteins are irreversibly adsorbed by graphene oxide (GO) inside the particles, while EVs with large sizes are excluded from the outside due to the well-defined surface pore sizes (10-40 nm). By this method, the purity of the isolated EVs from urine could be achieved 4.91 ± 1.01e10 particles/μg, 40.9-234 times higher than those obtained by the ultracentrifugation (UC), size-exclusion chromatography (SEC), and PEG-based precipitation. In addition, recovery ranging from 90.4 to 93.8% could be obtained with excellent reproducibility (RSD < 6%). This was 1.8-4.3 times higher than those obtained via SEC and UC, comparable to that obtained by PEG-based precipitation. Taking advantage of this strategy, we further isolated urinary EVs from IgA nephropathy (IgAN) patients and healthy donors for comparative proteome analysis, by which significantly regulated EV proteins were found to distinguish IgAN patients from healthy donors. All of the results indicated that our strategy would provide a new avenue for highly efficient EV isolation to enable many important clinical applications.
Collapse
Affiliation(s)
- Yilan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiguang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Huiming Yuan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weijie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Nan Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hongli Lin
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
19
|
Nakase I, Takatani-Nakase T. Exosomes: Breast cancer-derived extracellular vesicles; recent key findings and technologies in disease progression, diagnostics, and cancer targeting. Drug Metab Pharmacokinet 2021; 42:100435. [PMID: 34922046 DOI: 10.1016/j.dmpk.2021.100435] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer is one of the most frequently diagnosed types of cancer in women. Metastasis, particularly to the lungs and brain, increases mortality in breast cancer patients. Recently, breast cancer-related exosomes have received significant attention because of their key role in breast cancer progression. As a result, numerous exosome-based therapeutic tools for diagnosis and treatment have been developed, and their biological and chemical mechanisms have been explored. This review summarizes up-to-date advanced key findings and technologies in breast cancer progression, diagnostics, and targeting. We focused on recent research on the basic biology of exosomes and disease-related exosomal genes and proteins, as well as their signal transduction in cell-to-cell communications, diagnostic markers, and exosome-based antibreast cancer technologies. We also paid special attention to technologies employing exosomes modified with functional peptides for the targeted delivery of therapeutic and diagnostic agents.
Collapse
Affiliation(s)
- Ikuhiko Nakase
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan; Institute for Bioscience, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan.
| |
Collapse
|
20
|
Zhu Q, Huang Y, Yang Q, Liu F. Recent technical advances to study metabolomics of extracellular vesicles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Aptamer functionalized and reduced graphene oxide hybridized porous polymers SPE coupled with LC-MS for adsorption and detection of human α-thrombin. Anal Bioanal Chem 2021; 414:1553-1561. [PMID: 34779902 DOI: 10.1007/s00216-021-03776-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
In this study, reduced graphene oxide (rGO) hybridized high internal phase emulsions were developed and polymerized as porous carriers for aptamer (5'/5AmMC6/-AGT CCG TGG TAG GGC AGG TTG GGG TGA CT-3') modification to enrich human α-thrombin from serum. The structure and properties of the materials were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscope (FT-IR), and X-ray photoelectron spectra (XPS). The adsorption ability and selectivity were studied and the thrombin was detected with liquid chromatography-mass spectrometry (LC-MS). The adsorption of thrombin onto the sorbent was achieved within 30 min and the desorption was realized using 5.0 mL of acetonitrile/water (80/20, v/v). The thrombin was quantified by LC-MS according to its characteristic peptide sequence of ELLESYIDGR.
Collapse
|
22
|
Ma X, Hao Y, Liu L. Progress in Nanomaterials-Based Optical and Electrochemical Methods for the Assays of Exosomes. Int J Nanomedicine 2021; 16:7575-7608. [PMID: 34803380 PMCID: PMC8599324 DOI: 10.2147/ijn.s333969] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Exosomes with diameters of 30-150 nm are small membrane-bound vesicles secreted by a variety of cells. They play an important role in many biological processes, such as tumor-related immune response and intercellular signal transduction. Exosomes have been considered as emerging and noninvasive biomarkers for cancer diagnosis. Recently, a large number of optical and electrochemical biosensors have been proposed for sensitive detection of exosomes. To meet the increasing demands for ultrasensitive detection, nanomaterials have been integrated with various techniques as powerful components. Because of their intrinsic merits of biological compatibility, excellent physicochemical features and unique catalytic ability, nanomaterials have significantly improved the analytical performances of exosome biosensors. In this review, we summarized the recent progress in nanomaterials-based biosensors for the detection of cancer-derived exosomes, including fluorescence, colorimetry, surface plasmon resonance spectroscopy, surface enhanced Raman scattering spectroscopy, electrochemistry, electrochemiluminescence and so on.
Collapse
Affiliation(s)
- Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, Henan, 476000, People’s Republic of China
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, Henan, 476000, People’s Republic of China
| | - Lin Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, Henan, 476000, People’s Republic of China
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People’s Republic of China
| |
Collapse
|
23
|
Han Z, Yi J, Yang Y, Li D, Peng C, Long S, Peng X, Shen Y, Liu B, Qiao L. SERS and MALDI-TOF MS based plasma exosome profiling for rapid detection of osteosarcoma. Analyst 2021; 146:6496-6505. [PMID: 34569564 DOI: 10.1039/d1an01163d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Osteosarcoma is the most frequent primary bone cancer, particularly among children and adolescents. The early diagnosis of osteosarcoma is significant for timely clinical treatment to reduce the mortality of patients. Exosomes play a significant role in intercellular communication and serve as promising biomarkers in liquid biopsy for the diagnosis and monitoring of tumors. Herein, we report the utility of surface-enhanced Raman scattering (SERS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for rapid identification of osteosarcoma. We firstly profiled the intrinsic SERS signals and MALDI-TOF mass fingerprints of different subgroups of extracellular vesicles (EVs) and the corresponding cells, demonstrating that the SERS signals and MALDI-TOF mass spectra of exosomes from different types of cells were more discriminative compared to those of large and medium EVs and the cells themselves. Then, we characterized plasma-derived exosomes of 15 osteosarcoma patients and 15 healthy volunteers using SERS and MALDI-TOF MS, revealing distinctive biochemical differences in the spectra. We further utilized a data fusion approach to combine the two types of spectroscopic techniques, differentiating osteosarcoma patients from healthy controls with higher precision than either technique. The results reveal that the non-invasive liquid biopsy method using SERS and MALDI-TOF MS fingerprinting of exosomes has great potential for rapid diagnosis of osteosarcoma.
Collapse
Affiliation(s)
- Zhenzhen Han
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China.
| | - Jia Yi
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China.
| | - Yi Yang
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China.
| | - Dandan Li
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China.
| | - Cheng Peng
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Shuping Long
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xinyan Peng
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China.
| | - Yuhui Shen
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Baohong Liu
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China.
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China.
| |
Collapse
|
24
|
Perspectives and challenges in extracellular vesicles untargeted metabolomics analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Xu H, Zheng L, Zhou Y, Ye BC. An artificial enzyme cascade amplification strategy for highly sensitive and specific detection of breast cancer-derived exosomes. Analyst 2021; 146:5542-5549. [PMID: 34515703 DOI: 10.1039/d1an01071a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumor-related exosomes, which are heterogeneous membrane-enclosed nanovesicles shed from cancer cells, have been widely recognized as potential noninvasive biomarkers for early cancer diagnosis. Herein, an artificial enzyme cascade amplification strategy based on a switchable DNA tetrahedral (SDT) scaffold was proposed for quantification of breast cancer-derived exosomes. The SDT scaffold is composed of G-quadruplex mimicking DNAzyme sequences on its two single-stranded edges and glucose oxidase (GOx) on the four termini of the complementary strands. In the initial state, the SDT scaffold is blocked by the switch strand which consists of partial complementary domains with the DNA tetrahedron and a MUC1 aptamer. MCF-7 exosomes could release the quadruplex-forming sequences through the recognition of the MUC1 aptamer. The newly formed DNAzyme brings GOx into spatial proximity and induces high-efficiency enzyme cascade catalytic reactions on the SDT. Consequently, high sensitivity toward MCF-7 exosome analysis was obtained with a wide linear range of 3.8 × 106 to 1.2 × 108 particles per mL and a limit of detection of 1.51 × 105 particles per mL. In addition, such a DNAzyme reconfiguration strategy was able to distinguish MCF-7 exosomes from other breast cancer cell derived exosomes, indicating its excellent method specificity. The proposed enzyme cascade strategy not only provides a novel signal transformation and amplification nanoplatform for quantifying the specific populations of exosomes, but also can be further expanded to the analysis of multiple cancer biomarkers.
Collapse
Affiliation(s)
- Huiying Xu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lu Zheng
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yu Zhou
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|